CHAPTER 12: EPISODES OF CAPITAL FLOW REVERSALS

“All happy families resemble one another, but each unhappy family is miserable in its own way.”

Leo Tolstoy, Anna Karenina (1875-7, pt. 1, ch. 1)

Introduction

External crises, like the misery of a family in Tolstoy’s Anna Karenina, are different from each other. They are caused by different factors and erupt or evolve in different political-economic backgrounds. Therefore, it is difficult to pin down a common framework for their empirical analysis. This chapter attempts to merely provide some empirical regularities which are common to most external crises.

Three waves of external crises have swept international capital markets during the 1990s: the EMS crisis in 1992-1993, the collapse of the Mexican peso with its induced “tequila effects” and, most recently, the financial crisis in East Asia. In Italy (a member of the former EMS) and Mexico, the currency crisis was followed by a sharp reversal in the capital flows and the current account;\(^1\) Italy went from a current account deficit of 2.4 percent in 1992 to an average surplus of close to 2 percent in 1993-1996, and Mexico from a deficit of 7 percent in 1993-94 to a virtual balance in 1995-1996, reflecting a capital outflow of similar magnitude (including reserve depletions). A similar outcome has occurred in East Asia after the 1997 baht crisis and its aftermath, as the table below shows.

Are external crises characterized by large nominal devaluations invariably followed by sharp reductions in current account deficits? And what is the impact of crises and reversals in current account imbalances on economic performance? This chapter addresses
these questions by characterizing real and nominal aspects of sharp external adjustments in low- and middle-income countries. It presents stylized facts associated with sharp reductions in current account deficits (reversals) and with large nominal devaluations (currency crises), and examines what pre-crisis event factors are associated with macroeconomic performance after such events occur.

<table>
<thead>
<tr>
<th></th>
<th>Indonesia</th>
<th>Korea</th>
<th>Malaysia</th>
<th>Philippines</th>
<th>Thailand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current account reversal(^2)</td>
<td>6.8</td>
<td>15.1</td>
<td>19.6</td>
<td>6.8</td>
<td>18.8</td>
</tr>
<tr>
<td>Real depreciation(^3)</td>
<td>40.5</td>
<td>21.9</td>
<td>18.0</td>
<td>14.1</td>
<td>19.6</td>
</tr>
</tbody>
</table>

Recent episodes of external instability have stimulated new theoretical and empirical research on crises, in an attempt to provide a conceptual framework that helps understand these traumatic events and, possibly, to improve policy design so as to minimize the likelihood of their occurrence. In principle, a reversal in capital flows can cause a currency crisis and force a reduction in current account deficits, because of the drying up of sources of external financing. However, a reversal can also occur in response to a change in macroeconomic policy designed to forestall the possibility of future speculative attacks or capital flow reversals, or as a consequence of favorable terms-of-trade shocks. Speculative attacks leading to currency crises can follow a collapse in domestic assets markets, as seems to have been the case in recent events in Asia, accumulation of short-term debt denominated in foreign currency, a persistent real appreciation and deterioration of the current account, as was the case of Mexico, or a political choice to abandon a rigid exchange rate system, as in the case of the United Kingdom in 1992.

First, Second and Third Generations Models of External Crises
How well does theory match the variety of these different experiences? So-called first-generation models of currency crises (e.g., Krugman (1979) and Flood and Garber (1984)) are built on an inevitable collapse of a fixed exchange rate system, in which the central bank mechanically expands domestic credit, for example by monetizing a persistent fiscal deficit. After a period of gradual reserve losses, a perfectly foreseen speculative attack wipes out the remaining reserves of the Central Bank and forces the abandonment of the fixed exchange rate. The main insight from these models is about the mechanics and timing of the sudden collapse in the context of a national expectations framework.

Second-generation models of currency crises (e.g., Obstfeld (1994)) endogenize government policy. Private agents forecast the government choice as to whether or not to defend the peg, based on trading off short-term flexibility and long-term credibility. The peg is abandoned either as a result of deteriorating fundamentals, as in first-generation models, or following a speculative attack driven by self-fulfilling expectations. Note that a self-fulfilling attack can (but need not) occur only with “vulnerable” fundamentals.

The latest waves of currency crises referred to above have brought the second-generation explanations of crises based on multiple equilibria and/or on contagion effects to the forefront (on the former see, for example, Eichengreen et al. (1995), and Jeanne and Masson (1997) among others; on the latter, Eichengreen et al. (1996), Calvo and Mendoza (1996), Jeanne (1997) and Masson (1998)). Empirical tests of crisis models use various indicators of fundamentals, such as reserves to money ratio, fiscal balance, and the rate of domestic credit creation. The issue is whether (some) fundamentals are steadily deteriorating in the period leading up to a speculative attack or not. However, it is difficult to infer from the
data whether the collapse of the peg is a result of deteriorating fundamentals or self-fulfilling prophecies (see, for example, Eichengreen et al. (1995) and Krugman (1996)).

The third-generation models (e.g., Morris and Shin (1998), and Goldstein (2000)) depart from the common knowledge assumption concerning the fundamentals. With noisy signals, the actions of agents are coordinated (not through a market leader but through market participants’ own expectations) on a unique fundamentals-based crisis equilibrium. Morris and Shin (1998) generalize Obstfeld’s (1994) model to a model with a continuum of investors deciding whether or not to attack a currency with a fixed peg. Higher-order beliefs are a key determinant of investors’ ability to coordinate their behavior, and thus a key factor in determining when the fundamental is sufficiently weak so as to uniquely trigger a currency attack.

A growing body of empirical research is devoted to studying the mechanics of crises in developing countries. Edwards (1989) studied the link between devaluation, the current account and output behavior. Kaminsky and Reinhart (1999), Kaminsky et al.(1998) and Demirgüç-Kunt and Detragiache (1998) focus on leading indicators of balance-of-payments and banking crises; Sachs, Tornell and Velasco (1996b) explore the spillover effects of the Mexican crisis on other emerging markets; Frankel and Rose (1996) undertake a cross-country study of currency crashes in low- and middle-income countries.

The focus of the literature on the intertemporal aspects of the current account goes back to the theoretical work by Sachs (1981, 1982), Obstfeld (1982), and Svensson and Razin (1983). They were followed by empirical research on current account sustainability (e.g., Milesi-Ferretti and Razin (1996a, b)) and on current account reversals (e.g., Milesi-
Ferretti and Razin (1998)). Empirical research in this area includes also Debelle and Faruqee (1996) who undertake a cross-country study of determinants of the current account, Kraay and Ventura (1997), who argue that debtor and creditor countries respond asymmetrically to income shocks, and Lane and Perotti (1998) who investigate the impact of fiscal policy on the trade balance in OECD countries. A number of authors have focused on capital account developments, and in particular on capital flows to emerging markets, underlining the importance of both push and pull factors in explaining capital flows (see, for example, Calvo, Leiderman and Reinhart (1993), Corbo and Hernández (1996), Fernández-Arias (1996), Fernández-Arias and Montiel (1996), Dornbusch, Goldfajn and Valdes (1995)).

In this chapter we put together these related strands of literature, and describe some evidence pertaining to indicators and consequences of current account reversals and currency crises in a large sample of low- and middle-income countries over the period 1970-1996. The list of these countries is presented in appendix 12.1.

In reporting this empirical evidence, we attempt to characterize a broad set of stylized facts associated with reversals and crises. However, caution must be exercised in interpreting these regularities as a reliable predictive model. The burgeoning analytical literature of financial crises has highlighted several mechanisms that can generate such an outcome: inconsistency between deteriorating fundamentals and the maintenance of a fixed exchange rate (Krugman (1979)), self-fulfilling crises à la Obstfeld (1994), models of crises based on bank runs à la Diamond and Dybvig (1983) (e.g., Goldfajn and Valdés (1997), Chang and Velasco (1998)). Although these mechanisms generating crises are different, the models point to an overlapping set of indicators (e.g., the level of reserves, the rate of growth in domestic
credit, world interest rates, etc.). Hence, empirical exercises relating the probability of a crisis to a large set of indicators cannot discriminate between different explanations for crises. Failure to identify the alternative (potentially different) mechanisms underlying crises limits the usefulness of these exercises as predictive tools because the reduced-form relationship between crisis events and indicators averages the particular pattern of crises prevailing in the sample, which may not be repeated in the future (as in the standard Lucas critique). In addition, policy inference is hindered by the fact that the crisis-generating mechanisms, which we cannot disentangle, can have different policy implications (e.g., tight monetary policy is called upon in a standard Krugman-type crisis, while a more flexible monetary policy is called upon in the event of bank runs of the Diamond-Dybvig type).

Determinants of Reversals and Currency Crises: Theoretical Examples

Example One

The first-generation theoretical framework which describes currency crises was provided by Krugman (1979) and Flood and Garber (1984); see Obstfeld and Rogoff (1996) for a comprehensive analysis. In this framework, the source of the crisis is an inconsistency between the exchange rate peg and the rate of domestic credit expansion, that leads to a gradual depletion of foreign exchange reserves, culminating in a speculative attack in which the remaining reserves are wiped out instantly. The attack takes place once the shadow exchange rate \(e^x \), defined as the implicit floating exchange rate that would prevail whenever reserves are exhausted, equals the pegged rate \(e \). In the simple monetary model upon which this analysis is based, a measure of the vulnerability to speculative attacks is usefully given by:
\[
\frac{e^s}{e} = \frac{1 - \mu(eR)/M_2}{1 - \eta\pi},
\]

where \(\mu \) is the base money multiplier, \(M_2 \) is broad money, \(R \) is the level of foreign exchange reserves, \(\eta \) is the interest semi-elasticity of the demand for money, and \(\pi \) the rate of credit expansion. As this expression reveals, the ratio \(e^s/e \) is positively related to the rate of deterioration in the fundamental \(\pi \). Thus, the likelihood of a crisis (which occurs whenever the ratio \(e^s/e \) reaches one) rises with \(\pi \). Similarly, Calvo (1997) emphasizes the importance of the ratio \(eR/M_2 \) (and of the related ratio of reserves to short-term debt) as a measure of the adequacy of international reserves. This class of models does not yield clear predictions with regard to the link between exchange rate crises and the behavior of the trade balance. However, if the model is amended to allow for capital controls (as in Wyplosz (1986)), reserve depletion can take place through the current account as well, with trade deficits eventually leading to an exhaustion of reserves and a collapse of the peg.

Example Two

We can cast the analysis of sharp reversals in the current account in terms of the standard transfer problem, which is illustrated in the second-generation model of Krugman (1999). Consider a small open economy producing goods that are imperfect substitutes for traded goods produced abroad. Assume that the world marginal propensity to spend on the country’s product (set to zero for simplicity) is smaller than the country’s marginal propensity to spend on domestic goods, \(1 - \mu \). World demand for domestic exports is fixed at \(X \). A share \(\mu \) of both consumption and investment demand (\(C \) and \(I \)) falls on foreign goods. Market
clearing for gross domestic product Y implies:

$$Y \equiv (1 - \mu)I + (1 - \mu)C + pX = (1 - \mu)I + (1 - \mu)(1 - s)Y + pX,$$

where s is the marginal propensity to save and p is the relative price of foreign goods in terms of domestic goods (a measure of the real exchange rate). For given Y and X, it is possible to solve for p as a function of investment:

$$p = \frac{1}{X}\{[1 - (1 - \mu)(1 - s)]Y - (1 - \mu)I\}.$$

Suppose that investment financing depends on external capital flows. A reversal in capital flows will cause a decline in investment and, for given output, a real depreciation. In terms of the transfer problem, the assumption of a higher marginal propensity to spend on domestic goods of residents relative to foreigners implies that a transfer of resources from the home to the foreign country will increase world demand for foreign goods and decrease demand for domestic goods, thus implying the need for a real depreciation. To the extent that domestic output falls, this will mitigate the need for a real depreciation because of the induced fall in supply of domestic goods, relative to the supply of foreign goods. To the extent that corporate debt is denominated in foreign currency, the real depreciation could mess up the balance sheet of the firm and reduce its collateral, forcing the firm to borrow and invest at a reduced level. This mechanism can bring about the afore-mentioned reversal in capital
flows in a self-fulfilling expectations manner; see also Aghion, Baccheta and Banerjee (1998).

Example Three

Chang and Velasco (1998) provide a link between the literature on bank runs and the literature on international financial crises; see chapter 7. A reduction in the availability of international liquidity can exacerbate the illiquidity of domestic banks, leading to a collapse in the banking system. This would cause an output decline and a collapse in asset prices. Under a fixed exchange rate, a run on the banks becomes a run on the currency if the central bank attempts to act as a lender of last resort.

For example, Korea's banks had sizable short-term foreign currency liabilities and matching foreign currency assets. At the beginning of the 1998 crisis, foreign banks refused to roll over long-term their short-term foreign-currency assets vis-à-vis offshore and onshore Korean banks. The attempts by the central bank to shore up the foreign liquidity position of banks simply led to the rapid loss of foreign currency reserves and the collapse of the currency (e.g., Dooley and Shin (1999)).

In-so-far as current-account reversals occur in periods of economic distress, with liquidity constraints due to a reversal in capital flows, we would expect a link between reversals and large currency depreciations. However, this may not be the case when reversals are induced by other factors, such as favorable terms-of-trade developments. The empirical work reported in the next sections characterizes empirical regularities associated with both current account reversals and currency crashes, attempts to shed light on what indicators provide a signal of the likelihood of these events occurring and looks at whether reversals and currency crises are related.
The Data

The data set consists of 105 low- and middle-income countries (48 African countries, 26 Asian countries, 26 countries from Latin America and the Caribbean and 5 European countries). A complete list of countries is in Appendix 12.1. In the empirical analysis use is made of a reduced sample, comprising 39 middle-income countries with population above 1 million. These countries are indicated with an asterisk in Appendix 12.1. The main source of data is the World Bank (World Development Indicators and Global Development Finance); Appendix 12.2 describes data sources and definitions. In addition to standard macroeconomic and external variables, the data set includes a number of financial sector variables and of variables reflecting the composition of external liabilities, whose role in determining the likelihood of external crises has been emphasized in recent literature (see, for example, Calvo (1997)). The data belongs to different categories:

Macroeconomic variables such as economic growth, real consumption growth, the rate of investment, the fiscal balance, the level of GDP per capita;

External variables such as the current account balance (exclusive and inclusive of official transfers), the real effective exchange rate, the degree of real exchange rate overvaluation, the degree of openness to trade, the level of external official transfers as a fraction of GDP;

Debt variables such as the ratio of external debt to output, the interest burden of debt as a fraction of GNP, the share of concessional debt, short-term debt, public debt and multilateral debt in total debt and the ratio of FDI flows to debt outstanding.

Financial variables such as the ratio of M_2 to GDP, the credit growth rate and the ratio of private credit to GDP;
Foreign variables such as the real interest rate in the United States (as a proxy for world interest rates), the rate of growth in OECD countries, and the terms of trade.\(^7\)

Dummy variables such as regional dummies, a dummy for the exchange rate regime that takes the value 1 if the country’s exchange rate is pegged and zero otherwise, and a dummy takes the value 1 if the country has an IMF program in place for at least six months during the year.

Indicators of Current Account Reversals

The definition of reversal events captures large and persistent improvements in the current account balance, that go beyond short-run current account fluctuations as a result of consumption smoothing. The underlying idea is that “large” events provide more information on determinants of reductions in current-account deficits than short-run fluctuations. These events have to satisfy three requirements:

1) an average reduction in the current account deficit of at least 3 (or in another alternative 5) percentage points of GDP over a period of three years with respect to the three years before the event;

2) the maximum deficit after the reversal must be no larger than the minimum deficit in the three years preceding the reversal;

3) the average current account deficit must be reduced by at least one third.

The first and second requirements should ensure that only reductions of sustained current account deficits, rather than sharp but temporary reversals are captured. The third requirement is necessary so as to avoid counting as a reversal a reduction in the current account deficit from, say, 15 to 12 percent.
Since events are defined on three-year averages, the actual sample period during which reversal events can be measured is 1973 to 1994. According to this definition, reversals can occur in consecutive years; in this case, however, they are not independent events. The empirical analysis that follows excludes reversals occurring within two years of a previous one. Table 12.1 summarizes the number of events according to different definitions.

The first notable feature is that reversal events are by no means rare. For example, for a 3 percent average reduction in the current account deficit (excluding official current transfers), there are 152 episodes in 69 countries; for a 5 percent reduction 117 episodes in 59 countries. If reversals occurring within two years of a previous one are excluded, the total is 100 episodes (77 for a 5 percent reduction). The geographical distribution of reversals is relatively uniform across continents, once an adjustment is made for the number of countries in the sample. An analysis of the time distribution shows, not surprisingly, that a significant share of total reversals occurs in the period immediately following the debt crisis, as well as in the late eighties. The number of reversals during the 1970s is instead fairly low. The size of the reversals is also noteworthy. For 3 percent events (excluding transfers), the median reversal (which is smaller than the average) is 7.4 percentage points of GDP, from a deficit of 10.3 percent to a deficit of 2.9 percent. Malaysia, for example, had an average current-account deficit of over 11 percent in 1981-83, but only of 2.5 percent in 1984-86.

These numbers confirm that reversal episodes are associated with major changes in a country’s external position. What are their implications for the path of other macroeconomic and financial variables? In order to address this question, a methodology developed in Eichengreen et al. (1995) is followed. The basic idea of this event-study methodology is
to distinguish between periods of “turbulence” - those within three years of a reversal event – and the remaining, “tranquil” periods. Graphs allow a comparison of variables during turbulent periods with their (average) value during tranquil periods.

Figures 12.1 and 12.2 depict the behavior of a set of variables during periods of turbulence (around the time of reversals) for the whole sample and for the reduced sample comprising 39 middle-income countries, respectively. Each panel shows deviations of these variables from their mean during periods of tranquility, except for the first panel, which plots the median rate of depreciation in turbulent periods, as a deviation from the sample median in tranquil periods. The plotted values for the remaining panels refer to reversal events, and are the means (plus or minus two standard deviations) of the variable during each year of the reversal episode (from $t - 3$ to $t + 3$) as a deviation from the sample mean of the variable during tranquil periods. Hence, a positive value for a variable indicates that it tends to be higher in “turbulent” than in “tranquil” periods.\(^9\)

The Figures show that the real exchange rate starts out more appreciated than average before reversal periods, and then depreciates throughout the period. This co-movement between the real exchange rate and the current account is clearly in line with the standard analysis of the transfer problem; see example two above. The panel depicting the behavior of the nominal exchange rate shows indeed an acceleration in the median rate of currency depreciation which occurs a couple of years before reversals. Reversals tend also to be preceded by unfavorable terms of trade, low foreign exchange reserves (e.g., example one), a high interest burden of external debt, low consumption growth and a high but declining fiscal deficit. After a reversal occurs, reserves tend to rise, the fiscal balance continues to improve
and the real exchange rate to depreciate. Note also that no clear pattern for output growth characterizes the period preceding or following a reversal. This finding runs counter to the conventional wisdom that sharp reductions in current account deficits reflect an external crisis and that they are achieved by protracted domestic output compression so as to reduce import demand.

A multivariate probit analysis is then used to examine whether a set of explanatory variables help predict whether a country is going to experience a reversal in current account imbalances. More specifically, an estimate of the probability of a reversal occurring at time \(t \) (meaning a 3 percent average decline of the current account deficit between \(t \) and \(t + 2 \) with respect to the period between \(t - 1 \) and \(t - 3 \)) as a function of variables at \(t - 1 \) and of contemporaneous exogenous variables (terms of trade, industrial countries growth, world interest rates) is provided. The choice of the set of explanatory variables is motivated by existing research on currency and banking crises, as well as by previous work comparing episodes of persistent current account deficits, that identified a number of potential indicators of sustainability. Among them are the current account deficit (CA), economic growth (GROW), the investment rate (INV), GDP per capita (GDP), the real effective exchange rate (RER), openness to trade (OPEN), foreign exchange reserves as a fraction of imports (RES), the level of external official transfers as a fraction of GDP (OT), the ratio of external debt to GDP (DEBTY), the share of concessional debt in total debt (CONRAT), the share of public debt in total debt (PUBRAT), the ratio of credit to GDP (CRED) (a proxy for financial development). Other variables, such as the ratio of FDI flows to GDP (FDI) and the share of short-term debt in total debt (SHORT) were excluded from the probit because
they turned out to be economically and statistically insignificant. Also excluded are the fiscal deficit, because of problems with data availability – it did not enter significantly in the probit analysis, and it reduced sample size considerably. Note that the definition of the event is based on changes in the current account balance, and therefore it is important to control for the level of the current account balance prior to the reversal.

Included among the “exogenous” variables are the lagged and contemporaneous real interest rate in the United States (RINT— as a proxy for world interest rates), the lagged and contemporaneous rate of growth in OECD countries (GROEC), the lagged level of the terms of trade (TT) and the change in the terms of trade in the reversal period ($\Delta TT(t+1)$). Dummies for the exchange rate regime (PEG) and the one for an IMF program (IMF) are also used. For some of the lagged explanatory variables, namely the current account, the rate of growth and the investment share, a three-year average (over the period $t−1$ to $t−3$) is used rather than their level at $t−1$ to ensure consistency with the way reversals are measured.

It is clearly incorrect to interpret this probit analysis in a structural way, given that many of the explanatory variables are endogenous. Nevertheless, the analysis can provide a useful multivariate statistical characterization of reversal events as well as identify potential leading indicators. Probit results are presented in Table 12.2. Overall, the empirical analysis identifies a number of robust predictors of reversals in current account imbalances, regardless of the sample definition:

Current account deficit: not surprisingly, reversals are more likely in countries with large current account deficits. This result is consistent with solvency and willingness to lend
considerations.

Foreign exchange reserves: countries with lower reserves (expressed in months of imports) are more likely to experience a reversal. Clearly, low reserves make it difficult to sustain large external deficits and may reduce the willingness to lend of foreign investors. The ratio of reserves to M_2 also appears to signal reversals ahead of time in the sample (see example one).

GDP per capita: Countries with higher GDP per capita are more likely to experience reversals. The coefficient on this variable captures the difficulty of extremely poor countries in reversing external imbalances. The positive coefficient is also consistent with the theory of stages in the balance of payments: as a country gets richer, a reduction in deficits (or a shift to surpluses) is more likely.

Terms of trade: Reversals seem more likely in countries with worsened terms of trade. One interpretation of this finding is that countries that have suffered terms-of-trade deterioration are more likely to experience a reversal of capital flows, and may therefore be forced to adjust. The evidence is also in line with what suggested by Kraay and Ventura (1997), since the countries in the sample are almost entirely net debtors, and by Tornell and Lane (1998) who argue that the common pool problem may be exacerbated by favorable terms of trade shocks, thus leading to a more than proportional increase in absorption.

There is some evidence that reversals are more likely in countries with high investment: insofar as high investment contributes to export capacity, it can lead to a narrowing of external imbalances. Reversals also appear less likely in countries that peg their exchange rates. If a peg precludes an adjustment in the nominal (and real) exchange rate, it can
hamper the reduction of external imbalances.

When the full sample, that includes a large number of very poor countries is considered, the following additional indicators are found:

Concessional debt: The higher the share of concessional debt in total debt, the less likely is a current account reversal. Concessional debt flows are less likely to be reversed, and they are likely to be higher in those countries that have more difficulties reducing their external imbalances and servicing their external obligations. The statistical significance of the share of concessional debt vanishes once the poorest countries are excluded from the sample, and therefore the variable was excluded from the last probit model (Table 12.2, column 4).

Official international transfers: A current account reversal is less likely when official transfers are high. Clearly, higher official transfers reduce the need to adjust the current account (the current account that is measured is net of such transfers).

OECD growth: Reversals in developing countries are more likely to occur in years when the growth rate in industrial countries is high. High growth increases the demand for exports from developing countries, helping to narrow current account deficits.

US Interest Rates: Reversals are more likely after a period of high real interest rates in industrial countries. High real interest rates increase the cost of borrowing for developing countries and reduce the incentive for capital to flow into developing countries.

Note that the coefficient on the level of external debt has the wrong sign in the first two probit models, reflecting the fact that several poor countries are highly indebted but have persistently high current account deficits, without reversals. Indeed, when these countries are eliminated from the sample the coefficient on external debt changes sign (see columns
3 and 4). Reversals do not appear to be systematically correlated with GDP growth before the event; no significant links between the level or rate of change of the real exchange rate (or degree of overvaluation) before the event and current account reversals are found. This finding is, of course, conditional on a given initial current account deficit (see also Figures 12.1-12.2).

The second part of Table 12.2 shows the goodness of fit of the probit model, under the assumption that a crisis is correctly predicted if the estimated probability is above 0.5. Note that the fit improves considerably when very poor countries are eliminated from the sample. This is not surprising indeed, one can think that the determinants of swings in the current account can differ substantially between countries that rely exclusively on official transfers, mostly on concessional terms, and those that have more access to international capital markets.

The results presented so far have to be interpreted taking into account the fact that the empirical analysis aggregates reversal events that have quite different features; it includes both full-fledged balance-of-payments crises, as, say, Mexico 1982, and improvements in the current account spurred by favorable terms-of-trade developments or a timely correction in macroeconomic policy. A better understanding of the dynamics of current account reversals and of the role of economic policy will require a classification of these events based on their salient features (terms-of-trade shocks, swings in capital flows, etc.). This would provide an opportunity for a closer match between intertemporal models of current account determination and developing countries’ data.

Current Account Reversals and Output Performance
This section examines the behavior of output growth in countries that experienced sharp reductions in current account imbalances. The focus is on two issues: First, whether reversals are costly in terms of output, and, second, what factors determine a country’s rate of growth during a reversal period. Output costs clearly arise when reversals are associated with macroeconomic crises, and more generally can be due to macroeconomic adjustment and sectoral reallocation of resources. For the purpose of this “before-after” analysis the 3 percent event definition is selected and adjacent events are eliminated.11 This leaves 100 reversal episodes for the definition excluding official transfers.

The first interesting finding is that the median change in output growth between the period after and before the event is around zero, suggesting that reversals in current account deficits are not necessarily associated with domestic output compression. However, output performance is very heterogeneous. For example, Uruguay’s average growth was 7 percent in the period 1982-84, compared to 4 percent in the period 1979-81; Malaysia instead went from growth of 2.4 percent in 1984-86 to growth of close to 8 percent over the following three years.

The dependent variable in the regression analysis is the average rate of output growth during the three years of the reversal period, as deviation from OECD average during the same period. The deviation of growth from the OECD average is used, because reversal events occur in different years, and an attempt is made to provide some (rough) correction of each country’s performance for the overall behavior of the world economy during that period. The explanatory variables include average growth (also as a deviation from the OECD average), average investment, the average current account balance, GDP per capita (a con-
ditional convergence term), the ratio of external debt to GDP (DEBTY), the overvaluation of the real exchange rate, official transfers and US real interest rates. They are all dated prior to the reversal. Results are presented in Table 12.3. The Table shows that countries more open to trade and with a less appreciated level of the exchange rate before the event are likely to grow faster after the event. The size of the point estimates indicates that the effects of these variables are also economically significant: for example, a country that has an overvaluation of 10 percent before the reversal is likely to grow 0.7 percent slower for the following three years. We also find some evidence that countries with high external debt and those that receive high official transfers tend to grow more slowly. The latter finding could of course simply reflect the fact that poor countries that grow slowly tend to receive large transfers. Indeed, when countries with low per capita income are excluded, the coefficient on official transfers changes sign and becomes statistically insignificant (regression not reported). Note also that the correlation of growth before and after the event is low and statistically insignificant, with the exception of the regression for the group of middle-income countries.

Overall, the empirical analysis seems to provide a reasonable characterization of short/medium-run output performance during periods of substantial reduction in external imbalances. A noteworthy finding is that reversal events seem to entail substantial changes in macroeconomic performance between the period before and the period after the crisis, but are not systematically associated with a growth slowdown.

Predictors of Currency Crashes

This Section extends and refines work by Frankel and Rose (1996), by considering a longer
sample and alternative definitions of currency crises. Four definitions of currency crises are employed. The first one (CRISIS1), used by Frankel and Rose (1996), requires an exchange rate depreciation vis-à-vis the dollar of 25 percent, which is at least 10 percent higher than the depreciation the previous year. The main problem with this definition is that it considers as a crisis an episode in which the rate of depreciation increases from, say, 50 to 61 percent. To avoid capturing the large exchange rate fluctuations associated with high-inflation episodes, the second definition (CRISIS2) requires, in addition to a 25 percent depreciation, at least a doubling in the rate of depreciation with respect to the previous year and a rate of depreciation the previous year below 40 percent. The third and fourth definitions (CRISIS3 and CRISIS4) focus on those episodes in which the exchange rate was relatively stable the previous year, and that therefore may be closer to the concept of currency crisis implicit in theoretical models. CRISIS3 requires a 15 percent minimum rate of depreciation, a minimum 10 percent increase in the rate of depreciation with respect to the previous year and a rate of depreciation the previous year of below 10 percent. Finally, CRISIS4 is analogous to CRISIS3 with the additional requirement that the exchange rate be pegged the year before the crisis.

Not considered as a crisis are events that occur within three years of another crisis; therefore a window is constructed around each crisis event which is distinguished from periods of tranquility. This reduces the total amount of crises; Table 12.4 summarizes the currency crisis episodes according to the different definitions. There is clearly a large degree of overlap between these definitions of crises. Practically all episodes in CRISIS2 (138 of them) are also episodes of CRISIS1. The overlap between CRISIS3 and CRISIS1 (or CRISIS2) is smaller
(109 cases) but still significant. Note also that the number of crashes depends crucially on whether one counts countries that experienced a crash or currencies that crashed. The six members of the Central African Economic and Monetary Union (Cameroon, Central African Republic, Chad, Congo, Equatorial Guinea and Gabon), the seven members of the West African Economic and Monetary Union (Benin, Burkina Faso, Côte d’Ivoire, Mali, Niger, Senegal and Togo) plus the republic of the Comoros share the same currency (the CFA franc) which was set as a fixed rate vis-à-vis the French franc until 1994, and then devalued by 50 percent. The definition of crisis therefore captures fourteen country episodes that year, and also in 1981 (because of the depreciation of the French franc vis-à-vis the dollar).

The geographical distribution of currency crashes show that African and Latin American countries tend to experience more crashes than Asian countries (adjusting by the number of countries in the sample). Recall, however, that the recent 1998 Asian currency crashes are not in the sample. The time distribution of currency crashes is more uniform than the distribution of reversals, with the highest number of crashes in the early eighties (the period of the debt crisis) and, more surprisingly, in the early nineties. The increase in capital mobility during the latter period may be one possible explanation of this pattern.

Table 12.5 summarizes changes in the exchange-rate regime in countries that suffered currency crashes. In the whole sample, the exchange rate is pegged 69 percent of the time. The data show that number of countries abandon the exchange rate peg the year of the crisis, and a few more the following year.

As in the case of current account reversals, Figures 12.3 and 12.4 present some evidence on the behavior of key variables around the time of the crisis for the whole sample
and for the sample of middle-income countries, respectively (the graphs refer to CRISIS2; the graphs for the other crises are similar, and available upon request). The first 2 panels of Figures 12.3 and 12.4 depict the behavior of the median rate of depreciation and of CPI inflation around the time of a currency crash, as deviations from the sample median during periods of tranquility. The other panels depict deviations from means and standard error bands (as in Figures 12.1 and 12.2). For the whole sample, the median rate of depreciation prior to crises is below 2 percent, close to the sample median; the median depreciation the year of the crisis is 53 percent, and, after the crisis, it falls to 17 percent. A similar pattern emerges for the rate of inflation, although the increase during the year of the crisis is much smaller than the increase in the rate of depreciation. This is reflected in the behavior of the real exchange rate (or the degree of overvaluation): these increase prior to the crisis and fall the year of the crisis, and do not seem to recover within the three-year window. Another notable feature of crisis years (and of the year preceding a crisis) is a decline in the rate of output and consumption growth, with a rebound taking place after the crisis. The median consumption growth rate over the three years preceding a crisis is 3.3 percent; the year of the crisis, 0.2 percent and the following three years 2.2 percent. For output growth, the numbers are 2.6 percent, 1.4 percent and 3.1 percent, respectively. Not surprisingly, foreign exchange reserves around crisis periods tend to be lower than during tranquil periods, and the terms of trade less favorable. There is some evidence that current account deficits are larger before crises than in tranquil periods; however, the Figures show an improvement in the current account position after the devaluation only for middle-income countries.

Turn now to multivariate probit analysis. The probability of a currency crisis at time
$t + 1$, as a function of a set of explanatory variables at time t and of “external factors” at time t and $t + 1$, is estimated. The set of explanatory variables is similar to the one used for reversals; also reported here are results using the ratio of reserves to M_2 ($RESM2$) as an alternative to reserves measured in months of imports (RES). Results are presented in Table 12.6. The first four columns report probit analysis using the full sample and the four different definitions of crises, while the last two columns report the results for the sample of 39 middle-income countries. Overall, these results suggest some robust leading indicators of currency crashes, regardless of the precise definition of the crash:

Foreign exchange reserves: Crashes are more likely in countries with low foreign exchange reserves, measured as a fraction of imports or as a fraction of M_2.15 This finding is clearly in line with theoretical models of currency crises; see example one.

Real exchange rate overvaluation: Crashes are more likely in countries in which the real exchange rate is appreciated relative to its historical average. This finding suggest that even the crude measure of exchange rate misalignments adopted here provides some useful information on the likelihood of exchange rate collapse.16

US interest rates: Crashes are more likely when real interest rates in the US are (or have been) high. Higher interest rates in industrial countries make investment in developing countries less attractive and are more likely to cause reversals in capital flows.

Growth in industrial countries: Crashes are more likely if growth in industrial countries has been sluggish. A possible channel is through lower demand for developing countries exports, a decline in foreign exchange reserves and a more likely collapse of the currency.

Terms of trade: a crisis is less likely when the terms of trade are favorable. This is another
intuitive finding: better terms of trade should improve a country’s creditworthiness (and its cash flow) and make it less vulnerable to speculative attacks.

When the whole sample is used, a number of other factors are good leading predictors of crises according to CRISIS1 and CRISIS2, but not CRISIS3 and CRISIS4:

Share of concessional debt: Crashes are less likely in countries with a large share of debt at concessional terms. This may be explained by the fact that these flows are less likely to be reversed.

Trade Openness: More open economies are less likely to suffer an exchange rate crash. This evidence suggests that when crises associated with high inflation episodes are included, the benefits of trade openness outweigh the higher vulnerability to external shocks. This is not the case, however, when the focus is on crashes that were preceded by more stable exchange rates (see columns 3, 4 and 6).\(^{17}\)

IMF dummy: Countries with an IMF program in place are less likely to suffer a crash the following year. In addition to a possible credibility effect, this finding could reflect the fact that programs are approved, or remain in place, in countries willing to strengthen their fundamentals.

For the sample of middle-income countries, a crash is more likely when the current account deficit is large. For the full sample, which includes several low-income countries with very large current account deficits throughout the period, the current account has the expected sign, but is statistically insignificant. The finding that countries with a pegged exchange rate are less likely to suffer a crash of type 1 (CRISIS1) may simply reflect the fact that the rate of depreciation tends to be lower in countries with a pegged exchange rate than
in countries with a floating exchange rate (the median rate of depreciation in the sample for countries that peg is zero, while it is 12 percent for countries with a floating exchange rate). Indeed, when the definition of crisis is limited to countries with a low initial rate of depreciation (CRISIS3, CRISIS4), the coefficient on the peg variable changes sign.

The second part of Table 12.6 reports the goodness of fit of the model. As in the case of reversals, goodness of fit improves when the sample is restricted to middle-income countries. Note also the difference in the classification accuracy for the full sample between CRISIS1 and CRISIS2: this is due to the fact that the model predicts easily accelerations in the rate of depreciation associated with episodes of high inflation. Overall, these results are broadly in line with those reported by Frankel and Rose (1996). They highlight domestic factors, such as the degree of overvaluation and the level of reserves, and external factors, such as growth and interest rates in industrial countries and the terms of trade, that tend to precede currency crashes.

Currency Crises and Output Performance

This Section characterizes output performance after a currency crisis. The objective is twofold: first, to identify stylized facts regarding the behavior of macroeconomic variables before and after crises, and second, to investigate which factors help explain output growth after crises.

A stylized fact that emerged from the analysis of the previous section is that output and consumption growth the year of the crisis are lower than the average during the three preceding years and during the three following years. This finding suggests that the analysis is indeed picking up events that have disruptive effects on macroeconomic activity, at least in
the short run. One telling example is Korea, who experienced a currency crisis (according to the first 3 definitions) in 1980. Its average growth in the three years preceding the crisis was above 10 percent; in 1980 output fell by close to 3 percent, and in the three successive years growth was back at 8 percent. The regression analysis explores the determinants of output performance in the three years following a currency crash. The dependent variable is the average growth rate in the three years following the crash, as a deviation from OECD average during the same period. The independent variables include: The average growth rate in the three years preceding the crisis, the growth rate the year of the crisis (both expressed as deviation from the OECD average during those periods), the average investment rate and current account balance the three years prior to the crisis, the change in the terms of trade between the two periods, as well as the debt-to-GDP ratio, the degree of real exchange rate overvaluation, GDP per capita, the real interest rate in the US and the ratio of external transfers to GDP, all measured the year before the crisis. Results are presented in Table 12.7. Overall, the most robust predictor of output performance after a crisis appear to be the average growth rate before the crisis. Evidence is also found that countries more open to trade tend to grow faster after a currency crisis. While the latter finding is in line with what reported earlier for the before-after analysis of current account reversals, the former is different, and suggests a stronger degree of continuity in output performance in the case of currency crises than in the case of reversals, especially for the sample of middle-income countries. The growth rate the year of the crisis and the current account balance prior to the crisis are not good predictors of subsequent performance, after controlling for other growth determinants. It is interesting to note that the real exchange rate (or the
degree of overvaluation), that seem to play an important role both in explaining output performance after reversals and in triggering currency crises, are not good predictors of economic performance after a currency crash. A regression of the growth rate the year of the crisis on the set of lagged dependent variables (not reported) also does not find any economically and statistically significant effect of the degree of overvaluation. Finally, in the sample of middle-income countries the investment rate prior to the crisis is statistically significant, but has the wrong sign.

These findings also suggest that currency crashes and reversals in current account imbalances have indeed different characteristics and have a different impact on macroeconomic performance. The next section explores this issue in more detail.

Crises and Reversals: A Comparison

Are reversals usually preceded by a currency crisis? The stylized facts presented in Figures 12.1-12.4 and especially the time profile of crashes and reversals presented in Tables 12.1 and 12.4 suggest that these two events have different characteristics. Indeed, Table 12.8 shows that only around a third of reversals are accompanied by, or preceded by, a currency crisis; the median rate of depreciation in the year of a current account reversal and in the two preceding years is around 7 percent, well below all the thresholds used for currency crashes.18

A first stylized fact is that, as expected, when crises precede or accompany reversals they tend to occur one or two years prior to a reversal. A second stylized fact is that reversals are more likely to be preceded by currency crises in Latin America and the Caribbean than they are in Asia. For example, for the Frankel-Rose definition of CRISIS1, 12 reversals (out
of 25) in Latin America were preceded by a crash, but only 5 (out of 29) in Asia.19 If the definition of crisis is changed so as to exclude countries that had high rates of depreciation before a crash (that is, CRISIS3) the numbers change (9 out of 25 for Latin America, 6 out of 29 for Asia) but not the qualitative finding. For African countries, around 30 percent of reversals are preceded by a crisis. There are more similarities between the stylized features of reversals and crises for the sample of middle-income countries (see the exchange-rate depreciation panel in Figure 12.2 and the current account panel in Figure 12.4). However, as shown in the third row of Table 12.8A, the fraction of reversals preceded by exchange-rate crashes is still below 50 percent.

The final question briefly addressed is whether countries that suffer a currency crisis prior to a reversal tend to perform less well after the reversal. Table 12.8B provides summary statistics for median and average growth before and after reversals, separating those preceded by crises from those that are not.20 It shows that average and median growth performance after the reversal is worse for countries that suffered a currency crisis of type 1 (CRISIS1), but not for a crisis of type 3 (CRISIS3). The explanation for this finding may lie in the worse growth performance of countries that suffered bouts of high inflation and currency depreciation (that are excluded from crises of type 3).

\textbf{Conclusion}

This chapter provides a broad-brush characterization of sharp reductions in current account deficits and of currency crises in low- and middle-income countries. Reversals in current account imbalances are more likely to occur in countries that have run persistent deficits, that have low reserves and unfavorable terms of trade, and less likely to occur
in countries that receive high official transfers and whose debt is largely on concessional terms. Growth performance after reversals tends to be better in more open economies and in countries whose real exchange rate was less appreciated prior to the reversal. Reversals are not systematically associated with a decline in output growth; indeed, median growth after a reversal in the current account is the same as before the reversal. Currency crises are more likely to occur when reserves are low, the real exchange rate is appreciated and when external conditions are unfavorable - high interest rates and low growth in industrial countries. Growth tends to decline the year of the crisis, and to recover thereafter. Economies more open to trade seem to perform better after a crisis. A comparison of currency crashes and current account reversals shows that these are, in general, distinct events. Less than a third of all reversals are preceded by a currency crisis, however defined. This suggests that the conventional wisdom that large nominal depreciations precede a turnaround in the current account is not accurate, and points to the need of looking more closely at different types of reversals.