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1 Monetary Policy Tradeo¤s

In the previous chapter we analyzed the optimal monetary policy problem
in the context of a baseline model in which the presence of staggered price
setting was the only relevant distortion that the central bank had to con-
front. We showed that a policy that seeks to replicate the �exible price
equilibrium allocation is both feasible and optimal in that context. That
policy requires that the central bank responds to shocks so that the price
level is fully stabilized. The rationale for such a policy is easy to summarize:
with zero in�ation, output equals its natural level which in turn, under the
assumptions made in chapter 4, is also the e¢ cient level. Thus, in the en-
vironment analyzed in the previous chapter, the central bank does not face
a meaningful policy tradeo¤, and "strict in�ation targeting" emerges as the
optimal policy.
We view the analysis of such an environment and its implications for

the design of monetary policy as useful from a pedagogical point of view,
but not as a realistic one. The reason is that, in practice, central banks
view themselves as facing signi�cant tradeo¤s, at least in the short run.
As a result, even central banks that call themselves "in�ation targeters" do
not claim to be seeking to stabilize in�ation completely in the short run,
independently of the consequences that this would entail for the evolution
of real variables like output and employment. Instead, the presence of short
run tradeo¤s have led in�ation targeting central banks to pursue a policy
that allows for a partial accomodation of in�ationary pressures in the short
run, in order to avoid too large instability of output and employment, while
remaining committed to a medium term in�ation target. A policy of that
kind is often referred to in the literature as "�exible in�ation targeting."1

In the present chapter we introduce a policy tradeo¤, which we model
in a simple fashion, and revisit the problem of optimal monetary policy.
As shown below, the existence of such a policy tradeo¤, combined with the
forward-looking nature of in�ation, makes it desirable for the central bank to
be able to commit to a state-contingent policy plan (as opposed to pursuing
a policy characterized by sequential, or period-by-period optimization).

1The term �exible in�ation targeting was coined by Lars Svensson, to refer to the
kind of optimal monetary policies that result from the minimization of of a central bank
loss function that attaches a non-zero penalty to output gap �uctuations, in addition
to in�ation �uctuations, whenever there is a tradeo¤ between the stabilization of both
variables.
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2 The Monetary Policy Problem: the Case
of an E¢ cient Steady State

When nominal rigidities coexist with real imperfections, the �exible price
equilibrium allocation is generally ine¢ cient. In that case, it is no longer
optimal for the central bank to seek to replicate that allocation. On the
other hand, any deviation of economic activity from its natural (i.e. �exible
price) level generates variations in in�ation, with the consequent relative
price distortions.
A special case of interest arises when the possible ine¢ ciencies associated

with the �exible price equilibrium do not a¤ect the steady state, which re-
mains e¢ cient. The present section analyzes the optimal monetary policy
problem under that assumption. In contrast with the analysis in chapter
4, however, here we allow for short run deviations between the natural and
e¢ cients levels of output. More precisely, we assume that the gap between
the two follows a stationary process, with a zero mean. Implicitly, we are as-
suming the presence of some real imperfections that generate a time-varying
gap between output and its e¢ cient counterpart, even in the absence of price
rigidities.
In that case, and as shown in the appendix, the welfare losses experienced

by the representative household are, up to a second order approximation,
proportional to

E0f
1X
t=0

�t
�
�2t + �x x

2
t

�
g (1)

where xt � yt� yet denotes the welfare-relevant output gap, i.e. the deviation
between (log) output yt and its e¢ cient level yet . As before �t � pt � pt�1
denotes the rate of in�ation between periods t � 1 and t. Coe¢ cient �x
represents the weight of output gap �uctuations (relative to in�ation) in the
loss function, and is given by �x = �

�
where � is the coe¢ cient on xt in the

new Keynesian Phillips curve (NKPC), and � is the elasticity of substitution
between goods. More generally, and stepping beyond the welfare-theoretic
justi�cation for (1), one can interpret �x as the weight attached by the central
bank to deviations of output from its e¢ cient level (relative to price stability)
in its own loss function, which does not necessarily have to coincide with the
household�s.
A structural equation relating in�ation and the welfare-relevant output
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gap can be derived by using the identity eyt � xt + (y
e
t � ynt ), to substitute

for the output gap eyt in the NKPC relationship derived in chapter 3. This
yields the following structural equation for in�ation

�t = � Etf�t+1g+ � xt + ut (2)

where ut � �(yet � ynt ).
Hence, the central bank will seek to minimize (1) subject to the sequence

of constraints given by (2). Two features of that problem are worth stressing.
First, note that, under our assumptions, the disturbance ut is exogenous with
respect to monetary policy, since the latter can in�uence neither the natural
nor the e¢ cient level of output. As a result, the central bank will take the
current and anticipated values of ut as given when solving its policy problem.
Secondly, and most importantly, time variations in the gap between the

e¢ cient and natural levels of output�re�ected in �uctuations in ut�generate
a tradeo¤ for the monetary authority, since they make it impossible to attain
simultaneously zero in�ation and an e¢ cient level of activity. This is a key
di¤erence from the model analyzed in the previous chapter, where we had
ynt = yet for all t, thus implying ut = 0 for all t. In the appendix we discuss
several potential sources of variation in the gap between the e¢ cient and
natural levels of output, including exogenous changes in desired price or
wage markups, as well as �uctuations in labor income taxes. Nevertheless,
at least for the purposes of the analysis in the present chapter, knowledge of
the speci�c source of that gap is not important.
Following much of the literature, we refer to disturbance ut in (2) as a

cost-push shock. Also, and for the remainder of this chapter, we assume that
ut follows the exogenous AR(1) process:

ut = �u ut�1 + "ut (3)

where �u 2 [0; 1), and f"ut g is a white noise process with constant variance
�2u.

While (2) is the only constraint needed in order to determine the equilib-
rium path for output and in�ation under the optimal policy, implementation
of that policy requires that we make use of an additional condition linking
those variables with the monetary policy instrument, i.e. the interest rate.
That condition can be obtained by rewriting the dynamic IS equation �rst
derived in chapter 3 in terms of the welfare-relevant output gap,
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xt = �
1

�
(it � Etf�t+1g � ret ) + Etfxt+1g (4)

where ret � � + �Etf�yet+1g is the interest rate that supports the e¢ cient
allocation, and which is invariant to monetary policy. Henceforth, we refer
to ret as the e¢ cient interest rate.

The forward-looking nature of constraint (2) in the policy problem, re-
quires that we specify the extent to which the central bank can credibly
commit in advance to future policy actions. As will be clear below, the rea-
son is that by committing to some future policies the central bank is able to
in�uence expectations in a way that improves its short-run tradeo¤s. The
following two sections characterize the optimal monetary policy under two
alternative (and extreme) assumptions regarding the central bank�s ability
to commit to future policies.

2.1 Optimal Discretionary Policy

We start by considering the case in which the central bank treats the prob-
lem described above as one of sequential optimization, i.e. it makes whatever
decision is optimal each period without committing itself to any future ac-
tions. That case if often referred to in the literature as optimal policy under
discretion.
More especi�cally, each period the monetary authority is assumed to

choose (xt; �t) in order to minimize the period losses

�2t + �x x
2
t

subject to the constraint
�t = � xt + vt

where the term vt � � Etf�t+1g + ut is taken as given.by the monetary au-
thority, since ut is exogenous and Etf�t+1g is a function of expectations about
future output gaps (as well as future ut�s) which, by assumption, cannot be
currently in�uenced by the policymaker.2

2To be precise, the term Etf�t+1g can be treated as given by the central bank because
there are no endogenous state variables (e.g. past in�ation) a¤ecting current in�ation.
Otherwise the central bank would have to take into account the in�uence that its current
actions, through their impact on those state variables, would have on future in�ation.
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The optimality condition for the problem above is given by

xt = �
�

�x
�t (5)

for t = 0; 1; 2; :::The previous condition has a simple interpretation: in the
face of in�ationary pressures resulting from a cost-push shock the central
bank must respond by driving output below its e¢ cient level�thus creating a
negative output gap�, with the objective of dampening the rise in in�ation.
The central bank carries out such a "leaning against the wind" policy up
to the point where condition (5) is satis�ed. Thus, one can view (5) as
a relation between target variables that the discretionary central bank will
seek to maintain at all times and it is in that sense that may be labeled a
"targeting rule."3

Using (5) to substitute for xt in (2), yields the following di¤erence equa-
tion for in�ation:

�t =
�x�

�x + �2
Etf�t+1g+

�x
�x + �2

ut

Iterating the previous equation forward we obtain an expression for equi-
librium in�ation under the optimal discretionary policy:

�t = �x	 ut (6)

where 	 � 1
�2+�x(1���u)

. Combining (5) and (6) we get an analogous expres-
sion for the output gap.

xt = ��	 ut (7)

Thus, under the optimal discretionary policy, the central bank lets the
output gap and in�ation deviate from their targets in proportion to the
current value of the cost-push shock. This is illustrated graphically by the
circled lines in Figures 5.1 and 5.2, which represent the responses under the
optimal discretionary policy of the output gap, in�ation and the price level
to a one-percent increase in ut. In Figure 5.1 the cost-push shock is assumed
to be purely transitory (�u = 0), whereas in Figure 5.2 we assume it has a
positive autocorrelation (�u = 0:5). The remaning parameters are set at the
values assumed in the baseline calibration of chapter 3.

3See, e.g. Svensson (1998) and Svensson and Woodford (1999) for a discussion of
"targeting" vs "instrument" rules as alternative approaches to implementation of in�ation
targeting policies.
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The path of the cost-push shock ut after a one percent innovation is
displayed in the bottom-right plot of Figures 5.1 and 5.2 . In both cases we see
that the central bank �nds it optimal to accommodate partly the in�ationary
pressures resulting from the cost-push shock, and thus let in�ation increase.
Note, however, that the increase in in�ation is smaller than the one that
would obtain if the output gap remained unchanged. In the latter case it is
easy to check that in�ation would be given by

�t =
1

1� ��u
ut

thus implying a larger response of in�ation (in absolute value) at all horizons
in response to the cost-push shock. Instead, under the optimal discretionary
policy, the impact on in�ation is dampened by the negative response of the
output gap, also displayed in both �gures. Finally, we see that the implied
response of in�ation leads naturally to a permanent change in the price level,
whose size is increasing in the persistence of the shock.

The analysis above implicitly assumes that the monetary authority can
choose its desired level of in�ation and the output gap at each point in
time. Of course, in practice a central bank cannot set either variable directly.
One possible approach to implementing that policy is to adopt an interest
rate rule that guarantees that the desired outcome is attained. Before we
derive the form that such a rule may take it is convenient to determine the
equilibrium interest rate under the optimal discretionary policy as a function
of the exogenous driving forces. Thus, combining (6) and (7) with (4) we
obtain:

it = ret +	i ut (8)

where 	i � 	 [��(1� �u) + �x�u]
Applying the arguments of chapter 3, it is easy to see that (8) cannot be

viewed as a desirable interest rate rule, for it does not guarantee a unique
equilibrium and, hence, the attainment of the desired outcome. In particu-
lar, if we use "rule" (8) to eliminate the nominal rate in (4), the resulting
equilibrium dynamics are represented by the system:�

xt
�t

�
= AO

�
Etfxt+1g
Etf�t+1g

�
+BO ut (9)
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where

AO �
�
1 1

�

� � + �
�

�
; BO �

�
�	i

�

1� �	i
�

�
As argued in chapter 4, matrix AO has always one eigenvalue outside the

unit circle, thus implying that (9) has a multiplicity of solutions, only one of
which corresponds to the desired outcome given by (6) and (7).
Consider instead the rule

it = ret + �� �t (10)

where �� � (1 � �u)
��
�x
+ �u, and which can be obtained by combining (6)

and (8), in a way that makes the nominal rate a function of in�ation, an
endogenous variable. It is easy to check that the previous rule is always con-
sistent with the desired outcome of the policy problem under consideration
here. Furthermore, using the arguments of chapter 4, we know that a rule
of the form (10) leads to a determinate equilibrium (corresponding to the
desired outcome) if and only if the in�ation coe¢ cient is greater than one
or, equivalently, if and only if �� > �x a condition that may or may not be
satis�ed.
In the context of our model, one can always derive a rule that guarantees

equilibrium uniqueness (independently of parameter values) by appending
to the expression for the equilibrium nominal rate under the optimal discre-
tionary policy (given by (8)) a term proportional to the deviation between
in�ation and the equilibrium value of the latter under that policy, with the
coe¢ cient of proportionality being greater than one (in order to satisfy the
Taylor principle). Formally,

it = ret +	i ut + �� (�t � �x	 ut) (11)

= ret +�i ut + �� �t

where �i � 	 [��(1 � �u) � �x(�� � �u)] and for an arbitrary in�ation
coe¢ cient satisfying �� > 1.

In practice, interest rate rules like (10) and (11) are not easy to implement,
for the reasons spelled out in chapter 4: they require knowledge of the model�s
parameters, and real-time observation of variations in the cost-push shock
and the e¢ cient interest rate. Those di¢ culties have led some authors to
emphasize "targeting rules" like (5) as practical guides for monetary policy,
as opposed to "instrument rules" like (10) and (11). Under a targeting rule,
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the central bank would adjusts its instrument until a certain optimal relation
between target variables is satis�ed. In our example, however, following such
a targeting rule requires that the e¢ cient level of output yet be observed in
real time, in order to determine the output gap xt.

2.2 Optimal Policy under Commitment

After having analyzed the optimal policy under discretion, we turn to the
case of a central bank which is assumed to be able to commit, with full
credibility, to a policy plan. In the constext of our model such a plan consists
of a speci�cation of the desired levels of in�ation and the output gap at all
possible dates and states of nature, current and future. More speci�cally,
the monetary authority is assumed to choose a state-contingent sequence
fxt; �tg1t=0 that minimizes

1

2
E0

1X
t=0

�t (�2t + �x x
2
t )

subject to the sequence of constraints:

�t = � Etf�t+1g+ � xt + ut

and where, as in the previous section, futg follows the exogenous process (3).
In order to solve the previous problem it is useful to write down the

associated Lagrangian, which is given by:

L = E0

1X
t=0

�t
�
1

2

�
�2t + �x x

2
t

�
+ t (�t � � xt � � �t+1)

�
where ftg is a sequence of Lagrange multipliers, and where the law of it-
erated expectations has been used to eliminate the conditional expectation
that appeared in each constraint.
Di¤erentiating the Lagrangian with respect xt and �t we obtain the op-

timality conditions
�x xt � � t = 0

�t + t � t�1 = 0

which must hold for t = 0; 1; 2; :::and where �1 = 0, since the in�ation
equation corresponding to period -1 is not an e¤ective constraint for the
central bank choosing its optimal plan in period 0.
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Combining the two optimality conditions to eliminate the Lagrange mul-
tipliers yields

x0 = �
�

�x
�0 (12)

and
xt = xt�1 �

�

�x
�t (13)

for t = 1; 2; 3; :::..
Note that (12) and (13) can be jointly represented by the single equation

in "levels":
xt = �

�

�x
bpt (14)

for t = 0; 1; 2; :::where bpt � pt � p�1 is the (log) deviation between the price
level and an "implicit target" given by the price level prevailing one period
before the central bank chooses its optimal plan. Thus, (14) can be viewed
as a "targeting rule" which the central bank must follow period by period in
order to implement the optimal policy under commitment.
It is worth pointing out the di¤erence between (14) and the corresponding

targeting rule for the discretionary case, given by (5). Thus, the optimal dis-
cretionary policy requires that the central bank keeps output below (above)
its e¢ cient level as long as in�ation is positive (negative). By way of contrast,
under the optimal policy with commitment the central bank sets the sign and
size of the output gap in proportion to the deviations of the price level from
its implicit target. As we discuss next, this has important consequences for
the economy�s equilibrium response to a cost push shock.
By combining optimality condition (14) with (2) (after rewriting the latter

in terms of the price level) we can derive the stochastic di¤erence equation
satis�ed by bpt under the optimal policy:bpt = a bpt�1 + a� Etfbpt+1g+ a ut

for t = 0; 1; 2; :::where a � �x
�x(1+�)+�2

.
The stationary solution to the previous di¤erence equation is given by:

bpt = � bpt�1 + �

(1� ���u)
ut (15)

for t = 0; 1; 2; :::where � � 1�
p
1�4�a2
2a�

2 (0; 1):We can then use (14) to derive
the equilibrium process for the output gap:

xt = � xt�1 �
��

�x(1� ���u)
ut (16)
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for t = 1; 2; 3; :::, with the response at the time of the shock (t = 0) being
given by

x0 = �
��

�x(1� ���u)
u0

The lines with crosses in Figure 5.1 show the equilibrium responses of the
output gap, in�ation, and the price level to a one percent transitory cost-push
shock. Analogous responses for the case of a persistence cost-push shock are
displayed in Figure 5.2 . In both cases those responses are shown side by side
with the responses implied by the optimal discretionary policy (represented
by the circled lines described earlier), thus facilitating comparison of the two
regimes�outcomes.
A look at the case of a transitory cost-push shock illustrates the di¤erence

most clearly. In the case of discretionary policy, both the output gap and
in�ation return to their zero initial value once the shock has vanished (i.e.
one period after the shock). By contrast, and as implied by (15) and (16),
under the optimal policy with commitment the deviations in the output gap
and in�ation from target persist well beyond the life of the shock, i.e. they
display endogenous or intrinsic persistence. Given that a zero in�ation, zero
output gap outcome is feasible once the shock has vanished, why does the
central bank �nd it optimal to maintain a persistently negative output gap
and in�ation? The reason is simple: by committing to such a response,
the central bank manages to improve the output gap/in�ation tradeo¤ in
the period when the shock occurs. In the case illustrated in Figure 5.1 it
lowers the initial impact of the cost-push shock on in�ation (relative to the
discretionary case), while incurring smaller output gap losses in the same
period. This is possible because of the forward-looking nature of in�ation,
which can be highlighted by iterating (2) forward to yield:

�t = � xt + �
1X
k=1

�k Etfxt+kg+ ut

Hence, we see that the central can o¤set the in�ationary impact of a cost
push shock by lowering the current output gap xt, but also by committing
to lower future output gaps (or, equivalently, future reductions in the price
level). If credible, such "promises" will bring about a downward adjustment
in the sequence of expectations Etfxt+kg for k = 1; 2; 3,....As a result, and in
response to a positive realization of the cost-push shock ut, the central bank
may achieve any given level of current in�ation �t with a smaller decline in
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the current output gap xt. That is the sense in which the output gap/in�ation
tradeo¤ is improved by the possibility of commitment. Given the convexity
of the loss function in in�ation and output gap deviations, the dampening
of those deviations in the period of the shock brings about an improvement
in overall welfare relative to the case of discretion, since the implied bene�ts
are not o¤set by the (relatively small) losses generated by the deviations in
subsequent periods (and which are absent in the discretionary case).
Figure 5.2 displays analogous impulse responses under the assumption

that �u = 0:8. Note that in this case the economy reverts back to the initial
position only asymptotically, even under the optimal discretionary policy
(since the in�ationary pressures generated by the shock remains e¤ective
at all horizons, albeit with a declining in�uence). Yet, some of the key
qualitative features emphasized above are still present: in particular, the
optimal policy with commitment manages once again to attain both lower
in�ation and a smaller output gap (in absolute value) at the time of the
shock, relative to the optimal discretionary policy. Note also that under the
optimal policy with commitment the price level reverts back to its original
level, albeit at a slower rate than in the case of a transitory shock. As a
result in�ation displays some positive short run autocorrelation, illustrating
the fact that the strong negative short run autocorrelation observed in the
case of a purely transitory shock is not a necessary implication of the policy
with commitment.
In all cases, a feature of the economy�s response under discretionary policy

is the attempt to stabilize the output gap in the medium term more than the
optimal policy under commitment calls for, without internalizing the bene�ts
in terms of short-term stability that result from allowing larger deviations of
the output gap at future horizons. This characterisctic, which is most clearly
illustrated by the example of a purely transitory cost-push shock represented
in Figure 5.1, is often referred to as the stabilization bias associated with the
discretionary policy.4

As in the case of discretion, one might be interested in deriving an interest
rate rule that would bring about the paths of output gap and in�ation implied
by the optimal policy under commitment. Next we derive such a rule for the

4That stabilization bias must be distinguished from the in�ation bias which arises when
the zero in�ation steady state is associated with an ine¢ ciently low level of activity. The
stabilization bias obtains independently of the degree of ine¢ ciency of the steady state,
as discussed below.
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special case of serially uncorrelated cost push shocks (�u = 0). In that
case, we can combine (4), (15) and (16) to obtain the process describing the
equilibrium nominal rate under the optimal policy with commitment:

it = ret � (1� �)

�
1� ��

�x

� bpt
= ret � (1� �)

�
1� ��

�x

� tX
k=0

�k+1 ut�k

Thus, one possible rule that would brIng about the desired allocation as
the unique equilibrium is given by

it = ret �
�
�+ (1� �)

�
1� ��

�x

�� tX
k=0

�k+1 ut�k + �p bpt
for any �p > 0. Note that under the previous formulation the central bank
stands ready responds to any deviation of the price level from the path pre-
scribed by (15), though this will not be necessary in equilibrium.5

3 The Monetary Policy Problem: the Case
of a Distorted Steady State

Next we consider the case in which the presence of uncorrected real imperfec-
tions generate a permanent gap between the natural and the e¢ cient levels
of output, which is re�ected in an ine¢ cient steady state. We measure the
size of the steady state distortion by a parameter � representing the wedge
between the marginal product of labor and the marginal rate of substitu-
tion between consumption and hours, both evaluated at the steady state.
Formally, � is de�ned by

�Un
Uc
=MPN (1� �)

Below we assume � > 0, which implies that the steady state levels of
output and employment are below their respective e¢ cient levels. The pres-
ence of �rms�market power in the goods market as assumed in the basic

5An interest rate rule that displays a positive response to the price level can be shown
to genrate a unique equilibrium in the basic new Keynesian model. See exercise 5 in
chapter 4.
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model of chapter 3 constitutes an example of the kind of distortion which, if
uncorrected through an appropriate subsidy, would generate an ine¢ ciently
low level of activity. In that case, and as implied by the analysis of chapter
4, we have � � 1� 1

M > 0, whereM is the steady state gross markup.
Under the assumption of a "small" steady state distortion (i.e. when �

has the same order of magnitude as �uctuations in the output gap or in�a-
tion), and as shown in the Appendix to the present chapter, the component
of the welfare losses experienced by the representative household that can be
a¤ected by policy is approximately proportional, in a neighborhood of the
zero in�ation steady state, to the expression

E0

1X
t=0

�t
�
1

2
(�2t + �x bx2t )� � bxt� (17)

where � � ��
�
> 0 and bxt = xt � x represents the deviation of the welfare-

relevant output gap from its value x < 0 in the zero in�ation steady state.
Note that the linear term bxt captures the fact that any marginal increase in
output has a positive e¤ect on welfare (thus increasing welfare losses), since
output is assumed to be below its e¢ cient level.
Similarly, we can write the in�ation equation in terms of bxt as

�t = � Etf�t+1g+ � bxt + ut (18)

where now ut � �(byet � bynt ). Thus the monetary authority will seek to mini-
mize (17) subject to the sequence of constraints given by (18) for t = 0; 1; 2; :::
Note that under the assumption of a "small" steady state distortion made

above, the linear term � bxt is already of second order, thus giving the central
bank�s problem the convenient linear-quadratic format.6

As in the previous section, we characterize the solution to the central
bank�s problem under discretion, before turning to the optimal policy with
commitment.

6In the presence of a large distortion, the presence of a linear term in (17) would require
the use of a second order approximation to the equilibrium condition connecting outpup
gap and in�ation.
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3.1 Optimal Discretionary Policy

In the absence of a commitment technology, the monetary authority chooses
(xt; �t) in order to minimize the period losses

1

2
(�2t + �x bx2t )� � bxt

subject to the constraint
�t = � bxt + vt

where, once again, vt � � Etf�t+1g+ut is taken as given by the policymaker.
The associated optimality condition is

bxt = �

�x
� �

�x
�t (19)

Note that (19) implies, for any given level of in�ation, a more expan-
sionary policy than in the absence of a steady state distortion. This is a
consequence of the desire by the central bank to partly correct for the inef-
�ciently low average level of activity.
Plugging (19) into (18) and solving the resulting di¤erence equation yields

the following expression for equilibrium in�ation:

�t =
��

�2 + �x(1� �)
+ �x	 ut (20)

Combining (20) and (19) yields the corresponding expression for the equi-
librium output gap:

bxt = �(1� �)

�2 + �x(1� �)
� �	 ut

Thus, we see that the presence of a distorted steady state does not a¤ect
the response of the output gap and in�ation to shocks under the optimal
policy. It has, however, an e¤ect on the average levels of in�ation and the
output gap around which the economy �uctuates. In particular, when the
natural level of output and employment are ine¢ ciently low (� > 0) the opti-
mal discretionary policy leads to positive average in�ation, as a consequence
of the central bank�s incentive to push output above its natural steady state
level.7 That incentive increases with the degree of ine¢ ciency of the natural
steady state, which explains the fact that the average in�ation is increasing
in � (and hence in �), giving rise to the classical in�ation bias phenomenon.

7Notice that in the steady state bx = y � yn
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3.2 Optimal Policy under Commitment

As in the case of an e¢ cient steady state, we solve for the optimal policy
under commitment by setting up the Lagrangean corresponding to the central
bank�s problem, which in this case is given by

L = E0

1X
t=0

�t
�
1

2
(�2t + �x bx2t )� � bxt + t (�t � � bxt � � �t+1)

�
where ftg are the Lagrange multipliers associated with the sequence of
constraints (18), for t = 0; 1; 2; :::
The corresponding optimality conditions are given by

�x bxt � � t � � = 0

�t + t � t�1 = 0

which must hold for t = 0; 1; 2; :::and where �1 = 0. The previous conditions
can be combined to yield the following di¤erence equation for the (log) price
level: bpt = a bpt�1 + a� Etfbpt+1g+ ��� + a ut

for t = 0; 1; 2; :::where, as above, bpt � pt � p�1, and a � �x
�x(1+�)+�2

.
The stationary solution to the previous di¤erence equation describes the

evolution of the equilibrium price level under the optimal policy with com-
mitment. It takes the following form:

bpt = � bpt�1 + �

1� ���u
ut +

���

1� ��

where � � 1�
p
1�4�a2
2a�

2 (0; 1). The corresponding path for the output gap is
given by:

bxt = � bxt�1 � ��

�x(1� ���u)
ut + �

�
1� �

�
1 +

�2

�x(1� ��)

��
Thus, as it was the case under the discretionary policy, the response to

a cost-push shock under the optimal policy with commitment is not a¤ected
by the presence of a distorted steady state. Hence the impulse responses
displayed in Figures 5.1 and 5.2 illustrating the economy�s response to a
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cost-push shock under discretion and under commitment, remain valid in
the present context. In particular, the optimal policy under discretion is
characterized by an identical stabilization bias.
In the presence of a distorted steady state, an additional di¤erence arises

between the discretionary and commitment policies, unrelated to the re-
sponse to shocks: it has to do with the deterministic component of in�a-
tion and its evolution over time. As shown above, in the case of discretion
that component takes the form a constant positive mean, resulting from the
period-by-period incentive to close the gap between output and its e¢ cient
level, which results in in�ation. In the case of commitment, however, we
see that the price level converges asymptotically to a constant, given by
limT!1 pT = p�1 +

���
(1���)(1��) . Hence, after displaying a positive value at

the beginning of the optimal plan�s implementation, the deterministic com-
ponent of in�ation (around which actual in�ation �uctuates in response to
shocks) declines gradually over time, following the path �t+1��

1��� . Hence, under
the optimal plan the economy eventually converges to an equilibrium charac-
terized by zero average in�ation, and in that sense observationally equivalent
to that of an economy with an e¢ cient steady steady state. The desirability
of such a policy is justi�ed by the bene�ts arising from its anticipation by
the public, which improves the short-run tradeo¤ facing the central bank,
allowing it to raise output above its natural level (with the consequent wel-
fare improvement) with more subdued e¤ects on in�ation (since the public
anticipates a gradual return of output to its natural level) . Thus, the central
bank�s ability to commit avoids (at least asymptotically) the in�ation bias
that characterizes the outcome of the discretionary policy.

4 Notes on the Literature

The present chapter follows closely Clarida, Galí and Gertler (1999), where
the optimal monetary policy in the context of the basic new Keynesian model
augmented with an ad-hoc cost-push shocks is analyzed, and where the out-
comes under discretion and commitment are compared. That paper also
contains a discussion of the classical in�ation bias, whose ultimate source
is modeled as a positive target for the output gap in the policymaker�s loss
function. The original treatment of the in�ation bias and the gains from
commitment, in the context of a new classical model with a Lucas supply
curve, can be found in Kydland and Prescott (1980) and Barro and Gordon
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(1983).
Woodford (2003a) discusses a source of monetary policy tradeo¤s di¤erent

from cost-push shocks: that created by the presence of transactions friction
which leads to an indirect utility function in which real balances are one of
the arguments, as in the model at the end of chapter 2. In that context,
and in addition to variations in in�ation and the output gap, variations in
the nominal rate (which acts as a tax on money holdings) are a source of
welfare losses. As a result, a policy that fully stabilizes the output gap
and in�ation by making the interest rate move one-for-one with the natural
rate, while feasible, it is no longer optimal since it implies excessive interest
rate volatility. The optimal policy, as shown by Woodford, smoothens the
�uctuations in the nominal rate, at the cost of some variations in in�ation
and output gap.
The approximation to welfare in the presence of "small" steady state

distortions presented here follows the analysis in Woodford (2003b). The
analysis of optimal policy in the presence of "large" steady state distortions
lies beyond the scope of the present book. The main di¢ culty in that case
arises from the presence of a linear term in the second-order approximation
to the welfare loss function. In that context, the use of a log-linear (i.e. �rst
order) approximation to the equilibrium conditions to describe the evolution
of endogenous variables leads to second-order terms potentially relevant to
welfare being ignored (e.g. the ones associated with the steady state e¤ects
of di¤erent degrees of volatility).
Several approaches to overcoming that problem are found in the litera-

ture. A �rst approach consists in solving for the evolution of the endogenous
variables using a second-order (or higher) approximation to the equilibrium
conditions under a given policy rule, and evaluating the latter using the orig-
inal second-order approximation to the welfare losses. An application of that
approach to the monetary policy problem can be found in Schmitt-Grohé
and Uribe (2004), among others.
The second approach, due to Benigno and Woodford (2005), makes use

of a second-order approximation to the structural equations of the model
in order to replace the linear terms appearing in the welfare loss function,
and rewriting those losses as a function of quadratic terms only. The result-
ing quadratic loss function can then be minimized subject to the constraints
provided by log-linearized equilibrium conditions. That approach allows one
to preserve the convenient structure and properties of linear-quadratic prob-
lems, including the linearity of their implied optimal policy rules.
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A third approach, illustrated in Khan, King and Wolman (2003), requires
that the optimal policy be determined in a �rst stage using the exact struc-
tural equations and utility function, and log-linearizing the resulting equilib-
rium conditions (embedding the optimal policy) in order to characterize the
optimal responses to shocks.
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Appendix 1: A Second Order Approximation to Welfare Losses
in the Case of a Small Steady State Distortion

As shown in the appendix to chapter 4, a second order Taylor expansion
to period t utility, combined with a goods market clearing condition, yields:

Ut�U = UcC

�byt + 1� �

2
by2t�+ UnN

1� �

�byt + �

2�
varifpt(i)g+

1 + '

2(1� �)
(byt � at)

2

�
+t:i:p::

where t:i:p: stands for "terms independent of policy".
Let � denote the size of the steady state distortion, implicitly de�ned by

�Un
Uc
=MPN (1� �). Using the fact that MPN = (1� �)(Y=N) we have

Ut � U

UcC
= byt+1� �

2
by2t�(1��) �byt + �

2�
varifpt(i)g+

1 + '

2(1� �)
(byt � at)

2

�
+t:i:p:

Under the "small distortion" assumption (so that the product of � with
a second order term can be ignored as negligible) we can write:

Ut � U

UcC
= � byt � 1

2

�
�

�
varifpt(i)g � (1� �) by2t + 1 + '1� �

(byt � at)
2

�
+ t:i:p:

= � eyt � 1
2

�
�

�
varifpt(i)g+

�
� +

'+ �

1� �

� by2t � 2�1 + '1� �

� bytat�+ t:i:p:

= � eyt � 1
2

�
�

�
varifpt(i)g+

�
� +

'+ �

1� �

�
(by2t � 2byt byet )�+ t:i:p:

= � bxt � 1
2

�
�

�
varifpt(i)g+

�
� +

'+ �

1� �

� bx2t�+ t:i:p:

where byet � yet � ye, and where we have used the fact that byet = 1+'
�(1��)+'+� at

.and byt � byet = xt � (y � ye) = xt � x � bxt.
Accordingly, we can write a second order approximation to the consumer�s

welfare losses (up to additive terms independent of policy), and expressed as
a fraction of steady state consumption, as:

W = E0

1X
t=0

�t
�
Ut � U

UcC

�
= E0

1X
t=0

�t
�
� bxt � 1

2

�
�

�
varifpt(i)g+

�
� +

'+ �

1� �

� bx2t��+t:i:p:
Using Lemma 2 in the appendix of chapter 4, we can rewrite the welfare

losses as
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W = E0

1X
t=0

�t
�
� bxt � 1

2

� �
�

�
�2t +

�
� +

'+ �

1� �

� bx2t�+ t:i:p:

Note that in the particular case of an e¢ cient steady state we have � = 0
and bxt = xt. Moreover, if as in Chapter 4 the model satis�es ynt = yet for all
t , the we have bxt = xt = eyt., with the implied loss function taking the form
used in that Chapter.
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Appendix 2: Sources of Cost Push Shocks

The present appendix describes two possible sources of cost-push shocks,
variations in desired price markups and exogenous variations in wage markups.

Variations in desired price markups.
Assume that the elasticity of substitution among goods varies over time,

according to some stationary stochastic process f�tg. Let the associated
desired markup be given by �nt � �t

�t�1 .The log-linearized price setting rule
is then given by:

p�t = (1� ��)
1X
k=1

(��)k Etf�nt+k +mct+k + pt+kg

= (1� ��)
1X
k=1

(��)kEtffmct+k + pt+kg

where fmct � mct + �nt The resulting in�ation equation then becomes

�t = �Etf�t+1g+ � fmct
= �Etf�t+1g+ � cmct + �(�nt � �)

= �Etf�t+1g+ � (yt � ynt ) + �(�nt � �)

where ynt denotes the equilibrium level of output under �exible prices and
a constant price markup �. Letting xt � yt � ynt and ut � �(�nt � �) we
obtained the formulation used in the main text.

Exogenous Variations in Wage Markups
In that case we still have �t = �Etf�t+1g+ � cmct , though now

mct = wt � at

= �w;t +mrst � at

= �w;t + (� + ') yt � (1 + ') at

where �w;t represents a time-varying, exogenous wage markup. Under �exible
prices and a constant wage markup (at its steady state level �w), we have

mc = �w + (� + ') ynt � (1 + ') at

where ynt denotes the equilibrium level of output under a constant price and
wage markup.
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The di¤erence between the two previous expression is thus given by

cmct = (� + ') (yt � ynt ) + (�w;t � �w)

which can be plugged into the in�ation equation to yield

�t = �Etf�t+1g+ �xt + ut

where xt � yt � ynt and ut � �(�w;t � �w).
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Exercises

1. An Optimal Taylor Rule

Consider an economy with Calvo-type staggered price setting whose equi-
librium dynamics are described by the system:

xt = Etfxt+1g �
1

�
(it � Etf�t+1g � �) + "t

�t = � Etf�t+1g+ � xt + ut

where f"tg and futg are i:i:d:, mutually uncorrelated, demand and supply
disturbances, with variances given by �2" and �

2
u respectively

Assume that the monetary authority adopts a simple Taylor rule of the
form

it = �+ �� �t

a) Solve for the equilibrium processes for the output gap and in�ation, as
a function of the exogenous supply and demand shocks.
b) Determine the value of the in�ation coe¢ cient �� which minimizes the

central bank�s loss function:

�x var(xt) + var(�t)

c) Discuss and provide intuition for the dependence of the optimal in�a-
tion coe¢ cient on the weight �x and the variance ratio

var(")
var(u)

:What assump-
tions on parameter values would warrant an aggressive response to in�ation,
implemented thorugh a large ��? Explain.

2. Optimal Markovian Policy

Consider an economy where in�ation is described by the augmented NKPC

�t = � Etf�t+1g+ � xt + ut

where futg is an exogenous cost-push shock following a stationary AR(1)
process

ut = �u ut�1 + "ut

24



In period 0, the central bank chooses once and its policy among the class
of Markovian policies of the form xt =  xut and �t =  �ut for all t, in order
to minimize the loss function

E0

1X
t=0

�t
�
�2t + �x x

2
t

�
subject to the sequence of constraints describing the evolution of in�ation.
a) Determine the optimal values of  x and  �:
b) Compare the resulting optimal policy to the optimal discretionary

policy analyzed in the chapter. Which one is more desirable from a welfare
point of view? Explain
c) Compare the resulting optimal policy to the optimal policy under com-

mitment analyzed in the chapter. Which one is more desirable from a welfare
point of view? Explain.

3. Optimal Monetary Policy in the Presence of Transaction
Frictions (based on Woodford (2003a))

As shown in Woodford (2003a), in the presence of real balances as a
source of indirect utility in an otherwise standard NK model, a second order
approximation to the representative household�s welfare is proportional to:

�1
2
E0

1X
t=0

�t
�
�2t + �x x

2
t + �i i

2
t

�
Consider the problem of choosing the state-contingent policy fxt; �tg1t=0

that maximizes welfare subject to the sequence of constraints:

�t = � Etf�t+1g+ � xt

xt = �
1

�
(it � Etf�t+1g � rnt ) + Etfxt+1g

for t = 0; 1; 2; :::where the natural rate rnt is assumed to follow an exogenous
process.
a) Determine the optimality conditions for the problem described above
b) Show that the implied optimal policy can be implemented by means

of an interest rate rule of the form

it = (1 +
�

��
) it�1 +

1

�
�it�1 +

�

�i�
�t +

�x
�i�

�xt
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which is independent of rnt and its properties.

4. In�ation Persistence and Monetary Policy (based on Steinsson
(2003))

As shown in Steinsson (2003), in the presence of partial price indexation
by �rms the second order approximation to the the household�s welfare losses
takes the form:

1

2
E0

1X
t=0

�t[�x x
2
t + (�t � �t�1)

2]

where  denotes the degree of price indexation to past in�ation. The equation
describing the evolution of in�ation is now given by:

�t � �t�1 = � xt + � Etf(�t+1 � �t)g+ ut

where ut represents an exogenous i:i:d: cost-push shock.
a) Determine the optimal policy under discretion, i.e. under the assump-

tion that the monetary authority seeks to minimize each period the short-
term losses �x x2t + (�t � �t�1)

2

b) Determine the optimal policy under commitment
c) Discuss how the degree of indexation  a¤ects the optimal responses

to a transitory cost-push shock under the previous two scenarios.

5. Monetary Policy, Optimal Steady State In�ation and the
Zero Lower Bound

Consider a new Keynesian model with equilibrium conditions given by

xt = Etfxt+1g �
1

�
(it � Etf�t+1g � �) + "t

and
�t � � = � Etf(�t+1 � �)g+ � xt + ut

where xt is the (welfare-relevant) output gap, �t denotes in�ation, it is the
nominal rate, and � is steady state in�ation. The disturbances "t and ut rep-
resent demand and cost-push shocks, and are assumed to follow independent
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and serially uncorrelated normal distributions with zero mean and variances
�2" and �

2
u respectively.

Assume that the loss function for the monetary authority is given by

� � + E0

1X
t=0

�t
�
�x x

2
t + (�t � �)2

�
where the �rst term is assumed to capture the costs of steady state in�ation.

(a) Derive the optimal policy under discretion (i.e., the time-consistent
policy, resulting from period-by-period maximization) �including the choice
of steady state in�ation ��, subject to the constraint that the interest rate
hits the zero-bound constraint with only with a 5 percent probability.
(b) Derive an interest rate rule that would implement the optimal allo-

cation derived in (a) as the unique equilibrium.
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