Can Agents with Causal Misperceptions be Systematically Fooled?*

Ran Spiegler†

May 10, 2017

Abstract

The rational-expectations postulate rules out systematically biased estimates of economic variables. This paper revisits this claim under the alternative assumption that agents’ expectations are based on a misspecified subjective causal model. I present a model in which an agent forms estimates (or forecasts) of individual variables after observing a signal. His estimates are based on fitting a subjective causal model - formalized as a directed acyclic graph, following the “Bayesian networks” literature - to objective long-run data. I show that the agent’s estimates and the estimated variables coincide on average (for any underlying joint distribution) if and only if the agent’s graph is perfect - it links every two causes of some third variable. This result identifies neglect of direct correlation between perceived causes as the kind of causal misperception that generates systematic prediction errors. I demonstrate the relevance of this result for economic applications: speculative trade, manipulation of a firm’s reputation and a stylized “monetary policy” example in which the inflation-output relation obeys an expectational Phillips Curve.

*Financial support by the Sapir Center and ERC Advanced Investigator grant no. 692995 is gratefully acknowledged. I thank Yair Antler, Kfir Eliaz, Rafaila Giacomini, Todd Sarver, Vasiliki Skreta, Dimitri Vayanos, Michael Woodford, numerous seminar participants, and especially Heidi Thysen, for helpful comments and discussions.

†Tel Aviv University, University College London and CFM. URL: http://www.tau.ac.il/~rani. E-mail: rani@post.tau.ac.il.
1 Introduction

Many economic models assume that outcomes depend on some agents’ estimates or predictions of particular variables. For instance, a manager with career concerns is influenced by his expectation of observers’ estimate of his “quality”. Similarly, in models of financial markets, speculative trade depends on whether multiple traders predict positive expected monetary gains. Finally, in monetary economics, the central bank’s policy can positively affect real variables to the extent that the private sector systematically underestimates inflation.

In conventional models, an agent’s estimates and predictions are constrained by the “rational expectations” postulate - i.e., the agent fully understands the statistical regularities in his environment and thus forms “optimal” forecasts of any variable conditional on his information. His predictions may miss the target, but prediction errors cancel out on average, such that the long-run average of the agent’s predictions coincides with the long-run average of the predicted variables. In other words, the agent cannot be “systematically fooled”. Indeed, economists sometimes identify the latter property with the rational-expectations principle itself:

“The concept of rational expectations asserts that outcomes do not differ systematically (i.e., regularly or predictably) from what people expected them to be. The concept is motivated by the same thinking that led Abraham Lincoln to assert, “You can fool some of the people all of the time, and all of the people some of the time, but you cannot fool all of the people all of the time.” From the viewpoint of the rational expectations doctrine, Lincoln’s statement gets things right. It does not deny that people often make forecasting errors, but it does suggest that errors will not persistently occur on one side or the other.” (Sargent (2003))

However, rational expectations involve more than the requirement that the agent’s predicted outcome is unbiased on average - they demand a correct
perception of the entire joint distribution over all relevant variables. A priori, an agent’s beliefs may satisfy the former while violating the latter. This paper is an attempt to get a better understanding of this distinction.

Of course, one can violate rational expectations in many ways; this paper focuses on the role of causal misperceptions in the formation of beliefs. As in Spiegler (2016a), I assume that the agent holds a subjective causal model that links some of the relevant variables. Following the Statistics and Artificial Intelligence literature on “Bayesian networks” (Cowell et al. (1999), Pearl (2009), Koller and Friedman (2009)), a causal model is represented by a directed acyclic graph (DAG): nodes represent variables, and a link $x \rightarrow y$ signifies a perceived direct causal effect of x on y (without any pre-conception regarding the sign or magnitude of this effect). The agent fits his causal model to long-run data, thus quantifying the perceived causal relations. The agent then employs this quantified model to estimate the expected value of individual variables in his model, conditional on the observed realization of one of them.

The agent’s DAG has at least two interpretations. First, it can represent a lay person’s intuitive causal perceptions, or a narrative that he employs to focus his understanding of empirical regularities (for a summary of psychological research on the role of intuitive causal models in reasoning about uncertainty, see Sloman (2005)). The DAG can also represent a professional forecaster’s explicit formal model, which consists of a recursive system of non-parametric structural equations. The forecaster’s commitment to a particular model can result from theoretical preconceptions, or from its ability to “tell a story”.1

What is common to both interpretations is the idea that reasoning about joint probability distributions is cognitively demanding. One cannot perceive them directly as a whole; measuring correlations among any given set of

1Consider the following quote from an economic forecasting company (http://www.macroadvisers.com/why-model-based-forecasting): “A model-based forecast tells a story. The model allows us to identify the key forces that are driving the economy...We quickly found that most of our clients didn’t want to sort through computer output for the hundreds of variables in our model over the next twelve quarters (or more). They wanted to understand why: they wanted stories...”. For a critical discussion of theory-based forecasting, see Giacomini (2015).
variables (and communicating the measurements’ outcomes to others) carries an implicit cost. Moreover, the number of potentially relevant correlations that one might need to digest grows exponentially with the number of relevant variables. Thinking in terms of a causal model (whether intuitive or formal, and especially if it is represented by a sparse DAG) simplifies this task. The model alerts the agent to specific correlations. His overall perception of empirical regularities in his environment - which forms the basis of his individual estimates - is the result of putting these estimated correlations together. Once the agent has thus quantified his causal model, he can use it to make any conditional prediction that is required by whatever the task he is facing.

The question that I analyze in this paper is whether an agent with a misspecified causal model will nevertheless produce conditional estimates of individual variables that are correct on average. I should emphasize that this is only one aspect of how causal-model-based subjective beliefs relate to objective statistical regularities. However, the specific question of whether subjective estimates are unbiased on average turns out to come up in many important economic applications, and this is the reason that I focus on it in this paper. The following example illustrates the formalization of this question and its economic motivation.

Example 1.1: Exploiting a belief in monetary neutrality

Monetary theory offers what is arguably the most well-known economic example of the “systematic fooling” problem. In a textbook model that goes back to Kydland and Prescott (1977) and Barro and Gordon (1983), a central bank controls a policy variable that affects inflation. The private sector forms an inflation forecast, possibly after observing some signal regarding the central bank’s decision. Private-sector expectations are relevant because real output is determined by an “expectations-augmented” Phillips Curve, such that the real effect of inflation is at least partly offset when inflation is anticipated. Thus, if the central bank wants to raise expected output, it would like to be able to set inflation systematically above private-sector expectations.

Consider the following simple version of this class of models, which I
borrow from Sargent (1999) and Athey et al. (2005). A central bank chooses an action \(a \) after privately observing a real-valued variable \(\theta \). Inflation \(\pi \) is a stochastic function of \(a \) alone. The private sector forms its inflation forecast \(e \) after observing \(a \). Real output \(y \) is given by a “New Classical” Phillips Curve \(y = \pi - e + \eta \), where \(\eta \) is independent Gaussian noise, such that only unanticipated inflation has real effects. The central bank’s utility function is \(y - \theta \pi \) - i.e., it wants higher output and lower inflation. Thus, \(\theta \) is an observable variable that measures the central bank’s trade-off between the two motives, but does not have any other direct effect macroeconomic variables. If the private sector had rational expectations, \(e \) would be equal to the true expected value of \(\pi \) conditional on the observed realization of \(a \), such that ex-ante expected output would be zero, independently of the central bank’s strategy. In this case, the central bank would choose an action that minimizes expected inflation, regardless of \(\theta \).

The private sector’s causal model is represented by the following DAG, denoted \(R'' \):

\[
\begin{align*}
\theta & \rightarrow a \\
\downarrow & \quad \downarrow \\
y & \rightarrow \pi
\end{align*}
\]

(1)

According to this causal model, inflation is a consequence of two causes: output and the central bank’s action. These two causes are in turn consequences of the exogenous variable \(\theta \). Private-sector expectations are omitted. This causal model is misspecified because it perceives output to be independent of monetary policy conditionally on \(\theta \) - whereas according to the true process, output is a consequence of the central bank’s action via the Phillips Curve, independently of \(\theta \). Thus, the private sector’s causal model tells a “classical” story that postulates the absolute neutrality of monetary policy, allowing \(a \) and \(y \) to be correlated only via their dependence on \(\theta \) - whereas the true model allows for non-neutrality via inflationary surprises.

How does the private sector employ its causal model to forecast inflation? It simply fits the model to the true long-run joint distribution \(p \) over \(\theta, a, \pi, y \).
If \(p \) were consistent with \(R \), we could write \(p(\theta, a, \pi, y) \) as

\[
p_{R'}(\theta, a, \pi, y) = p(\theta)p(a \mid \theta)p(y \mid \theta)p(\pi \mid a, y)
\]

(2)

The formula \(p_{R}(\theta, a, \pi, y) \) describes the private sector’s subjective belief as a function of the true long-run distribution \(p \). It is an example of a “Bayesian-network factorization formula”, which factorizes the long-run distribution \(p \) over \(\theta, a, \pi, y \) into a product of conditional-probability terms, as if \(p \) were indeed consistent with \(R' \). The four terms on the R.H.S of (2) can be viewed as outcomes of specific correlation measurements that a forecaster makes, for these are the measurements that are needed for quantifying his model. Because the forecaster perceives statistical regularities through the prism of an incorrect model, the subjective belief \(p_{R'} \) may systematically distort the correlation structure of the true long-run distribution \(p \).

The private sector’s inflation forecast after observing the central bank’s action \(a \) is

\[
E_{R'}(\pi \mid a) = \sum_{\pi} p_{R'}(\pi \mid a)\pi = \sum_{\pi} \left(\sum_{y} \sum_{\theta} p(\theta \mid a)p(y \mid \theta) \right) p(\pi \mid a, y)\pi
\]

(3)

This is in general different from the “rational” inflation forecast

\[
E(\pi \mid a) = \sum_{\pi} p(\pi \mid a)\pi = \sum_{\pi} \left(\sum_{y} p(y \mid a) \right) p(\pi \mid a, y)\pi
\]

The discrepancy arises because \(p_{R'}(\pi \mid a) \) involves an implicit expectation over \(y \) without full conditioning on \(a \) - it only acknowledges the correlation between \(a \) and \(y \) through their correlation with \(\theta \). E.g., if the central bank mixed over actions independently of \(\theta \), we would have \(p(y \mid a) = p(y) \).

Note that because the long-run distribution \(p \) is affected by private-sector expectations, it is an “equilibrium” distribution; the equilibrium requirement is that \(e = E_{R'}(\pi \mid a) \) with probability one, for every \(a \).

\(^2\)I abuse notation and use simple summations rather than integration, for expositional clarity.
How does the private sector’s “non-rational” inflation forecast affect the central bank’s considerations? Because the term $p(y \mid \theta)$ in (3) is not independent of a, a change in the central bank’s strategy can lead to a change in $E_{R'}(\pi \mid a)$. This dependency is what makes the central bank’s problem non-trivial. In Section 4.2, I present a simple specification of $p(\pi \mid a)$ for which the central bank has a strategy that leads the private sector to systematically underestimate inflation - i.e.,

$$\sum_a p(a) E_{R'}(\pi \mid a) < \sum_\pi p(\pi) \pi$$

Consequently, the central bank can use monetary policy to enhance expected output. Our task will be to find restrictions on R' or the domain of p that would make such “systematic fooling” impossible.

Overview of the model and the main results

In Section 2, I present a general model in which an agent forms estimates of economic variables after observing the realization of one variable. The agent’s subjective causal model is represented by a DAG R over a set of nodes that correspond to some subset of the economic variables. He fits this model to an objective joint probability distribution p defined over all variables (including the agent’s own estimates) that satisfies the above “equilibrium” condition, and this produces a subjective distribution p_R over the variables that his model admits.

Can such an agent be systematically fooled, in the sense that his average estimate of some individual variable will be biased? The main result, given in Section 3, provides a simple answer: The agent’s estimates are correct on average for any possible p, if and only if his DAG is perfect. A DAG is perfect if any pair of direct causes of any third variable are directly linked themselves. The private sector’s DAG in Example 1.1 violates perfection, because it perceives a and y as direct causes of π, and yet it does not postulate a direct causal link between them. As a result, we can find some objective distribution for which the agent’s forecast of some variable (in this case, inflation) is biased on average. In contrast, the DAG $\theta \rightarrow a \rightarrow \pi \rightarrow y$ is perfect, and therefore cannot give rise to systematically biased forecasts.
Perfection is a familiar property in the Bayesian-networks literature. Its significance in the present context is that it highlights the role of a particular form of correlation neglect in generating systematically biased estimates. Any DAG that omits a direct link between two variables captures some neglect of their correlation. However, not every type of correlation neglect can lead to average prediction errors; the main result identifies *neglect of direct correlation between perceived causes* as the potential source of systematically biased estimates.

Perfect DAGs are significant for another reason. In perfect DAGs - and only in such DAGs - the direction of any given causal link is unidentified from observational data (i.e., there is an observationally equivalent DAG that reverses that link). Thus, the agent’s misspecified causal model renders him vulnerable to biased estimates if and only if it postulates empirically meaningful direction of causation.

In Section 4 I apply the model to environments in which the possibility of systematically biased estimates is economically relevant. First, I present a simple example of a firm that considers the use of sponsored reviews to enhance its reputation among consumers. Second, I provide a thorough analysis of the “monetary policy” example.

Section 5 studies two extensions of the model. First, I explore the role of restrictions on the domain of permissible objective distributions. Specifically, I show that when p is a multivariate normal distribution, the agent’s estimates are unbiased on average, regardless of his DAG. Second, I examine what happens when the agent observes multiple variables before forming his estimates. I use this characterization to obtain a “no-trade theorem” in a simple model of speculative trade in which traders form beliefs according to (possibly heterogeneous) perfect DAGs.

2 The Model

Let x_0, x_1, \ldots, x_n be a collection of real-valued economic variables. In this section and the next, I assume that every economic variable can take finitely many values (the extension to continuous variables is straightforward). For
every $M \subseteq \{0, 1, ..., n\}$, denote $x_M = (x_i)_{i \in M}$. An agent observes the realization of one variable, which I will take to be x_0. He then forms a subjective estimate e_i of each of the economic variables x_i, $i \in N - \{0\}$, where $N \subseteq \{1, ..., n\}$ is some subset of the indices (or labels) of the economic variables. In some applications, I refer to e_i as the agent’s forecast of x_i.

Let p be an objective joint distribution over all economic variables $x_0, ..., x_n$ as well as the estimate variables $(e_i)_{i \in N - \{0\}}$. This distribution represents long-run (or steady-state) statistical regularities in the agent’s environment. I will later impose the condition that the e_i’s are consistent with a specific model of belief formation. In particular, if they are based on rational expectations, then p must satisfy the restriction that for every $i \in N - \{0\}$, $p(e_i \mid x_0)$ assigns probability one to $E(x_i \mid x_0) = \sum_{x_i} p(x_i \mid x_0)x_i$. (Throughout the paper, E without a subscript means expectation w.r.t the objective distribution p.)

Our agent is characterized by a directed acyclic graph (DAG) (N, R), where $N \subseteq \{0, ..., n\}$ is the set of nodes and R is the set of directed links. Acyclicity means that the graph contains no directed path from a node to itself. I use jRi or $j \rightarrow i$ interchangeably to denote a directed link from j into i. Abusing notation, let $R(i) = \{j \in N \mid jRi\}$ be the set of “parents” of node i. Following Pearl (2009), I interpret the DAG as a causal model - i.e., the link $j \rightarrow i$ means that x_j is perceived as an immediate cause of x_i. The model embodies no preconception regarding the causal effect’s sign or magnitude. I assume throughout that $0 \in N$ - i.e., the agent’s model acknowledges the variable he gets to observe. In contrast, it does not acknowledge the estimate variables $e_1, ..., e_n$ - they are not represented by nodes in the DAG. I will provide a formal justification for the latter restriction in Section 5.3. From now on, I suppress N and refer to R itself as the agent’s DAG.

The agent perceives the steady-state statistical regularities through the prism of his subjective causal model. Specifically, for any objective distribution p, the agent’s subjective belief over x_N is

$$p_R(x_N) = \prod_{i \in N} p(x_i \mid x_{R(i)})$$ (4)
Thus, R encodes a mapping that transforms every objective distribution p into a subjective belief p_R. A probability distribution p is consistent with R if $p_R(x_N) \equiv p(x_N)$. When p is inconsistent with R, the agent’s belief distorts the true correlation structure of p. Marginalization and conditioning of p_R are defined as usual. For every $M \subset N$, the subjective marginal distribution over x_M is $p_R(x_M) = \sum_{x_{N-M}} p_R(x_M, x_{N-M})$. The agent’s subjective distribution over x_i conditional on his observation of x_0 is $p_R(x_i \mid x_0) = p_R(x_0, x_i)/p_R(x_0)$.

In the general analysis, I impose the following domain restrictions on p. First, p has full support over X_N, such that all the the conditional probabilities in (4) are well-defined. (In applications, I will sometimes be able to relax this assumption.) Second, for every x_0 and $i \in N - \{0\}$, $p(e_i \mid x_0)$ assigns probability one to

$$E_R(x_i \mid x_0) = \sum_{x_i} p_R(x_i \mid x_0)x_i$$

(5)

The latter restriction implies that the objective expectation (i.e., long-run average) of the agent’s estimate of the variable x_i is

$$E(e_i) = \sum_{x_0} p(x_0)E_R(x_i \mid x_0)$$

The formula p_R describes how the agent employs his subjective causal model to form beliefs. I have in mind two more specific interpretations of this belief formation process. First, following the work of psychologists on causal reasoning (e.g. Sloman (2005)), the DAG R may capture intuitive causal perceptions of an agent in his everyday decision making. These prior perceptions determine the correlations that the agent pays attention to. He learns these correlations, and then interprets them causally in accordance with his subjective model. The output of this activity is a subjective belief, given by (4). Then, when he receives the signal x_0, he relies on his subjective belief to form a conditional estimate of specific variables.

Alternatively, we can think of the agent as a professional forecaster, who has an explicit formal model of the economic environment; he fits the model to the long-run distribution, and uses this “estimated model” to form forecasts.
of specific variables upon request. The forecaster’s model consists of a system of structural equations having two crucial characteristics. First, the system is recursive: a dependent variable in any given equation cannot appear as an explanatory variable in some earlier equation. This feature is implied by the graph’s acyclicity. It may be introduced as a simplifying device (recursive systems are easier to estimate), or because the agent has an explicitly causal theory. Second, each individual equation is non-parametric - i.e., it does not commit to any specific functional form. As a result, estimating the equation for \(x_i \) produces the true conditional distribution \(p(x_i | x_{R(i)}) \). It is as if the forecaster tweaks the equation’s functional form until he gets perfect empirical fit, but he does not tamper with the equation’s R.H.S variables - possibly due to fundamental theoretical pre-conceptions. This is probably not the way successful forecasting should be done, but I believe it approximates the way it is sometimes practiced.

Both interpretations are based on the idea that perceiving joint probability distributions is difficult, especially when many variables are involved. Relying on a model, whether intuitive or formal, facilitates this complex task, by focusing the agent’s attention on a few key correlations (and if the DAG is sparse, these correlations will involve relatively few variables).

Here I should emphasize that although I have fixed \(x_0 \) as the variable that the agent gets to observe, this is merely an expositional device that is not needed for the general results. We should think of the agent as potentially facing many situations that involve the economic variables \(x_1, \ldots, x_n \); every situation requires the agent to predict some variable \(x_i \) after observing some other variable \(x_j \), and these two variables vary across situations. (Furthermore, a subsequent extension of the basic model will allow the agent to observe several variables before making his prediction.) Thus, the agent’s overall activity requires him to make many conditional predictions in different situations. Grounding each of these predictions in a direct measurement of some conditional probability would be very costly. The “estimated model” \(p_R \) simplifies this task: it requires the agent to make a relatively small number of direct measurements once and for all, and enables him to draw on \(p_R \).
whenever a situation calls for making a specific conditional prediction.\footnote{There is a third interpretation, according to which R does not describe an explicit subjective model, but rather represents the agent’s objective data limitations, such that p_R is the agent’s extrapolated belief from his limited data. This interpretation is elaborated in Spiegler (2015b), and I discuss it briefly in Section 6, but I do not pursue it elsewhere in this paper.}

We are now ready for the paper’s central definition.

Definition 1 A DAG R induces unbiased estimates if $E(e_i) = E(x_i)$ for every $i \in N - \{0\}$ and every objective distribution p (that satisfies the above domain restrictions).

This definition allows the agent to form estimates that depart from the rational-expectations benchmark - i.e., $E_R(x_i \mid x_0) \neq E(x_i \mid x_0)$ for some x_i, x_0. However, it means that the errors are not systematic: they even out on average.

The simplest example of a misspecified DAG that induces unbiased estimates is an empty DAG (i.e., $R(i) = \emptyset$ for every $i \in N$). This DAG fails to capture any correlation that might actually exist among variables, because $p_R(x_i, x_j) = p(x_i)p(x_j)$ for any pair of nodes $i, j \in N$. However, it is easy to see from (4) that $p_R(x_i \mid x_0) = p(x_i)$, and therefore $E(e_i) = E(x_i)$. This shows that even when a DAG is misspecified, it can induce unbiased estimates. My goal in the next section will be to characterize the class of DAGs for which this is the case.

3 The Basic Result

I begin the analysis with a few basic concepts and results from the Bayesian-networks literature. Let \tilde{R} be the skeleton (undirected version) of R - i.e., $i \tilde{R} j$ if and only if $i R j$ or $j R i$. A subset $M \subseteq N$ is a clique in R if $i \tilde{R} j$ for every $i, j \in M$. A clique M is ancestral if $R(i) \subseteq M$ for every $i \in M$. In particular, a node i is ancestral if $R(i)$ is empty. A node j is an ancestor of another node i if R contains a directed path from j into i. Two sets of
nodes $A, B \subset N$ are mutually disconnected if for every pair of nodes $i \in A$ and $j \in B$, there is no path in \tilde{R} that connects i and j.

Equivalent DAGs
A DAG encodes a mapping from objective distributions to subjective beliefs, which is given by (4). Two DAGs can be equivalent in the sense that they encode the same mapping.

Definition 2 Two DAGs R and Q over N are equivalent if $p_R(x_N) \equiv p_Q(x_N)$ for every $p \in \Delta(X)$.

For instance, the DAGs $1 \rightarrow 2$ and $2 \rightarrow 1$ are equivalent, by the basic identity $p(x_1)p(x_2 \mid x_1) \equiv p(x_2)p(x_1 \mid x_2)$. A DAG that involves intuitive causal relations can be equivalent to a DAG that makes little sense as a causal model (e.g., it postulates that a player’s action causes his preferences).

A v-collider in R is an ordered triple of nodes (i, j, k) such that iRk, jRk, iRj and jRi (i.e., R contains links from i and j into k, yet there is no link between i and j). We say in this case that there is a v-collider into k.

Proposition 1 (Verma and Pearl (1991)) Two DAGs R and Q are equivalent if and only if they have the same skeleton and the same set of v-colliders.

To illustrate this result, all fully connected DAGs have the same skeleton (every pair of nodes is linked) and an empty set of v-colliders, hence they are all equivalent. In contrast, the DAGs $1 \rightarrow 2 \rightarrow 3$ and $1 \rightarrow 2 \leftarrow 3$ are not equivalent: although their skeletons are identical, the former DAG has no v-colliders whereas $(1, 3, 2)$ is a v-collider in the latter.

Perfect DAGs
The following class of DAGs will play an important role in this paper.

Definition 3 A DAG is perfect if it contains no v-colliders.
A perfect DAG has the property that if \(x_i \) and \(x_j \) are perceived as direct causes of \(x_k \), then there must be a perceived direct causal link between them. If we think of a DAG as a recursive system of structural equations, perfection means that if \(x_i \) and \(x_j \) appear as explanatory variables in the equation for \(x_k \), then there must be an equation in which one of these two variables is explanatory and the other is dependent.

The following is an immediate implication of Proposition 1.

Corollary 1 Two perfect DAGs are equivalent if and only if they have the same skeleton. In particular, if \(M \subseteq N \) is a clique in a perfect DAG \(R \), then \(M \) is an ancestral clique in some DAG in the equivalence class of \(R \).

This corollary means that the causal links postulated by a perfect DAG are unidentified from observational data: if \(iRj \), there exists a DAG \(R' \) that is equivalent to \(R \), such that \(jR'i \). A DAG contains observationally meaningful causal links only when these are part of a \(v \)-collider.

The following lemma establishes that if \(C \) is an ancestral clique in some DAG in the equivalence class of \(R \), then subjective marginal distribution over \(x_C \) is always correct. Otherwise, we can find an objective distribution for which it will be distorted.

Lemma 1 (Spiegler (2016b)) Let \(R \) be a DAG and let \(C \subseteq N \). Then, \(p_R(x_C) \equiv p(x_C) \) for every \(p \) with full support on \(X_N \) if and only if \(C \) is an ancestral clique in some DAG in the equivalence class of \(R \).

Thanks to Corollary 1, the lemma implies that in a perfect DAG, \(p_R(x_C) \) is always correct for any clique \(C \). Thus, in particular, the agent’s subjective marginal distribution over any variable coincides with its objective marginal distribution. In other words, an agent with a perfect DAG never distorts individual variables’ marginal distributions. This observation is key to the paper’s main result, which we are now ready to state.

Proposition 2 A DAG \(R \) induces unbiased forecasts if and only if it is perfect.
Proof. (If). Assume that R is perfect. By Corollary 1, we can take 0 or i to be ancestral w.l.o.g. By Lemma 1, $p_R(x_0) \equiv p(x_0)$ and $p_R(x_i) \equiv p(x_i)$. Therefore, we can write

$$\sum_{x_0} p(x_0)p_R(x_i \mid x_0) \equiv \sum_{x_0} p_R(x_0)p_R(x_i \mid x_0) \equiv p_R(x_i) \equiv p(x_i)$$

which implies the claim.

(Only if). Consider the special case in which $X_i = \{0, 1\}$ for every i, such that the expected value of any x_i w.r.t any distribution is equal to the probability that $x_i = 1$. I will explain at the end of the proof why this is w.l.o.g. When R is imperfect, it must contain a v-collider $i \rightarrow j \leftarrow k$. Let us consider objective distributions p with full support on X_N, for which all other variables are independent, such that

$$p_R(x_N) = p(x_i)p(x_k)p(x_j \mid x_i, x_k) \cdot \prod_{i' \in N-\{i,j,k\}} p(x_{i'})$$

This allows us to ignore all variables $i' \in N - \{i,j,k\}$ when calculating marginal or conditional distributions over x_j that are derived from p_R.

There are three cases to consider. First, suppose that 0 $\notin \{i,j,k\}$ - i.e., 0 is not part of the v-collider. Then, $p_R(x_j \mid x_0) \equiv p_R(x_j)$. By Proposition 1, j is not an ancestral node in any DAG in the equivalence class of R. Therefore, by Lemma 1, we can find p for which $p_R \neq p$. (Our restrictions on p are w.l.o.g in this regard, because we can ignore all nodes $i' \neq i,j,k$ and set $R : i \rightarrow j \leftarrow k$.)

Second, suppose that $i = 0$. Then,

$$p_R(x_j = 1 \mid x_0) = \sum_{x_k} p(x_k)p(x_j = 1 \mid x_0, x_k)$$

Impose the following additional structure on p. First, $p(x_0 = 1) = \frac{1}{2}$. Second, $x_k = x_j = x_0$ with arbitrarily high probability. Third, $p(x_j = 1 \mid x_0 \neq x_k)$ is
arbitrarily low. Then,

\[
\sum_{x_0} p(x_0) p_R(x_j = 1 | x_0) = \frac{1}{2} \left\{ \sum_{x_k} p(x_k) [p(x_j = 1 | x_0 = 0; x_k) + p(x_j = 1 | x_0 = 1; x_k)] \right\}
\]

is arbitrarily close to \(\frac{1}{4} \), whereas \(p(x_j = 1) = \frac{1}{2} \).

Finally, suppose that \(j = 0 \). Then,

\[
p_R(x_i = 1 | x_0) = \frac{\sum_{x_k} p(x_k) p(x_i = 1) p(x_0 | x_i = 1; x_k)}{\sum_{x_k} p(x_k) \sum_{x_i} p(x_i) p(x_0 | x_i; x_k)}
\]

Impose the following additional structure on \(p \). First, \(p(x_k = 1) = \frac{1}{2} \). Second, \(p(x_i = x_k) \) with arbitrarily high probability. Third, \(p(x_0 = 1 | x_i, x_k) \) is arbitrarily high when \(x_i x_k = 1 \) and arbitrarily low when \(x_i x_k = 0 \). Then, \(p_R(x_i = 1 | x_0 = 1) \) is arbitrarily close to \(1 \), and \(p_R(x_i = 1 | x_0 = 0) \) is arbitrarily close to \(\frac{1}{3} \), such that \(\sum_{x_0} p(x_0) p_R(x_i = 1 | x_0) \) is arbitrarily close to \(\frac{2}{3} \), whereas \(p(x_i = 1) = \frac{1}{2} \).

Extending the proof to arbitrarily large \(X \) is straightforward - we only need to assume that the marginal of \(p \) over each of the variables \(x_i, x_j, x_k \) assigns arbitrarily high total probability to two arbitrary values, and that the small probability that is assigned to each of the other values is independently distributed.

Thus, as long as the agent’s DAG is perfect, he cannot be systematically fooled. For instance, suppose that \(R : 1 \rightarrow 2 \rightarrow 0 \). This DAG is perfect, hence Proposition 2 implies that the agent’s estimates of \(x_1 \) or \(x_2 \) are unbiased. The key for this result is the property that in a perfect DAG, every node can be regarded as ancestral, which ensures that the perceived marginal distribution of the variable it represents is undistorted. In contrast, when the agent’s DAG is imperfect (e.g., \(R : 1 \rightarrow 0 \leftarrow 2 \)), we can find an objective distribution for which the agent’s estimate of some variable will be biased. Thus, Proposition 2 identifies neglect of direct causation between two variables that are perceived as direct causes of a third variable as the source
of systematically biased estimates.

As mentioned above, perfect DAGs have the property that the causal links they postulate are unidentified from observational long-run data. Proposition 2 thus implies that the agent’s perception of a direct causal link exposes him to systematic fooling if and only if the link’s directionality is meaningful for observational data.

Selective estimates

The definition of unbiased estimates is demanding, because it requires the estimates of all variables to be unbiased. However, not all estimates or forecasts need to be economically relevant in a given situation. For example, Example 1.1 focused on the private sector’s inflation forecast, because it had implications for the realization of output under the true process. For other purposes, the private sector’s output forecast could be relevant. One would like to know whether the estimate of a particular variable is unbiased, even when the DAG is imperfect.

The following result is a sufficient condition for the agent’s estimate of a given \(x_i \) to be unbiased. Fix a DAG \((N, R)\). Define the following induced binary relation: for every \(j, k \in N \), \(j P k \) if \(j = k \) or there exists a directed path in \(R \) from \(j \) to \(k \). The meaning of \(j P k \) is that \(x_j \) is (weakly) “above” \(x_k \) in the causal hierarchy of \(R \).

Proposition 3 Let \(i \in N - \{0\} \). Suppose that the subgraph induced by \(R \) over \(\{ j \in N \mid j P 0 \text{ or } j P i \} \) is perfect. Then, \(E(e_i) = E(x_0) \) for every objective distribution \(p \) (that satisfies the above domain restrictions).

Proof. Denote \(N^* = \{ j \in N \mid j P 0 \text{ or } j P i \} \). By definition, \(0, i \in N^* \). It is immediate from (4) that when calculating \(p_R(x_0, x_i) \), we can disregard any \(k \notin N^* \). Therefore, we only need to consider the subgraph over \(N^* \) induced by \(R \). By assumption, it is perfect. Therefore, the same proof of the “if” part of Proposition 2 applies here, and implies the result.

Thus, as long as there are no violations of perfection “above” \(0 \) or \(i \) in the causal hierarchy of \(R \), the agent’s conditional estimate of \(x_i \) is unbiased. For instance, the private sector’s output forecast in Example 1.1 is unbiased.
4 Two Applications

In this section I examine two applications in which possibility of systematically biased estimates is of crucial economic importance.

4.1 Manipulating Reputation with Sponsored Reviews

A firm offers a product of exogenous quality θ, which is the firm’s private information. The agent is a consumer who receives a signal t, interpreted as a review of the firm’s product. Based on the signal, the consumer forms an estimate e of the product’s quality. Let $s \in \{0,1\}$ indicate whether the review is sponsored by the firm ($s = 1$ means that it is). The firm’s strategy specifies the probability of sponsoring the review as a function of θ. The realized review is some probabilistic function of t and s. This function, the exogenous distribution over θ and the firm’s strategy constitute the objective joint distribution p over θ,s,t. Let R be the consumer’s DAG defined over the three variables. As usual in this paper, for every t, $e = E_R(\theta \mid t)$ with probability one.

The firm’s payoff is $e - cs$, where $c \in (0,\frac{1}{2})$ is the cost of sponsoring a review. That is, the firm trades off its reputation and the cost of sponsoring reviews. The firm’s ex-ante expected payoff is

$$\sum_{\theta} p(\theta) \sum_s p(s \mid \theta) \sum_t p(t \mid \theta,s) [E_R(\theta \mid t) - cs] = E(e_i) - cE(s)$$

The relation between the firm’s objective and the “systematic fooling” question is apparent from this expression.

If R is fully connected - such that the consumer has rational expectations - the firm’s objective function collapses into $E(\theta) - cE(s)$. In this case, the firm cannot use sponsored reviews to manipulate its average reputation, because it coincides with the product’s expected quality. The firm’s ex-ante optimal strategy is $p(s = 1 \mid \theta) = 0$ for every θ.\footnote{Of course, this policy will typically fail to be time-consistent; however, I focus entirely on the ex-ante perspective.}
Impose the following additional structure on p. Let $\theta \in \{0,1\}$; the two values are equally likely, such that $E(\theta) = \frac{1}{2}$. The firm’s strategy can thus be represented by two conditional probabilities: $\alpha = p(s = 1 \mid \theta = 1)$ and $\beta = p(s = 1 \mid \theta = 0)$. Finally, $p(t \mid \theta, s)$ is degenerate: $t = \theta + s$ with probability one for every θ, s.

In this example, the consumer’s DAG captures his understanding of the process that generates review content. Each DAG tells a different causal story. For instance, the DAG $\theta \to t \to s$ represents a “naive” story, according to which content is only influenced by the product’s objective characteristics, and sponsorship is reactive (akin to tipping). In contrast, the DAG $\theta \to s \to t$ represents a “cynical” story, according to which content has nothing to do with the product’s quality once we condition on the sponsorship status. Both DAGs are perfect, and therefore generate unbiased quality estimates. As a result, the firm’s ex-ante optimal strategy under these DAGs coincides with the rational-expectations prediction.

In contrast, the DAG $R: \theta \to t \leftarrow s$ is imperfect. A consumer with this DAG realizes that sponsorship may affect reviews, but he believes that the prevalence of sponsorship is independent of the product’s quality. This DAG treats s and θ as mutually independent primary causes of t, whereas in reality s may be caused by θ via the firm’s strategy. This type of correlation neglect falls into the category that Eyster and Rabin (2005) refer to as “cursedness”. We will now see that thanks to this correlation neglect, the firm can play a strategy that enhances its average reputation.

Proposition 4 Let $R: \theta \to t \leftarrow s$. Then, the firm’s ex-ante optimal strategy is $\alpha = 0$, $\beta = \frac{1}{2} - c$. The firm’s average reputation under the ex-ante optimal strategy is

$$E(e) = \frac{1}{2} + \frac{1}{16}(1 - 4c^2)$$

Proof. The consumer’s quality assessment after observing $t = 2$ is

$$p_R(\theta = 1 \mid t = 2) = \frac{p_R(\theta = 1, t = 2)}{p_R(t = 2)} = \frac{p(\theta = 1) \sum_s p(s)p(t = 2 \mid s, \theta = 1)}{\sum_\theta p(\theta) \sum_s p(s)p(t = 2 \mid s, \theta)}$$

$$= \frac{p(\theta = 1)p(s = 1)}{p(\theta = 0) \sum_s p(s) \cdot 0 + p(\theta = 1)p(s = 1)} = 1$$
because the realization $t = 2$ is possible only when $\theta = 1$. Likewise, the realization $t = 0$ is possible only when $\theta = 0$, and a similar calculation yields $E_R(\theta \mid t = 0) = 0$. It follows that when $t \neq 1$, the consumer’s quality estimate is consistent with rational expectations.

Let us turn to the consumer’s quality assessment after observing $t = 1$:

$$p_R(\theta = 1 \mid t = 1) = \frac{p(\theta = 1) \sum_s p(s) p(t = 1 \mid s, \theta = 1)}{\sum_{\theta} p(\theta) \sum_s p(s) p(t = 1 \mid s, \theta)}$$

$$= \frac{p(\theta = 1) p(s = 0)}{p(\theta = 1) p(s = 0) + p(\theta = 0) p(s = 1)}$$

$$= p(s = 0) = \frac{1}{2} (1 - \alpha) + \frac{1}{2} (1 - \beta) = 1 - \frac{1}{2} (\alpha + \beta)$$

We can now calculate the firm’s expected payoff for any strategy (α, β):

$$\frac{1}{2} \cdot \alpha \cdot 1 + \frac{1}{2} \cdot (1 - \alpha) + \frac{1}{2} \cdot \beta \cdot [1 - \frac{1}{2} (\alpha + \beta)] - c \cdot \left(\frac{1}{2} \cdot \alpha + \frac{1}{2} \cdot \beta \right)$$

The strategy (α, β) that maximizes this expression is $\alpha = 0, \beta = \frac{1}{2} - c$. That is, the firm sponsors reviews only when its quality is low, and even then only with some probability. Plugging the values of α, β into the expression for the firm’s average reputation yields the result.

Note that even in this case, the firm’s ability to manipulate its average reputation is limited - the firm is unable to increase it by more than $\frac{1}{16}$.

This is a good opportunity to revisit the interpretational issues discussed in Section 2. Why would a consumer who is aware of all three variables θ, s, t hold a causal model that does not fully link them? The answer is that my use of a simple three-variable example is a pedagogical device; its simplicity should not be mistaken for a simplicity of the real-life environment it aims to capture. This environment would typically involve many variables: the quality of numerous types of products, numerous reviewers and various outlets that publish their reviews. It would be hard for consumers to fully understand the intricate web of influences among these variables. Furthermore, the consumer will encounter various situations that require him to make different conditional predictions: guessing whether a given review was sponsored,
predicting the content of a review written by one author after seeing a review by another author (not knowing whether they are sponsored and by whom), predicting review content after learning that it was sponsored, etc. A boundedly rational consumer is likely to make simplifying assumptions that assist his attempt to understand statistical regularities in his environment. An example of such a simplifying assumption is that sponsorship is independent of product quality. This particular assumption enables firms to use sponsored reviews to manipulate their average reputation.

4.2 Monetary Policy

In this sub-section I analyze the “monetary policy” example that was outlined in the Introduction. Recall the four economic variables: the central bank’s private information θ, the central bank’s action a, inflation π and real output y. The private sector’s inflation forecast is denoted e. The central bank’s payoff is $y - \theta\pi$.

The objective distribution p satisfies the following properties. First, $\theta \sim U[0,1]$. Both π and a take values in $\{0,1\}$, where $\pi = 0$ (1) represents low (high) inflation. The central bank’s strategy is defined by a collection of conditional probabilities: $\alpha(\theta) = p(a = 1 \mid \theta)$ for every θ. Inflation is a stochastic function of a, given by $p(\pi = 1 \mid a) = \beta a$, where $\beta \in (0,1)$. That is, $a = 0$ is a safe action that induces low inflation with certainty, whereas $a = 1$ is a risky action that induces high inflation with probability β. The private sector forms its inflation forecast after observing the realization of a - i.e., $e = E_R(\pi \mid a)$. Output is given by the “Phillips Curve” $y = \pi - e + \eta$, where $\eta \sim N(0,\sigma^2_\eta)$ is independently distributed. Note that p is consistent with the following “true DAG” R^* defined over θ, a, π, y:\footnote{If we incorporated e as an explicit variable in the causal model, the direct link $a \rightarrow y$ would be replaced with the chain $a \rightarrow e \rightarrow y$. See Section 6.1 for a discussion of estimates as variables in DAGs.}

$$
\begin{array}{ccc}
\theta & \rightarrow & a \\
\downarrow & & \downarrow \\
\pi & & y
\end{array}
$$

(6)
Plugging the Phillips Curve into the central bank’s payoff function, we obtain the following:

$$\sum_\theta p(\theta) \sum_a p(a \mid \theta) [(1 - \theta) \cdot E(\pi \mid a) - E_R(\pi \mid a)]$$

$$= E(\pi) - E(e) - \sum_\theta p(\theta)E(\pi \mid \theta)\theta$$

If the private sector had rational expectations ($R = R^*$), this expression would collapse into

$$-\sum_\theta p(\theta)E(\pi \mid \theta)\theta = -\beta \sum_\theta p(\theta)p(a = 1 \mid \theta)\theta$$

and the central bank’s ex-ante optimal strategy would be $p(a = 1 \mid \theta) = 0$ for every $\theta > 0$.

Consider two possibilities for the private sector’s DAG:

$$R: \theta \rightarrow a \rightarrow \pi \leftarrow y \quad R': \theta \rightarrow a \rightarrow \pi \rightarrow y$$

Each DAG represents a different narrative about how macro variables are interconnected. (Hoover (2001) describes historical controversies in macroeconomics in terms of conflicting causal mechanisms.) The DAG R' deviates from the true DAG R^* by omitting the direct link $a \rightarrow y$. In other words, it neglects the causal channel from monetary policy to output via inflationary expectations. Because R' is perfect, Proposition 2 implies that inflation forecasts based on R' would be unbiased. As a result, the central bank’s ex-ante optimal policy under R' coincides with the rational-expectations prediction.

Now turn to the imperfect DAG R, which deviates from R' by reversing the causal link between inflation and output. This DAG may capture a prior belief in “classical” monetary neutrality, because it admits no causal channel

As in Section 4.1, I focus on ex-ante optimality, without addressing the time-consistency issue. Note that there would be no time-inconsistency problem if the private sector had rational expectations, because it observes a. This property is no longer assured when $R \neq R^*$.
from a to y. The private sector’s conditional inflation forecast under R is

$$E_R(\pi \mid a) = \sum_{\pi} p_R(\pi \mid a) \pi = \sum_y p(y)p(\pi = 1 \mid a, y)$$

because according to R, y and θ are both independent of θ conditional on a.

We will now see that under R, the central bank’s ex-ante optimal strategy involves inflating (as the Phillips-Curve noise vanishes).

Proposition 5 In the $\sigma_n^2 \rightarrow 0$ limit, the central bank’s ex-ante optimal policy is a cutoff strategy: $p(a = 1 \mid \theta) = 1$ if $\theta < \frac{1}{3}$ and $p(a = 1 \mid \theta) = 0$ if $\theta > \frac{1}{3}$. The expected output is $\frac{2}{3} \beta$.

Proof. Denote $E_R(\pi \mid a) = e(a)$ and $\alpha = p(a = 1) = \sum_{\theta} p(\theta)p(a = 1 \mid \theta)$. Because $\pi \in \{0, 1\}$,

$$e(a) = \sum_y p(y)p(\pi = 1 \mid a, y)$$

Because η is normally distributed, $p(a, y)$ has full support, such that $e(a)$ never involves conditioning on zero-probability events. Because $y \perp \theta \mid a$ according to the true process, α is the only aspect of the central bank’s strategy that is relevant for calculating $e(a)$.

Let us first calculate $e(0)$. Because $p(\pi = 1 \mid a = 0) = 0$, it follows that $p(\pi = 1 \mid a = 0, y) = 0$ for all y. Therefore, $e(0) = 0$. This in turn means that $E(y \mid a = 0) = 0$. It follows that if $\alpha = 0$, the central bank cannot induce strictly positive expected output. From now on, assume $\alpha > 0$.

Let us now calculate $e(1)$. First, note that $y \sim N(\mu, \sigma_n^2)$, where μ is random: $\mu = e(0) = 0$ with probability $1 - \alpha$, $\mu = 1 - e(1)$ with probability $\alpha \beta$, and $\mu = -e(1)$ with probability $\alpha(1 - \beta)$. A priori, two of these three values could coincide. However, we will now see that this is not the case. Because the normal distribution is symmetrically distributed around its mean, the ex-ante probability of $y < -e(1)$ is at least $\alpha(1 - \beta)/2$, whereas the ex-ante probability of $y > 1 - e(1)$ is at least $\alpha \beta/2$. Moreover, as σ_n^2 tends to 0, $p(\pi = 1 \mid a = 1, y < -e(1)) \rightarrow 0$ and $p(\pi = 1 \mid a = 1, y > 1 - e(1)) \rightarrow 1$.

23
Therefore, in the $\sigma^2 \to 0$ limit,

$$0 < \frac{\alpha \beta}{2} \leq e(1) \leq 1 - \frac{\alpha(1 - \beta)}{2} < 1$$

It follows that as σ^2 approaches zero, μ gets exactly three values, $-e(1)$, 0 and $1 - e(1)$, and the gap between these values is bounded away from zero. In the $\sigma^2 \to 0$ limit, $p(\pi = 1 \mid a = 1, y) \to 1$ in the neighborhood of $y = 1 - e(1)$, whereas $p(\pi = 1 \mid a = 1, y) \to 0$ in the neighborhoods of $y = 0$ and $y = -e(1)$. Consequently, $e(1) \to p(\pi = 1) = \alpha \beta$ as $\sigma^2 \to 0$.

We have thus established that $E(\pi) = \alpha \beta$ and $\sum_a p(a)e(a) = \alpha \cdot \alpha \beta + (1 - \alpha) \cdot 0 = \alpha^2 \beta$. Moreover, for any given α, it is optimal for the central bank to use a cutoff strategy - i.e., there will exist θ^* such that $F(\theta^*) = \alpha$, and the central bank will play $a = 1$ if and only if $\theta < \theta^*$. The reason is that for any given α, the way the central bank allocates this probability to different values of θ does not change the expected output, and therefore the central bank would like to implement α in the least costly manner - which means playing $a = 1$ for low values of θ. Because θ is uniformly distributed over $[0, 1]$, it follows that the central bank will choose θ^* to maximize

$$\beta \theta^*(1 - \theta^*) - \beta \int_0^{\theta^*} \theta d\theta$$

The solution follows immediately. \blacksquare

The intuition behind the result is as follows. When the central bank plays $a = 0$, it induces $\pi = 0$ with certainty, hence $p(\pi = 1 \mid a = 0; y) = 0$ for any y. As a result, $E_R(\pi \mid a = 1) = 0$, as if the private sector had rational expectations. In contrast, when $a = 1$, inflation fluctuates; and the private sector’s error is that it tries to account for these fluctuations by the variation in y, as if the latter were exogenous. Therefore, the private sector’s inflation forecast conditional on $a = 1$ involves summing over all values of y, weighting them according to the ex-ante distribution over y. In the $\sigma^2 \to 0$ limit, this failure to condition on $a = 1$ translates to the identity $E_R(\pi \mid a = 1) = E_R(\pi)$. Thus, when the central bank plays $a = 0$, the private sector correctly updates its belief downward, whereas when the central bank
plays $a = 1$, the private sector forms its inflation forecast as if it did not observe the central bank’s action. This leads to systematic underestimation of expected inflation.

Testing and revising models

The notion of model-based predictions naturally raises the problem of testing and revising subjective causal models - especially under the “professional forecasting” interpretation of DAGs as explicit, formal models. A DAG represents a collection of conditional-independence assumptions. E.g., the DAG R in this sub-section assumes (among other such properties) that $\pi \perp \theta \mid a$ and $y \perp a$. The forecaster can test these assumptions by directly measuring $p(\theta, \pi, a)$ and $p(a, y)$. Note that these measurements go beyond those that are needed for quantifying the model, and therefore carry an implicit cost. He will then realize that p satisfies the former assumption but violates the latter. Likewise, the forecaster can test his model’s predictions - e.g., measuring $E(\pi \mid a)$ and $E(y \mid a)$ and comparing them to the forecasts $E_R(\pi \mid a)$ and $E_R(y \mid a)$. He will then learn that his inflation forecast is systematically biased, whereas the output forecast is correct on average. Given this mixed performance, the forecaster will face the dilemma of whether to revise his model.

My perspective in this paper is that model testing and revision is an infrequent activity. First, the implicit cost of measuring and communicating correlations that motivated the use of sparse subjective models also inhibits testing and revising these models, because that would involve processing additional correlations. Second, because the forecaster’s model is a knowing simplification of a complex environment, he expects it to get some things wrong, and he may be unfazed by the model’s mixed performance (defending his stance with familiar statements like “every model is wrong” or “it takes a model to beat a model”). Finally, if the model is based on strong theoretical preconceptions, the forecaster will resist revisions that contradict them.

While modeling this process of testing and revising models is outside this
paper’s scope, I now consider an example of an alternative DAG that could be adopted as a result of such a process. Recall that R reflects a belief in monetary neutrality, which denies any causal chain from a to y. But R makes the stronger assumption $a \perp y$. When the forecaster runs an empirical test that refutes this assumption, it would be natural for him to tweak his model by adding the link $\theta \rightarrow y$, thus obtaining the DAG R''' given by (1). This revised model allows a and y to be correlated, without challenging the core idea that a does not cause y.

Since the modified DAG R''' violates the sufficient condition of Proposition 3 for unbiased inflation forecasts, the central bank may still be able to use monetary policy for real effects. According to R''', the private sector perceives the correlation between y and a only through their correlation with θ. Consequently, if the central bank plays a deterministic strategy (such as the cutoff strategy derived in Proposition 5), then $p_{R'''}(y \mid a) = p(y \mid a)$, and therefore the private sector’s inflation forecast will be consistent with rational expectations. It follows that the central bank must employ randomization. For example, it could play $p(a \mid \cdot) = \alpha$ for all θ, such that the private sector will perceive no correlation between a and y - i.e., $p_{R'''}(y \mid a) = p(y)$ - and expected output will be $\beta \alpha (1 - \alpha)$. However, this is not the most cost-effective way of generating real effects. The following result derives the ex-ante optimal strategy.

Proposition 6 In the $\sigma_\eta^2 \rightarrow 0$ limit, the central bank’s ex-ante optimal strategy under R''' is $p(a = 1 \mid \theta) = \frac{1}{2}(1 - \theta)$ for every θ. Expected output in this limit is $\frac{1}{6} \beta$.

Proof. The argument that $p_{R'''}(\pi = 1 \mid a = 0) = 0$ is the same as in Proposition 5. Denote $\alpha(\theta) = p(a = 1 \mid \theta)$ and $c(1) = p_{R'''}(\pi = 1 \mid a = 1)$. Then, expected output is

$$\sum_{\theta} p(\theta)\alpha(\theta)[\beta - c(1)]$$
Now,

\[\sum_{\theta} p(\theta)\alpha(\theta)e(1) = \sum_{\theta} p(\theta)\alpha(\theta) \sum_{y} p_{R^\prime}(y \mid a = 1, \theta)p(\pi = 1 \mid y, a = 1) \]

According to the true process, \(\pi \perp \theta \mid (a, y) \), just as in the case of Proposition 5. Therefore, as in the previous result, in the \(\sigma_\eta^2 \to 0 \) limit, \(p(\pi = 1 \mid y, a = 1) \to 1 \) at \(y = e(1) \) and \(p(\pi = 1 \mid y, a = 1) \to 0 \) at \(y \neq e(1) \). It remains to calculate \(p_{R^\prime}(y \mid a = 1, \theta) \). According to \(R'' \), \(y \perp a \mid \theta \). Therefore, \(p_{R^\prime}(y \mid a = 1, \theta) = p_{R^\prime}(y \mid \theta) \). Because the nodes \(y \) and \(\theta \) form an ancestral clique of \(R'' \), \(p_{R^\prime}(y, \theta) = p(y, \theta) \), and therefore

\[
p_{R^\prime}(y \mid \theta) = p(y \mid \theta) = \sum_{\theta} p(a' \mid \theta) p(y \mid a') = \alpha(\theta)p(y \mid a' = 1) + (1 - \alpha(\theta))p(y \mid a' = 0)
\]

In the \(\sigma_\eta^2 \to 0 \) limit, \(p(y = e(1) \mid a' = 1) = p(\pi = 1 \mid a' = 1) = \beta \). It follows that expected output is

\[
\sum_{\theta} p(\theta)\alpha(\theta)[\beta - \alpha(\theta)\beta]
\]

such that the central bank’s objective function becomes

\[
\sum_{\theta} p(\theta) \{ \alpha(\theta)[\beta - \alpha(\theta)\beta] - \alpha(\theta)\beta\theta \}
\]

Note that this objective function is additivity separable in \(\theta \), such that for every \(\theta \), the optimal value of \(\alpha(\theta) \) maximizes

\[
\alpha(\theta)[1 - \alpha(\theta)] - \alpha(\theta)\theta
\]

which immediately gives the solution. ■

Thus, the central bank plays a random strategy, where the probability that it tries to inflate is a simple decreasing function of the cost of inflation. The expected output that it generates is lower than under the original spec-
ification of R, because the private sector’s partial ability to account for the
correlation between a and y means that the central bank can no longer use
the cost-effective cutoff strategy.

5 Extensions

In this section I extend the basic analysis in various directions.

5.1 Multivariate Normal Distributions

Proposition 2 means that an imperfect DAG exposes the agent to system-
atically biased estimates for some objective distribution. However, in appli-
cations we often restrict the domain of objective distributions, and this
makes it harder to systematically fool our agent. In this section I examine
the implications of a domain restriction that is common in economic models,
namely that the distribution over economic variables is multivariate normal.

Proposition 7 Let R be an arbitrary DAG, and let $p_{(1,...,n)}$ be a multivariate
normal distribution. Then, $E(e_i) = E(x_i)$ for every $i = 1,...,n$.

Proof. Let $p \sim N(\mu, \Sigma)$. From now on, I will assume $\mu = 0$. To see why
this is w.l.o.g, note that we could define the auxiliary vector $y = x - \mu$, such
that for every i, $E_R(y_i | y_0) \equiv E_R(x_i | x_0) - \mu_i$ and $E(y_i) \equiv E(x_i) - \mu_i$. If
we prove our result for the y variables, it immediately implies the result for
x. By a standard result (e.g., Theorem 7.4 in Koller and Friedman (2009)),
p($x_i | x_{R(i)}$) is multivariate normal. Specifically, we can write $p(x_i | x_{R(i)})$ as
a linear regression equation with normally distributed noise:

$$x_i \sim N(\beta^T x_{R(i)}, \Sigma_{i,i} - \Sigma_{i,R(i)} \Sigma_{R(i),R(i)}^{-1} \Sigma_{R(i),i})$$

where

$$\beta = \Sigma_{R(i),R(i)}^{-1} \Sigma_{i,R(i)}$$

Thus, the collection $(p(x_i | x_{R(i)}))_{i=1,...,n}$ constitutes a Gaussian Bayesian
network (see Definition 7.1 in Koller and Friedman (2009)). By Theorem 7.3
in Koller and Friedman (2009), $p_R \sim N(0, \Sigma')$, where Σ' is some variance-covariance matrix. Then, by the definition of conditional expectations under multivariate normal distributions, $E_R(x_i \mid x_0) = bx_0$, where b is some constant. Because $E(x_0) = 0$, it then immediately follows that

$$\sum_{x_0} p(x_0) E_R(x_i \mid x_0) = 0 = E(x_i)$$

which completes the proof. ■

Thus, the mere assumption that the agent forms his beliefs by fitting some causal model to long-run data guarantees that he cannot be systematically fooled - as long as the true distribution over economic variables is multivariate normal. The key to this finding is an existing result in the Bayesian-networks literature (see Koller and Friedman (2009, Ch. 7)): factorizing a multivariate normal distribution according to a DAG produces a multivariate normal distribution. Conditional expectations of variables in this class of distributions are simply weighted averages. While a misspecified DAG can distort the weights, these distortions cancel out on average.

In each of the applications of Section 4, one of the variables was an action taken by some other agent (the firm in Section 4.1, the central bank in Section 4.2). Proposition 7 implies that in such cases, if that other agent plays a linear-normal strategy (and all other variables are linked by a system of linear-normal equations), our agent will never be systematically fooled. Thus, in linear-normal models, non-linear strategies are necessary for inducing systematically biased predictions.\(^8\)

5.2 Observing Multiple Variables

So far, we have assumed that the agent conditions his estimates on a single observed variable x_0. Now suppose that the agent’s signal is x_A, where $A \subset N$ is non-empty and may include more than one node. In a standard model with

\(^8\)In the main part of the “monetary policy” example, the impossibility of systematically biased estimates extends to arbitrary non-linear central-bank strategies (as well as arbitrary distributions $p(\theta)$). It suffices to assume that inflation and output are determined according to linear-normal equations.
rational expectations, we can always redefine the agent’s signal as a single variable, without loss of generality. However, when the agent’s beliefs are based on a misspecified DAG, it is important to be explicit about the variables that constitute the agent’s signal. The agent’s estimate of \(x_i \) conditional on observing \(x_A \) is \(e_i = E_R(x_i | x_A) \). As before, \(E(e_i) = \sum_{x_A} p(x_A) E_R(x_i | x_A) \).

We say that \(R \) induces unbiased estimates if \(E(e_i) = E(x_i) \) for every objective distribution \(p \) in the restricted domain and every \(i \in N - A \).

Proposition 8 A perfect DAG \(R \) induces unbiased estimates if and only if \(A \) is a union of mutually disconnected cliques.

Proof. (If). Suppose that \(A \) is a union of mutually disconnected cliques. This includes the possibility that \(A \) itself is a clique. Let \(i \in N - A \). If \(i \) is disconnected from \(A \), then \(p_R(x_i | x_A) = p_R(x_i) \). Since \(R \) is perfect, 1 and Lemma 1 imply that \(p_R(x_i) = p(x_i) \), hence \(E_R(x_i | x_A) = E(x_i) \) for all \(x_A \).

Now suppose that \(i \) is connected to \(A \). By assumption, \(i \) is connected to at most one of the cliques that constitute \(A \). Denote this clique by \(C \). Then, \(p_R(x_i | x_A) = p_R(x_i | x_C) \). Because \(R \) is perfect, Corollary 1 implies that we can take \(C \) or \(\{i\} \) to be ancestral cliques. By Lemma 1, \(p_R(x_C) \equiv p(x_C) \) and \(p_R(x_i) \equiv p(x_i) \). Therefore, we can write

\[
\sum_{x_C} p(x_C)p_R(x_i | x_C) \equiv \sum_{x_C} p_R(x_C)p_R(x_i | x_C) \equiv p_R(x_i) \equiv p(x_i)
\]

which implies the claim.

(Only if). Suppose that \(A \) is not a union of mutually disconnected cliques (in particular, \(A \) itself is not a clique). Therefore, there exist nodes \(j, k \in A \) such that there is a path in \(\hat{R} \) that connects \(j \) and \(k \), and yet \(j \) and \(k \) are not directly linked. Moreover, because \(R \) is perfect, there must be at least one such path that does not contain a collider. Without loss of generality, all the nodes along this path do not belong to \(A \), except for \(j \) and \(k \) themselves. Finally, there must be a node \(i \) along this path, such that for some DAG \(R' \) in the equivalence class of \(R \), there is a directed path in \(R' \) from \(i \) into \(j \), as well as a directed path in \(R' \) from \(i \) into \(k \).
Construct an objective distribution \(p \) for which all the variables that lie outside the above path are independent. Moreover, suppose that \(x_j \perp x_k \) according to \(p \), and \(p(x_j = 1) = p(x_k = 1) = \alpha \in (0, 1) \). Therefore, we can ignore them when calculating \(p_R(x_i \mid x_A) \). As before, we can consider w.l.o.g the case in which every variable can only take the values 0 and 1. Let \(\varepsilon > 0 \) be arbitrarily small. Suppose that for every node \(j' (k') \) that lies along the path from \(i \) to \(j \) (\(k \)), \(x_j' = x_j (x_k' = x_k) \) with independent probability \(1 - \varepsilon \). Finally, suppose that \(x_i = x_j x_k \) with independent probability \(1 - \varepsilon \).

By construction,

\[
E_R(x_i \mid x_j, x_k) = p_R(x_i = 1 \mid x_j, x_k) = \frac{p_R(x_i = 1, x_j, x_k)}{\sum_{x_i'} p_R(x_i') p_R(x_i' \mid x_j, x_k)}
\]

Because we have assumed that all variables outside the above path are independent, we can ignore these variables and treat the node \(i \) as ancestral in \(R \) for the purpose of this calculation. Therefore, \(p_R(x_i') = p(x_i) \) for every \(x_i \). Note that \(R, x_j \perp x_k \mid x_i \). Therefore, and by the additional assumptions we imposed on \(p \),

\[
p_R(x_i \mid x_j, x_k) \approx \frac{p(x_i)p(x_j \mid x_i)p(x_k \mid x_i)}{\sum_{x_i'} p(x_i')p(x_j \mid x_i')p(x_k \mid x_i')}
\]

To calculate this expression, note first that because \(x_i = x_j x_k \) with probability close to one, \(p(x_i = 1) \approx \alpha^2 \) and \(p(x_j = 1 \mid x_i = 1) = p(x_k = 1 \mid x_i = 1) \approx 1 \), whereas

\[
p(x_j = 1 \mid x_i = 0) = p(x_k = 1 \mid x_i = 0) \approx \frac{\alpha(1 - \alpha)}{1 - \alpha^2} = \frac{\alpha}{1 + \alpha}
\]

Plugging these expressions into \(p_R(x_i \mid x_j, x_k) \), we can verify that

\[
\sum_{x_j, x_k} p(x_j, x_k) E_R(x_i \mid x_j, x_k) \neq p(x_i = 1) \approx \alpha^2
\]

which completes the proof.
Thus, even when R is perfect, it may still give rise to biased estimates when the agent conditions his estimates on multiple variables that are connected by R but fail to form a clique. However, as long as A is a clique (or a collection of mutually disconnected cliques), the agent’s estimates are unbiased. When A is empty, the result is reduced to the statement that the agent’s ex-ante estimates of individual variables are correct, which we already encountered in the context of Proposition 2.

Example 5.1: A no-trade theorem

Another economic phenomenon in which the possibility of systematically biased estimates plays a key role is speculative trade in financial markets. In principle, when different traders have different subjective models, this can lead to belief heterogeneity and thus allow for speculative trade.

Consider the following standard trading game. There is a collection of m risk-neutral traders. Each trader i has access to a set of trading actions S. Let θ be the state of Nature, and let t_i represent a signal that trader i receives prior to making his choice of trading action s_i. As usual, any objective distribution that is consistent with the game form satisfies $s_i \perp (\theta, t_{-i}, s_{-i}) \mid t_i$ for every trader i - i.e., the trader’s action is independent of the state of Nature and other traders’ signals and actions, conditional on his signal. Let $z = (z_1, \ldots, z_m)$ be a zero-sum vector of monetary transfers among traders, which is some stochastic function of θ and s_1, \ldots, s_m. This function satisfies the following property: there exists a default no-trade action $s_0 \in S$, such that if trader i plays $s_i = s_0$, he gets $z_i = 0$ with probability one, for all s_{-i} and θ. Assume that $p(\theta, (t_i)_{i=1,\ldots,m})$ has full support, but we do not need to assume that $p(z \mid \theta, (t_i)_{i=1,\ldots,m}, (s_i)_{i=1,\ldots,m})$ has full support. Trader i’s utility function is $u_i(z_i, s_i) = z_i - c \cdot 1(s_i \neq s^0)$, where $c > 0$ is an arbitrarily small cost of taking a non-default action.

The variables that are allowed to feature in the traders’ causal models are θ and $(t_i, s_i, z_i)_{i=1,\ldots,m}$. Assume that trader i’s DAG includes at least three nodes that represent the variables t_i, s_i, z_i, and that it contains the link $t_i \rightarrow s_i$. A justification for this assumption is that because the trader considers conditioning his action on his signal, he acknowledges this as a causal effect.
A strategy for trader i is given by the conditional probabilities $(p(s_i \mid t_i))_{t_i,s_i}$. We say that a profile of strategies is an ε-equilibrium if $(p(s_i \mid t_i))_{t_i,s_i}$ has full support for every i and every t_i, and if whenever $p(s_i \mid t_i) > \varepsilon$,

$$s_i \in \arg \max_{s \in S} \sum_{z_i} p_{R_i}(z_i \mid t_i, s_i)u_i(z_i, s_i)$$

That is, if a trader plays an action with probability greater than ε after observing some signal, this action must be a subjective expected-utility maximizer according to his updated subjective belief. The following result is a “no-trade theorem”.

Proposition 9 Suppose that R_i is perfect for every $i = 1, \ldots, m$. Then, for sufficiently small ε, every ε-equilibrium satisfies $p(s_i \mid t_i) \leq \varepsilon$ for every i, t_i and $s_i \neq s^0$.

Proof. By assumption, the action s^0 generates a sure payoff of zero. Therefore,

$$\sum_{z_i} p_{R_i}(z_i \mid t_i, s^0)u_i(z_i, s^0) = \sum_{z_i} p_{R_i}(z_i \mid t_i, s^0)z_i = 0$$

Now suppose that $p(s_i \mid t_i) > \varepsilon$ for some trader i, signal t_i and action $s_i \neq s^0$. For every such i, t_i, s_i, we must have

$$\sum_{z_i} p_{R_i}(z_i \mid t_i, s_i)z_i > 0$$

in order for the action to be a subjective best-reply. It follows that if ε is sufficiently small,

$$\sum_{t_i} \sum_{s_i} p(t_i, s_i) \sum_{z_i} p_{R_i}(z_i \mid t_i, s_i)z_i > 0$$

for every trader i. Therefore,

$$\sum_{i=1}^{m} \sum_{t_i} \sum_{s_i} p(t_i, s_i) \sum_{z_i} p_{R_i}(z_i \mid t_i, s_i)z_i > 0$$

33
By assumption, \(R_i \) contains the link \(t_i \to s_i \). Therefore, the two variables constitute a clique in \(R_i \). By Proposition 8,

\[
\sum_{t_i} \sum_{s_i} p(t_i, s_i) \sum_{z_i} p_{R_i}(z_i \mid t_i, s_i) z_i = E(z_i)
\]

hence

\[
\sum_{i=1}^{m} \sum_{t_i} \sum_{s_i} p(t_i, s_i) \sum_{z_i} p_{R_i}(z_i \mid t_i, s_i) z_i = E(\sum_{i} z_i) > 0
\]

a contradiction. ■

The impossibility of biased estimates under perfect DAGs (in which the nodes that represent a trader’s signal and his action are linked) plays a crucial role in this result. Each trader’s prediction of his earnings conditional on his trading action and his information is unbiased on average, and this is what precludes speculative trade, despite the possible heterogeneity in the traders’ subjective models. The claim is not vacuous: if \(\varepsilon \) is sufficiently small, we can construct an \(\varepsilon \)-equilibrium in which every trader plays \(s^0 \) with probability \(1 - \varepsilon \cdot (|S| - 1) \) and randomizes uniformly over all other actions.

5.3 Estimates as Variables

Throughout the paper, I assumed that the agent’s DAG does not admit his own estimates as variables. However, estimates or forecasts are themselves variables that can play a role in the determination of economic outcomes - e.g., recall the Phillips Curve in the “monetary policy” example. In principle, they could also enter the agent’s subjective causal model. Denote \(x_{i+n} = e_i \) for every \(i = 1, \ldots, n \), and \(x = (x_0, x_1, \ldots, x_{2n}) \). Allow the set of nodes \(N \) in the agent’s DAG to be a subset of the enlarged set \(\{0, 1, \ldots, 2n\} \). When \(i \in N \) for some \(i > n \), this means that the agent’s causal model admits \(e_{i-n} \) as a variable. Recall our earlier restriction that \(0 \in N \). The following is a sensible additional restriction.

Condition 1 If \(i \in N \) for some \(i > n \), then \(R(i) = \{0\} \) and \(i - n \in N \).
This condition requires two things. First, it says that the agent perceives \(x_0 \) to be the only immediate cause of his own estimates. The justification is that the agent is aware that he conditions his estimates on \(x_0 \) alone. Second, it requires that if the agent’s DAG includes an estimate of some variable, it must also admit the variable itself. This restriction on \(R \) implies the following result.

Proposition 10 Suppose that \(R \) satisfies Condition 1 (as well as the requirement that \(0 \in N \)). Then, there is a DAG \(R’ \) that omits the nodes \(n+1, \ldots, 2n \) altogether, such that \(p_{R’}(x_{N-(n+1,\ldots,2n)}) \equiv p_{R}(x_{N-(n+1,\ldots,2n)}) \) for every \(p \) (in the restricted domain defined in Section 2).

Proof. Suppose that \(i + n \in N \) for some \(i = 1, \ldots, n \). Then, by Condition 1, the factorization formula (4) contains the term \(p(e_i \mid x_0) \). Also, \(i \in N \). By assumption, \(p(E_R(x_i \mid x_0) \mid x_0) = 1 \). Therefore, we can remove the term \(p(e_i \mid x_0) \) from (4) altogether, and plug \(e_i = E_R(x_i \mid x_0) \) in any term in (4) that conditions on \(e_i \) - which effectively means that such a term conditions on \(x_0 \). We have thus obtained a DAG representation in which the node \(e \) is omitted, and any link from \(e \) to some node in \(R \) is replaced with a link from \(x_0 \) into the same node. ■

This result means that our original assumption that the agent’s DAG omits his own estimates is without loss of generality, as long as we accept the domain restrictions on \(p \) and \(R \).

6 Related Literature

This paper contributes to the literature on equilibrium models under misspecified subjective models. Prominent concepts in the literature include analogy-based expectations equilibrium (Jehiel (2005)), “cursed” equilibrium (Eyster and Rabin (2005)), behavioral equilibrium (Esponda (2008)) and Berk-Nash equilibrium (Esponda and Pouzo (2016)). In relation to the preceding literature, the factorization formula for \(p_R \) can be viewed as a class of models of how agents form subjective beliefs that systematically distort objective
distributions’ correlation structure. See Spiegler (2016a) for a detailed explanation of how the Bayesian-network representation relates to these previous approaches.

Within this literature, Piccione and Rubinstein (2003) share the “expectations management” aspect of the examples in Section 4. In their model, a seller commits to a deterministic temporal sequence of prices, taking into account that consumers (who play the role of the agent in this paper) can only perceive statistical patterns that allow the price at any period t to be a function of price realizations at periods $t-1,\ldots,t-k$, where k is a constant that characterizes the consumer. When the value of k is negatively correlated with consumers’ willingness to pay, the seller may want to generate a complex price sequence as a discrimination device. Relatedly, Ettinger and Jehiel (2010) study a bargaining model, in which a sophisticated seller employs deception tactics that lead a buyer who exhibits coarse reasoning to form a biased estimate of the traded object’s value.

Spiegler (2016b) interprets the Bayesian-network factorization formula as a representation of objective data limitations, such that the agent’s belief is a consequence of applying a certain extrapolation method to his limited data. In particular, Spiegler (2016b) shows that when R is perfect, p_R is the outcome of extrapolating a belief from incomplete datasets drawn from p, via an iterative variant on a method known as “conditional stochastic imputation”. From this point of view, perfect DAGs capture implicit data limitations rather than an explicit causal model.

The “monetary policy” example links the paper to a few works that examine monetary policy when the rational-expectations assumption is relaxed. Evans and Honkapohja (2001) and Woodford (2013) review dynamic macroeconomic models in which agents form non-rational expectations, and explore implications for monetary policy. Garcia-Schmidt and Woodford (2015) is a recent exercise in this tradition. The most closely related equilibrium concept that is employed in this literature is known as “restricted perceptions equilibrium”, which is based on a notion of coarse beliefs in the same spirit as Piccione and Rubinstein (2003) and Jehiel (2005). Sargent (1999), Cho et al. (2002) and Esponda and Pouzo (2016) study models in which it is the
central bank that forms non-rational expectations, whereas the private sector is modeled conventionally.

Finally, the general idea of modeling economic agents as econometricians or statisticians has many precedents. This is typically done in learning, non-equilibrium models (e.g. Bray (1982)). There are examples of equilibrium concepts that treat agents as (possibly flawed) statisticians - see Osborne and Rubinstein (1998), Esponda and Pouzo (2016), Cherry and Salant (2016) and Liang (2016).

7 Conclusion

This paper explored the possibility of systematically fooling agents with causal misperceptions. Although I provided several examples that demonstrated this possibility, perhaps a surprising feature of the analysis was the ubiquity of impossibility results. Subjective causal models represented by perfect DAGs rule out systematically biased estimates; and if the objective distribution is multivariate-normal, this impossibility extends to all DAGs. Finally, even when biased estimates were possible, we saw that their magnitude in concrete examples was constrained. Thus, the mere process of forming beliefs by fitting a causal model to long-run data restricts a third party’s ability to exploit the beliefs’ departure from rational expectations.

In the “monetary policy” example, negative findings along these lines mean that classical results regarding the non-exploitability of the Phillips relation continue to hold even when the private sector forms beliefs according to a misspecified model. This lesson is intriguing, considering the heated historical debate over this question (see Klamer (1984)). The key assumption behind classical non-exploitability results (Lucas (1972), Sargent and Wallace (1975)) was allegedly the rationality of private-sector expectations, and this was perceived by many as the crux of the matter. The impossibility results of this paper put this historical debate in a new perspective.
References

