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Part 1

Introduction





CHAPTER 1

Physics and Information

1.1. Maxwell’s demon (classical)

Assume two adjoining roomsA andB, each filled with a gas at equal temperatureT.
Now, imagine also a small demon1 who control’s a shutter between the rooms. The shutter
is assumed to be ideal, so that no work is produced by opening and closing it. The demon
opens and closes the shutter so as to allow fast particle to pass from roomB to roomA, and
allow slow particles to pass in the opposite direction, from roomA to roomB. As a result,
at the end of the process, we have faster gas particles in roomA and slower ones inB, and
therefore

TA > TB

without any work being done.
Now, from thermodynamics we know that for quasi-static processes the entropyS

obeys2

dS=
d̄Q
T

.

Since the system of the two rooms is a closed one, then the heatd̄QA going into roomA
must come from roomB so that

d̄QA =−d̄QB.

Thus, the change in entropy∆Sof the whole system (both rooms) is

∆S=
Z (

d̄QA

TA
+

d̄QB

TB

)
=

Z (
d̄QA

TA
− d̄QA

TB

)
< 0,

which is negative sinced̄QA > 0 (the fast energetic particles are going into roomA) and
TA ≥ TB. We have therefore managed to reduce the entropy of a closed system without do-
ing any work (the opening and closing of the shutter requires no work), thus contradicting
the second law of thermodynamics.

1.1.1. The Szilard model.One way out of the paradox is to say that in order to
decide when to open and close the shutter, one must know which particle is approaching
the shutter, and thus we have a connection between entropy and information (see also the
end of this section). As an example of this let us study theSzilard model(1929).

In the Szilard model one assumes a small cell with a single particle in it. If the particle
is in the left-hand side of the cell, we say that the cell is in state “0”, and if the particle is
in the right-hand side, we say the cell is in state “1”. We can thus code information in a
sequence of such cells, each cell in one of the binary states 0 or 1.

Now, in order to keep the particle on the left-hand side of the cell (or on the right-
hand), we must put a barrier in the middle. However, before we put the barrier the particle
may be anywhere in the cell. Thus, in order to force it to be on one side, we have to
push a piston from one side of the cell (until we reach the middle). Pushing such a piston
isothermallyrequires work to be done, and so we connect work and information.

1This paradox was suggested by Maxwell and is therefore called “Maxwell’s demon paradox”.
2Recall thatdSis an exact differential, whiled̄Q is an inexact one. Inexact differential means that the change

in the heatQ depends not only on the initial and final physical (macroscopical) states of the system (defined by
pressure, volume, temperature, . . . ), but also on the path taken from one state to the other.
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6 1. PHYSICS AND INFORMATION

To find the work done by the piston when moving (isothermally) to the middle of the
cell, we assume for the moment that the cell is filled with an ideal gas. The force acting
on the piston, by the gas, equals the piston’s areaA times the gas pressureP. The change
in volume of the cell, when the piston moves a distanceδx is |δV|= |Aδx|. Thus the work
δW done (on the system, by the piston) when the volume of the cell is changed byδV (due
to the piston’s movement) is3

δW = Fδx =−PδV.

We have assumed that the gas we use is an ideal gas, so it obeys

PV = NkBT,

whereN is the number of particles in the gas andkB is Boltzmann’s constant. Thus the
work done by the piston may be written as

W =−
Z

PdV =−
Z V2

V1

NkBT
V

dV = NkBT ln
V1

V2
.

Now, since the temperature was unchanged during the process, the velocity distribution of
the gas particles has not changed either (the internal energy of the system has not changed).
The question is therefore where has the work-energy gone to? It has gone to heating the
heat bath surrounding our system.

As we just saw, the internal energyU of our gas has not changed. We know from
thermodynamics that we may write the internal energyU as

U = F +TS,

or in differential form
δU = δF +TδS,

but also
δU = W+δQ = W+TδS,

whereF is the free energy of the system,W is the work done on the system, andδQ is the
heat which entered the system. Since in our case the temperatureT is constant, and we
have∆U = 0, then we must have4

∆F = W =−T∆S.

Thus, from the result we had for the work done, we may write

∆F = NkBT ln
V1

V2
.

⇒ ∆S=−NkB ln
V1

V2

If we now return to the case of our cell, having a single particle (N = 1) confined to half of
the cell (V2 = 1

2V1), we find that
∆F = kBT ln2,

and
∆S=−kB ln2.

This last result should not be surprising, since entropy may also be defined as

S=−kB lnΩ,

3Note the minus sign. When the piston is pushed (doing work on the system), the volume of the cell is
reduced, and soδV is negative.

4Since forδU = 0
0 = δF +TδS= W+TδS.



1.1. MAXWELL’S DEMON (CLASSICAL) 7

whereΩ is the total number of possible states of the system. In our case the system can
be in one of two states (“0” left-hand side, or “1” - right-hand side), which gives the above
result.

1.1.2. The Landauer principle. The Szilard model has shown us that there is con-
nection between information and energy/work. Landauer used this connection to give a
lower bound on the energy expenditure needed for performing a computation.

TheLandauer principlesays that in order toeraseinformation we must expend energy
which then goes into heating the environment. We shall show that this leads to a lower
bound on the energy expenditure for performing a computation.

We shall first examine why it requires energy to erase information. For this we start
with a Szilard cell. Assume that we are given a cell which has a particle either on the left
or on the right (we don’t know where). We shall say that the cell is erased, if the particle
is (for certain) on the left-hand side.5 A method of achieving this, is to take the barrier out
of the cell and then push our piston half way from the right, thus confining our particle to
the left half. As we have already seen, the work done in pushing the piston, when done
isothermally, goes to heating the environment by∆Q = kBT ln2. Thus, we see that the
process of erasing information causes the heating of the surroundings.

Now, if we look at logical gates in a computer, they are schematically described as
irreversible process in which two bits of information go in, while onlyone comes out.
Thus, in theirreversibleprocess of a logic gate we have necessarily erased one bit, which
requires an energy of at leastkBT ln2.6 We have therefore found a lower bound for the
energy expenditure for doing a calculation. Note, that in today’s computers the energy
expenditure (∼ 108kBT per bit) is much higher than Landauer’s lower bound.

1.1.3. Bennett’s reversible computer.It has been emphasized that the lower bound
given by Landauer is only good for irreversible gates. Bennett (1973) has shown that if one
uses reversible gates, one may construct a computer which requires no energy expenditure
at all. In Bennett’s computer a gate still accepts two bits as input, however (unlike before),
the output is also two bits: One bit, is the logical result we wanted (from the gate) while
the second bit (together with the first) allows us to find the initial input bits.7

Although, such a gate gives us superfluous information for the calculation, it does
allow us to reverse the process. Now, during the computation, using reversible gates, we
shall not erase any cells and therefore no energy will be wasted. However, in order to make
a different calculation (after the first) we must reuse our cells which means erasing them,
and thus seemingly returning to Landauer’s principle. But, as you recall we used reversible
gates, therefore we can write down the result at the end of the first computation and then
reverse the process of computation. This reverse computation will bring us back to the
initial conditions with no net energy expenditure. The cells in their initial condition can
then be used for our next calculation, and so we have built a computer which requires no
energy.8

Having found a connection between storage of information and entropy/energy, we
can now return to the Maxwell’s demon paradox. Bennett (1982) suggested a resolution
between the demon paradox and the second law of thermodynamics. The resolution is that

5We use this definition of erasure since we are assuming that the computer has a limited amount of memory.
It therefore has to recycle its bits, which means erasing them as we defined here. To manipulate a cell we must
first know in which state it is, and we know this for the erased cells.

6After passing through the gate, we no longer know the state of one of the cells. In order to reuse this cell
(our computer has a finite amount of memory cells), we must erase it and thus waste energy.

7Since we have two bits of input, and two bits of output, then we can code the input in the output (for logic
operators such as “and” and “or”).

8Note that the cells in the initial conditions are all in known states, either “0” or “1”, but known to us. With
this information we can construct any other initial conditions by flipping the necessary cells. The process of
flipping requires no work; we don’t push a piston we simply flip the whole cell.
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every time the demon opens and shuts the shutter he is actually performing a computation
(he is performing an “if” statement which can be broken into logical gates). a computation
means that he needs memory bits. Assuming that the number of bits is finite, the demon
will have to erase them and thus the demon will give rise to work and entropy (although
the shutter itself requires no work to operate it). This entropy will ensure that the second
law of thermodynamics is upheld.

1.2. Quantum information

In the previous section we studied information using classical objects. We now wish
to introduce information theory using quantum objects. The following table compares
the classical and quantum manifestations of the main points of importance in information
theory:

Classical Quantum

basic information unit bit: {0,1} qubit: α|0〉+β|1〉 (superposition principle)
dynamics deterministic (causal) deterministic (unitary evolution)

measurements do not influence systemeffect the system (uncertainty principle + collapse)

We shall see that the superposition principle and the different effects of measurements
will cause the quantum theory of information to display very different traits from those of
the classical theory.

1.2.1. the qubit. In the classical case, the basic unit of information we used was the
bit, which could accept either the value “0” or the value “1”. In the quantum case, the basic
unit we use is a two state system.9 We shall generally denote the two states as|0〉 and|1〉,10

however, due to the superposition principle, the general state of such a system is

|ψ〉= α|0〉+β|1〉 (〈ψ|ψ〉= 1⇒ |α|2 + |β|2 = 1).

Sinceα andβ are complex numbers, they are each described by two parameters (real and
imaginary parts) which gives us four parameters describing the state|ψ〉. However, we also
have the requirement|α|2 + |β|2 = 1 (due to the normalization〈ψ|ψ〉= 1), which reduces
us to just three continuous parameters. Of these parameters, one is the global phase of
the system which has no physical importance. Thus we are left with just two (physical)
continuous parameters for describing|ψ〉.

One method of writing|ψ〉 with two parameters is

|ψ〉= cos
θ
2

e−i φ
2 |0〉+sin

θ
2

e+i φ
2 |1〉.

Since we have two continuous parameters, one might think that we can use a single
qubit to store an infinite amount of information (unlike the classical bit which can store
only 0 or 1). This is indeed true, we can store in a qubit an infinite amount of information,
however Holevo (1961) has shown that we can extract from a qubit (with 100% certainty)
a maximum of only one bit of information. Thus, for all practical reasons we can store in
a qubit only a single bit of information.

9The simplest non-trivial Hilbert space is a two dimensional one.
10The two state system can be any kind of system with two orthonormal states. For example, it can be a spin

1
2 system with the two states|↑〉 and|↓〉, or a system with two energy states|E0〉 and|E1〉.
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1.2.2. no-cloning theorem.As we noted above, one cannot extract more then one bit
of information from a qubit. In spite of this let us now try. Assume two qubits: the first we
shall denote as| ↗〉θ

| ↗〉θ = cos
θ
2

e−i φ
2 |0〉+sin

θ
2

e+i θ
2 |1〉

and the second will simply be the spin up qubit

|↑〉= |0〉.

These two states together give

〈↑| ↗〉θ = e−i φ
2 cos

θ
2
,

so that the probability of measuring spin-up for a state| ↗〉θ is cos2 θ
2 . If we could now

make many such measurements, then according to the statistics of our measurement we
could deduceθ up to any accuracy. Thus, apparently we can encode in a qubit a continuous
parameter and then extract it (to any desired precision).

The problem with the previous scheme, is that in order to perform a multiple number
of measurements, we must first replicate, or clone, our initial state| ↗〉θ while we do not
know what it is. Only then (after cloning) can we do the measurements and determine
θ. The problem is that in quantum mechanics we cannot clone (unknown states). This is
called the no-cloning theorem.

PROOF. The proof of the no-cloning theorem rests on the fact that the evolution of a
quantum state must be described by a unitary operator.11 In order to clone our particleN
times we must start withN particles in a known state, which we shall denote as|0〉. Thus,
our initial state before cloning starts, is

|Ψi〉= |0〉|0〉 · · · |0〉|ψ〉.

At the end of the process we want to have a state

|Ψ f 〉= U |0〉|0〉 · · · |0〉|ψ〉= |ψ〉|ψ〉 · · · |ψ〉.

Now, assume that we have found such an operatorU , which we use on two states|ψ(1)〉
and|ψ(2)〉:

|Ψ(1)
f 〉= U |Ψ(1)

i 〉= U |0〉|0〉 · · · |0〉|ψ(1)〉= |ψ(1)〉|ψ(1)〉 · · · |ψ(1)〉,

|Ψ(2)
f 〉= U |Ψ(2)

i 〉= U |0〉|0〉 · · · |0〉|ψ(2)〉= |ψ(2)〉|ψ(2)〉 · · · |ψ(2)〉.

Since the operatorU it is unitary (U† = U−1) then necessarily

〈Ψ(1)
f |Ψ

(2)
f 〉= 〈Ψ(1)

i |U†U |Ψ(2)
i 〉= 〈Ψ(1)

i |Ψ(2)
i 〉.

However, by definition

〈Ψ(1)
i |Ψ(2)

i 〉=
(
〈ψ(1)|〈0| · · · 〈0|

)(
|0〉 · · · |0〉|ψ(2)〉

)
= (〈0|0〉)N〈ψ(1)|ψ(2)〉= 〈ψ(1)|ψ(2)〉,

while

〈Ψ(1)
f |Ψ

(2)
f 〉= (〈ψ(1)| · · · 〈ψ(1)|〈ψ(1)|)(|ψ(2)〉 · · · |ψ(2)〉|ψ(2)〉) = (〈ψ(1)|ψ(2)〉)N+1.

11Recall that the Hamiltonian in quantum mechanics must be Hermitian (H† = H). The (time) evolution

operator is thenU(t) = e−
i
~ Ht :

|ψ(t)〉= e−
i
~ Ht |ψ(t = 0)〉= U(t)|ψ(t = 0)〉,

which is necessarily unitarian (U† = U−1). Note, that this is all true, assuming that the Hamiltonian is time

independent . If the Hamiltonian is time dependent, then the evolution operator ise−
i
~

R
Hdt, which is also

Unitary.
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Thus, if there exists a unitary cloning operatorU , then we must have (since we need

〈Ψ(1)
f |Ψ

(2)
f 〉= 〈Ψ(1)

i |Ψ(2)
i 〉) that for any two states(

〈ψ(1)|ψ(2)〉
)N+1

= 〈ψ(1)|ψ(2)〉.

This is certainly not true forany two states, and therefore there cannot exist a cloning
operator. �

Please note, however, that if we choose an orthonormal basis, we can create a unitary
operator which clones the elements of the basis, but not their linear combinations.12

1.2.3. Bit vs. qubit. Although we can extract from a qubit only one bit of informa-
tion, the qubit is not equivalent to a classical bit. For example, assume that we are given
the integral Z 1

0
f (t)dt = nα,

where we knowf (t) andα, and we know thatn (an integer) is either even or odd. Now,
in order to find whethern is even or odd, classically we require an infinite number of bits,
sincet is continuous, and we need an infinite number of bits to describe a continuum (to
calculate the integral numerically). However, if we use qubits, it suffices to use just a single
qubit to find whethern is even or not.

To solve the problem quantum mechanically we take a spin “up” in thex direction
|↑〉x, and construct a Hamiltonian

H(t) = λ f (t)Sz = λ f (t)
1
2

~σz,

whereσz is one of the Pauli matrices

σz =
(

1 0
0 −1

)
,

and13

σz|↑〉x = |↓〉x.

12Such an operator for two particles could be

U = ∑
i
|i〉|i〉〈i|〈0|+ ∑

i, j
j 6=i,0

| j〉|i〉〈i|〈 j|+∑
i
|0〉|i〉〈i|〈i|,

which gives

U |0〉|i〉= |i〉|i〉

and

UU† = ∑
i
| j〉|i〉〈i|〈 j|= 1.

13Recall that in thezbasis

|↑〉x =
1√
2

(|↑〉z+ |↓〉z) ,

|↓〉x =
1√
2

(|↑〉z−|↓〉z) .
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The evolution of the spin|↑〉x is then given by14

U(t)|↑〉x = e−
iλ
2

R t
t′=0 Hdtσz|↑〉x = e−

iλ
2 nασz|↑〉x

= (cos
λnα

2
− iσzsin

λnα
2

)|↑〉x

= cos
λnα

2
|↑〉x− i sin

λnα
2
|↓〉x.

Now if we chooseλ so that
λα = π,

then we have
U(t)|↑〉x = cos

πn
2
|↑〉x− i sin

πn
2
|↓〉x,

and thus, ifn is odd, we get|↓〉x (up to a multiplicative factor), and ifn is even, we get|↑〉x
(again, up to a multiplicative factor). Therefore, by measuring the spin in thex direction at
the end, we can determine whethern is even or odd.

We have thus been able, with just one qubit, to find something that we couldn’t do
classically at all. Note however, that the information we got was just a single bit (“even”
or “odd”).

1.2.4. simulating a quantum computer with a classical one.As we saw above, we
can use qubits to get results which are much harder, or even impossible to reach using
just simple classical bits. However, when we consider a computer, it is simply some black
box which accepts some vectors as input, operates on them, and returns a new vector as
an output. All the operations which we do quantum mechanically we can also simulate
classically (manipulate vectors, take their projections, . . . ). The question that should be
asked is how much resources does this require?

AssumeN qubits. The state describing them is

|ψ〉= ∏
i

(αi |0〉i +βi |1〉i) =
2N

∑
j=1

c j |ϕ〉 j ,

where|ϕ〉 j areN-particle states, which give all 2N possible combinations ofN particles
being in either state|0〉 or state|1〉. For example for the case ofN = 3 we have

|ψ〉 =
3

∏
i=1

(αi |0〉i +βi |1〉i)

= c1|0〉|0〉|0〉+c2|0〉|0〉|1〉+c3|0〉|1〉|0〉+c4|0〉|1〉|1〉
+c5|1〉|0〉|0〉+c6|1〉|0〉|1〉+c7|1〉|1〉|0〉+c8|1〉|1〉|1〉.

The number of parameters describing such a state is 2·2N−2: We have 2N coefficientsci ,
each one of those is actually two number since these are complex numbers, however if we
require thatψ be normalized (one constraint) and don’t mind if it is multiplied by a global
phaseeiθ, then two parameters may be dropped giving us 2· 2N − 2. If we assume that
we need at least one bit for every such parameter,15 this means that for anN qubit system
we need at least 2· 2N − 2 bits for the classical simulation. Such a fast increase makes
simulations impossible very quickly.

1.2.5. examples.

14sinceσ2
z = 1, thenσ2m

z = 1 andσ2m+1
z = σz. Therefore the Taylor series foreiθσz can be written as

eiθσz = ∑
n

1
n!

(iθσz)n = σz ∑
n odd

1
n!

(iθ)n + ∑
n even

1
n!

(iθ)n = iσzsinθ+cosθ.

15Since theci are continuous parameters we need an infinite number of bits to describe each parameter.
However, if we settle for a finite precision for theci ’s, then a finite number of bits will suffice to describe each
one of them.
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1.2.5.1. Deutsch’s problem.Assume a black box which accepts a single bit as input
and gives a single bit as output. We shall denote the effect of the box asf (x) [if the input
bit is x then we getf (x) as output]. There are of course 4 different possible functions
f (x) which may describe the black box (each of the two possible inputs has two possible
outcomes). We would like to know whetherf (x) is a constant function, i.e.f (0) = f (1),
or whether it is a balanced function, i.e.f (0) 6= f (1).16

Classically, to determine the type of function, we must maketwo runs of the system.
First we enter a “0” input and see the result, and then we enter “1” as input and see what
the outcome is. Such a test would givef (x) exactly and will therefore also tell us iff (x)
is constant or balanced. However, as we shall see, using quantum mechanics and the
superposition principle we can find the type of function (constant or balanced) with just a
single run.

Now, in order to use quantum mechanics, the effect of our black box must be describ-
able by a unitary operator. Iff (x) is “balanced” there is no problem, however iff (x) is
constant, then we do have a problem: A unitary operator cannot transform two orthogonal
states into the same state (a unitary transformation, sends a basis to a new basis, and a
constantf (x) lowers the dimension of the basis). We therefore need a slightly different
box.

Instead off (x) we shall use a unitary operatorUD. This operator will both accept and
give as output two qubits of information according to the rule

|x〉1|y〉2
UD−→ |x〉1|y⊕ f (x)〉2,

where⊕ means adding and then taking the modulo 2 of the result:

|1⊕0〉= |1〉,

|1⊕1〉= |0⊕0〉= |0〉.
Before using this new operator let us first check that it is indeed unitary. Clearly by the
definition ofUD we have

UD|x〉1|0〉2 6= UD|x〉1|1〉2
and

UD|0〉1|y〉2 6= UD|1〉1|y′〉2 (anyy,y′),

where in the second relationy andy′ may be the same or different. Therefore (ifx= 0 or 1,
andy = 0 or 1) we must have (since〈0|1〉= 0)17

UD|x〉1|0〉2 ⊥UD|x〉1|1〉2,

and

UD|0〉1|y〉2 ⊥UD|1〉1|y′〉2,
or simply

UD|x〉1|y〉2 ⊥UD|x′〉1|y′〉2
(

x 6= x′ and/ory 6= y′

x,x′,y,y′ = 0,1

)
.

By this last result we see that applyingUD to the orthogonal basis

{|0〉1|0〉2, |0〉1|1〉2, |1〉1|0〉2, |1〉1|1〉2}

16Note that we don’t care whatf (x) is exactly. If f (0) = f (1) = 0 or f (0) = f (1) = 1 doesn’t matter to us.
In both cases the function is constant.

17If xi = 0 or 1 andyi = 0 or 1, then applyingUD on |xi〉1|yi〉2 will give |x′i〉1|y′i〉2 with x′i = 0 or 1 and
yi = 0 or 1. Thus if we know that two states (|ψ1〉 = UD|x1〉1|y1〉2 and |ψ2〉 = UD|x2〉1|y2〉2) are different, it
necessarily means that their inner product (〈ψ1|ψ2〉) must include〈0|1〉 (or 〈1|0〉), and since〈0|1〉= 0, then they
must be orthogonal.
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gives us a new set of four mutually orthogonal states.18 Since the four new states are
mutually orthogonal, they must constitute a basis. Thus, the transformationUD took us
from one orthonormal basis to another, which means thatUD must be unitary, as claimed.19

To find, using our new quantum black box, whetherf (x) is a constant function or a
balanced one, we can of course run it twice (once puttingx = 0 and oncex = 1) and see .
However, we can also use the superposition principle to determine this with just a single
run. To see this let us first try as input|x = 0〉1 and 1√

2
(|y = 0〉2−|y = 1〉2). By applying

UD we have

UD

[
1√
2
|0〉1(|0〉2−|1〉2)

]
=

1√
2
|0〉1 (|0⊕ f (0)〉− |1⊕ f (0)〉) =

(−1) f (0)
√

2
|0〉1 (|0〉− |1〉) ,

where the last equality is due to the fact that

|0⊕ f (0)〉− |1⊕ f (0)〉= |0〉− |1〉 for f (0) = 0,

and

|0⊕ f (0)〉− |1⊕ f (0)〉= |1〉− |0〉 for f (0) = 1.

By the same logic, if we input|x = 1〉1 and 1√
2
(|y = 0〉2−|y = 1〉2) we get

UD

[
1√
2
|1〉1(|0〉2−|1〉2)

]
=

(−1) f (1)
√

2
|1〉1 (|0〉2−|1〉2) .

Taking a super position12 (|0〉1 + |1〉1)(|0〉2−|1〉2) of the two inputs will therefore give us

UD

[
1
2

(|0〉1 + |1〉1)(|0〉2−|1〉2)
]

=
1
2

(
(−1) f (0)|0〉1 +(−1) f (1)|1〉1

)
(|0〉2−|1〉2)

=
(−1) f (0)

2

(
|0〉1 +(−1) f (1)− f (0)|1〉1

)
(|0〉2−|1〉2) .

If we now examine particle 1 after applyingUD, we see that we get (up to a global multi-
plicative factor) {

|0〉1 + |1〉1 if f (0) = f (1)
|0〉1−|1〉1 if f (0) 6= f (1)

.

These two new states are orthogonal to one another, and so may be distinguished by
a single measurement [simply measure particle 1 in the basis|+〉 = 1√

2
(|0〉+ |1〉) and

|−〉= 1√
2
(|0〉− |1〉)]. Thus, by applyingUD to a single state

1
2

(|0〉1 + |1〉1)((|0〉2−|1〉2)

and performing a singlequantummeasurement we can distinguish whetherf (x) is constant
or balanced, a feat we could not accomplish classically (we had to applyf (x) twice, to two
different inputs).

Note, that once again we manged to extract by our measurement just a single bit of
information (f is constant or not). The power of quantum mechanics entered in the fact
that we can use superposition which cannot be used classically.

1.2.5.2. Beam splitters and the Mach-Zender interferometer.

18The new states are all different, since two identical states would not be mutually orthogonal to each other
(unless they are identically zero, whichUD cannot produce).

19If |ei〉 is an orthonormal basis and|hi〉 is a second orthonormal basis then the transformation frome to h is

U = ∑
i
|hi〉〈ei |,

which is clearly unitary.
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1.2.5.3. dense coding.As we saw earlier one can store a lot of information in a qubit,
however only 1 bit may be extracted with certainty. We shall now see how, with the use of
entanglement, we can communicatetwobits of information by transferring asinglequbit.

Our system will include two qubits (A andB), which we will describe using a special
basis known asBell states

ψ− =
1√
2

(|0〉A|1〉B−|1〉A|0〉B)

ψ+ =
1√
2

(|0〉A|1〉B + |1〉A|0〉B)

φ− =
1√
2

(|0〉A|0〉B−|1〉A|1〉B)

φ+ =
1√
2

(|0〉A|0〉B + |1〉A|1〉B) ,

where the subscriptsA,B tell us to which qubit/particle the ket belongs (in many cases we
shall drop the subscripts and keep the order of the kets constant).

This special basis has the convenient traits that it is orthonormal and that all four
states are entangled (see section2.4). The basis is also the set of mutual eigenvectors of
the complete set of commuting operators2021

σxAσxB and σzAσzB

[σxAσxB,σzAσzB] = 0.

We now define (using the Pauli matrices) a new set of unitary operatorsU (A)
i j such that

U (A)
00 = 1A,

U (A)
01 = σxA,

U (A)
10 = σyA,

U (A)
11 = σzA.

From the traits of the Pauli matrices,22 it is easy to see that applying these operators on the
Bell state|ψ−〉 gives23

U (A)
00 |ψ

−〉= |ψ−〉,

U (A)
01 |ψ

−〉=−|φ−〉,

U (A)
01 |ψ

−〉= i|φ+〉,

20Note that the operators commute since there are two particles. For just one particle we have

σxσz =−σzσx =−iσy ⇒ [σx,σz] =−2iσy.

However, when we have two particles the minuses cancel and we get

σxAσzAσxBσzB = σzAσxAσzBσxB =−σyAσyB ⇒ [σxAσxB ,σzAσzB ] = 0

21Note thatσyAσyB also commutes withσxAσxB andσzAσzB . However, it suffices to look for eigenvectors
common toσxAσxB andσzAσzB in order to uniquely define the four Bell states (see section5.1). ThusσxAσxB and
σzAσzB (or any other pair of operators fromσxAσxB , σzAσzBandσyAσyB) constitute a complete set of commuting
operators.

22Recall that
σz|↑〉= |↑〉 ; σz|↓〉=−|↓〉,
σx|↑〉= |↓〉 ; σx|↓〉= |↑〉,

σy|↑〉= i|↓〉 ; σz|↓〉=−i|↑〉.

23Note that the operatorsU (A) operate only on the single particleA. Thus to be rigorous, the operator operating
on |ψ−〉 is actuallyU (A)1B. That is, it’s an operator which appliesU (A) on particleA and does nothing to particle
B.
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U (A)
11 |ψ

−〉= |ψ+〉.
Having constructed our tools, we can now turn to our original problem: communicat-

ing two bits of information using only a single qubit. To see how this may be done let Alice
and Bob be two distant persons, Alice holding particleA and Bob holding particleB. The
particles, as Alice and Bob both know, are given to be in the Bell state|ψ−〉. Now, assume
that Alice wishes to communicate to Bobtwo bits of information: i and j (i = 0,1 and

j = 0,1). To do this Alice operates locally on her particle with the operatorU (A)
i j we de-

fined. As a result (according to the effect ofU (A)
i j on |ψ−〉 given above) the two particlesA

andB together, are now in one of the orthonormal Bell states (up to a global phase). Next,
Alice sends her particle, which is a single qubit, to Bob. Having both particles, Bob can
now make a measurement (locally) on the state and determine in which of the orthogonal
states the two particles are.24 since Bob knows, that the particles were originally in state
|ψ−〉, he can therefore infer which operator Alice applied on her particle and thus findi, j.

We have thus seen that by merely passing a single qubit from Alice to Bob, Alice could
communicate (to Bob) two bits of information. The extra (second) bit communicated was
hidden in the entanglement of the two particles.

Note, that a benefit of this method is encryption. If a third person tries to intercept the
message, all he gets is a single qubit, which giveshim no information at all. Unlike Bob,
any other person who gets the transmitted particle has no extra information and therefore
cannot infer from it anything.

24since the possible states are orthogonal, Bob can make a measurement which distinguishes between all four.
For example he can measure the operator

O = 1· |ψ−〉〈ψ−|+2· |ψ+〉〈ψ+|+3· |φ−〉〈φ−|+4· |φ+〉〈φ+|.
If the result we measure is 1, we know the particles were in state|ψ−〉 if we measure 2 we know the particles
were in state|ψ+〉, and so on.





CHAPTER 2

Basics of quantum information

2.1. Basics of quantum mechanics

Every physical theory is defined by the following:

• The method of describing a system.
• The dynamics of a system.
• The method of measuring a system.

In quantum mechanics observable quantities are described by Hermitian operators (O† = O).
Such operators have the following traits:

• All eigenvalues are real:

λa ∈ R (O|a〉= λa|a〉).

• Eigenvectors ofdifferenteigenvalues are orthogonal:

λa 6= λa′ ⇒ 〈a|a′〉= 0.

• Every Hermitian operator may be written in aspectral decompositionform

O = ∑
a

λaΠa,

whereΠa is the projection onto the subspace of eigenvectors with eigenvaluesλa

Π2
a = Πa,

ΠaΠa′ = δaa′Πa,

∑
a

Πa = 1.

In general, projections are Hermitian operators (i.e. they are observables) such that ifΠ is
a projection then

Π2 = Π (Π† = Π).
From the spectral decomposition trait, every state may be written as

|ψ〉= ∑
a

Πa|ψ〉.

Using this decomposition we can define the effect of measurement in quantum me-
chanics as follows: A measurement of the quantityA for a state|ψ〉 results in a collapse of
the state into one of the eigenvalue subspaces ofA, i.e.

|ψ〉 measureA−−−−−→ Πa|ψ〉√
〈ψ|A|ψ〉

.

The probability of the collapse to the subspacea is given by

prob(Πa = 1) = prob(A = a) = 〈ψ|Πa|ψ〉.

CONCLUSION. If two states are not orthogonal (〈ψ1|ψ2〉 6= 0), then one cannot dis-
tinguish between them with certainty. In other words, there exists no projectionΠ such
that

prob(Π = 1) = 〈ψ1|Π|ψ1〉= 1

17
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and

prob(Π = 0) = 〈ψ2|Π|ψ2〉= 0.

PROOF. Let us assume that there exists such a projection (for〈ψ1|ψ2〉 6= 0). We define
by a Grahm-Schmidt process a new state|ϕ2〉 orthonormal to|ψ1〉:

|ϕ̃2〉= |ψ2〉−〈ψ1|ψ2〉|ψ1〉,

|ϕ2〉=
|ϕ̃1〉√
〈ϕ̃2|ϕ̃2〉

.

Since|ψ1〉 and|ψ2〉 are not orthogonal while|ψ1〉 and|ϕ2〉 are,1 then there existα,β 6= 0
such that

|ψ2〉= α|ψ1〉+β|ϕ2〉.

If we now substitute this new form of|ψ2〉 into the assumption〈ψ2|Π|ψ2〉= 0, we get

0 = (α∗〈ψ1|+β∗〈ϕ2|)Π(α|ψ1〉+β|ϕ2〉)
= |α|2〈ψ1|Π|ψ1〉+ |β|2〈ϕ2|Π|ϕ2〉+α∗β〈ψ1|Π|ϕ2〉+αβ∗〈ϕ2|Π|ψ1〉.

Now, since〈ψ1|Π|ψ1〉 = 1 and also〈ψ1|ψ1〉 = 1, then we must haveΠ|ψ1〉 = |ψ1〉 (and
〈ψ1|Π = 〈ψ1|).2 Thus if |ψ1〉 and|ϕ2〉 are orthogonal, then

〈ψ1|Π|ϕ2〉= 〈ϕ2|Π|ψ1〉= 0

(
⇐ 〈ψ1|ϕ2〉= 0,

Π|ψ1〉= |ψ1〉

)
,

and sinceΠ is hermitian, then

〈ψ1|Π|ψ1〉 ≥ 0 and 〈ϕ2|Π|ϕ2〉 ≥ 0.

Therefore, together with|α|2, |β|2 > 0 and〈ψ1|Π|ψ1〉 = 1, the expression we just found
for 〈ψ2|Π|ψ2〉= 0 becomes

0 = |α|2 + |β|2〈ψ2|Π|ψ2〉> 0,

which is a contradiction. Hence, there doesnot exist a projectionΠ such that

prob(Π = 1) = 〈ψ1|Π|ψ1〉= 1

and

prob(Π = 0) = 〈ψ2|Π|ψ2〉= 0,

if 〈ψ1|ψ2〉 6= 0 �

Before going on it should be mentioned that in quantum mechanics one can distinguish
between two types of systems. The first is that of a closed system: a system for which all
elements are known as well as their interactions with one another. The second type, is that
of an open system, where in addition to the elements we are interested in, there is also an
environment. This environment interacts with our system, however, in a way that we do
not know exactly.

1And we assume|ψ1〉 6= |ψ2〉.
2We may always write

Π|ψ1〉= α|ψ1〉+β|ψ⊥〉,

such that|α|2 + |β|2 = 1, and〈ψ1|ψ⊥〉= 0. Thus

〈ψ1|Π|ψ1〉= α〈ψ1|ψ1〉+β〈ψ1|ψ⊥〉= α〈ψ1|ψ1〉.

Since we also have〈ψ1|Π|ψ1〉, then we must haveα = 1 andβ = 0, which proves thatΠ|ψ1〉= |ψ1〉.
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2.2. Spin 1
2 and the Pauli matrices

Since spin1
2 particles are used very often in quantum information it is worth while to

make a short review of (some of) their traits. The observables for measuring spin1
2 in the

x, y, andz directions are the Pauli operatorsσx, σy, andσz respectively. These are also
denoted asσ1, σ2, andσ3 respectively. The operators obey the commutation relation of
angular momentum

[σi ,σ j ] = iεi jkσk,

whereεi jk is the antisymmetric tensor:

εi jk =


+1 for ε123 and all cyclic permutations ofi, j,k

−1 for ε321 and all cyclic permutations ofi, j,k

0 otherwise

.

In other words
[σx,σy] = iσz,

[σz,σx] = iσy,

[σy,σz] = iσx,

with all other cases obvious from these.
The Pauli operators also have the following traits:

σiσ j +σ jσi = 2δi j1,

σiσ j = δi j1+ iεi jkσk,

Tr[σi ] = 0,

σ2
x = σ2

y = σ2
z = 1,

σ†
i = σi (Hermitian),

and
σ†

i σi = 1 (unitarty).
Note, that the Pauli operators are both unitary and Hermitian.

The Pauli operators are usually represented by the standard Pauli matrices:

σx =
(

0 1
1 0

)
,

σy =
(

0 −i
i 0

)
,

and

σz =
(

1 0
0 −1

)
.

The eigenstates of the of the Pauli matrices are the “up” (eigenvalue+1) and “down”
(eigenvalue−1) states in the appropriate direction. The relations between these eigenstates
are as follows:

|↑x〉=
1√
2

(|↑z〉+ |↓z〉)

|↓x〉=
1√
2

(|↑z〉− |↓z〉)

|↑y〉=
1√
2

(|↑z〉+ i|↓z〉)

|↓y〉=
1√
2

(|↑z〉− i|↓z〉) .

The effect of the Pauli operators on the “up” and “down” states in thez direction is as
follows:

σx|↑z〉= |↓z〉,
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σx|↓z〉= |↑z〉,
σy|↑z〉= i|↓z〉,

σy|↓z〉=−i|↑z〉.
Thus we say thatσx flips in thez direction, whileσy not only flips in thez directions, but
also adds a phase (dependent on the original state).

2.3. Open systems, mixtures and the density matrix

So far we have only dealt with closed quantum systems, we shall now turn to treat
open systems. There are two general cases in which we encounter open systems:

(1) Lack of knowledge of the full system: We might not know some of the initial
conditions (the initial state of the system), or some of the parameters of the sys-
tem, or not know exactly the dynamics of the system.

(2) We are dealing with a system of two (or more) subsystems, which we fully know
how to describe, however, we are interested in making measurements only on
part of the full system.

In both these cases the treatment is different than that of closed systems. We shall see that
we have to use mixtures instead of regular states, where these mixtures will be described
by density matrices. Further more, probabilities will behave slightly different: Instead of
one state evolving in time, we shall have several, each with a different probability to occur.
This is different from a linear of combination of states (superposition), since here each
state is treated separately and there is no interference effect.3

To see the difference between open and closed systems let us study an example. As-
sume two states; state|ψA〉

|ψA〉= a0|0〉+a1|1〉 (|a0|2 + |a1|2 = 1),

with probability pa to occur; and state|ψB〉
|ψB〉= b0|0〉+b1|1〉 (|b0|2 + |b1|2 = 1),

with probability pb = 1− pa to occur. What is the probability to measure|0〉 in this case?
i.e. what is

prob(Π0 = 1) =? (Π0 ≡ |0〉〈0|).
If we make many measurements, inpa of them the measurement will be of state|ψA〉

and in pb = 1− pa they will be of state|ψb〉. Therefore, the probability to measure|0〉
will be pa times the probability to measure|0〉 in case|ψA〉 plus pb times the probability
to measure|0〉 in case|ψB〉:

prob(Π0 = 1) = pa〈ψA|Π0|ψA〉+ pb〈ψB|Π0|ψB〉
= pa|a0|2 + pb|b0|2 = pa|a0|2 +(1− pa)|b0|2.

If on the other hand, instead of having a probability for each state (|ψA〉 and|ψB〉), we
make a superposition

|ψAB〉= α|ψA〉+β|ψB〉= (αa0 +βb0)|0〉+(αa1 +βb1)|1〉 (|α|2 + |β|2 = 1),

then, in this case, we shall find

prob(Π0 = 1) = |αa0 +βb0|2.
If we now compare the two results, we see that they are markedly different. In the mixture
(assuminga0,b0 6= 0), no matter the value ofpa there will always be a finite probability
to measure|0〉. However, in the superposition case, we may chooseα and β such that
the probability to measure|0〉 will be zero. The difference, as mentioned above, is that in
the latter case we have interference: all the coefficients appear within one absolute value

3Recall, that in a linear combination of states, the coefficients appearing are not the probabilities of each
state, but their amplitude. You must take the absolute value squared to find the probability.
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(squared). However in the mixture case, there is no interference and we have a sum with
two absolute values (squared).

2.3.1. the density matrix. The mathematical tool we use to describe mixtures is the
density matrix. Assume a set{pi , |ψi〉} of possible states|ψi〉 (not necessarily orthogonal,
but 〈ψi |ψi〉= 1), each with probabilitypi to occur. We define the density matrix/operator
ρ as

ρ≡∑
i

pi |ψi〉〈ψi | (0≤ pi ≤ 1,∑
i

pi = 1).

If we write it in an orthonormal basis|n〉 (〈n|m〉= δnm), then

ρnm = 〈n|ρ|m〉

and
Trρ = ∑

n
〈n|ρ|n〉= ∑ρnn.

The density matrix has the following traits (|n〉 is an orthonormal basis):

(1) Its trace is 1:
Trρ = ∑

n
〈n|ρ|n〉= ∑ρnn = 1.

(2) The density matrix is Hermitian and the sum of its eigenvalues is 1

ρ = ρ† ⇒∑
k

λk = 1 (ρ|ϕk〉= λk|ϕk〉).

(3) The density matrix is apositive operator, i.e. for every state|ψ〉 in the Hilbert
space, we have

〈ψ|ρ|ψ〉 ≥ 0 (∀|ψ〉),
which is equivalent to having all its eigenvalues nonnegative

〈ψ|ρ|ψ〉 ≥ 0⇔ λk ≥ 0.

Note, that together with the previous trait (∑k λk = 1), we must have

0≤ λk ≤ 1.

PROOF. (1) To prove that Trρ = 1 we shall use the definition of the density
matrix. The trace of an operator is independent of the (orthonormal) basis we
work in. If |n〉 is some orthonormal basis, then

Trρ = ∑
n

ρnn≡∑
n
〈n|

(
∑
i

pi |ψi〉〈ψi |

)
|n〉

= ∑
n,i

pi〈n|ψi〉〈ψi |n〉= ∑
n,i

pi〈ψi |n〉〈n|ψi〉

= ∑
i

pi〈ψi |
(

∑
n
|n〉〈n|

)
|ψi〉= ∑

i
pi〈ψi |ψi〉

= ∑ pi = 1,

where we have used the trait of orthonormal bases

∑
n
|n〉〈n|= 1.

(2) Proving thatρ is Hermitian is very simple from its definition. Since thepi are
real (0≤ pi ≤ 1), then

ρ† =

(
∑
i

pi |ψi〉〈ψi |

)†

= ∑
i

pi |ψi〉〈ψi |= ρ.
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Sinceρ is Hermitian, then it may be diagonalized. The sum of its eigenvalues, is
its trace, and thus from the previous trait we must have

∑
k

λk = Trρ = 1.

(3) To show that the density matrixρ is a positive operator (〈ψ|ρ|ψ〉 ≥ 0, ∀ψ) we
shall calculate〈ψ|ρ|ψ〉 using the definition of the density matrix. For any state
|ψ〉:

〈ψ|ρ|ψ〉 = 〈ψ|

(
∑
i

pi |ψi〉〈ψi |

)
|ψ〉

= ∑
i

pi〈ψ|ψi〉〈ψi |ψ〉= ∑
i

pi |〈ψ|ψi〉|2.

Sincepi ≥ 0 and|〈ψ|ψi〉|2 ≥ 0, then we necessarily have

〈ψ|ρ|ψ〉 ≥ 0,

as required.
With this result we can now show that all eigenvalues ofρ are non-negative.
To show this, we choose|ψ〉 = |ϕk〉, where|ϕk〉 is an eigenvector ofρ with
eigenvalueλk (ρ|ϕk〉= λk|ϕk〉). Using the last result we find

0≤ 〈ϕk|ρ|ϕk〉= 〈ϕk|λk|ϕk〉= λk

⇒ λk ≥ 0,

which is just what we wished to prove.4

�

As we saw, the density matrix describes a mixture of states, however, it may also describe
a regular state. This latter case occurs when the mixture includes only a single state with
probability p = 1. We say that such a mixture is apure state(otherwise it is called amixed
state). In other words, a system is in a pure state if there exists a state|ψ〉 such that

ρ = |ψ〉〈ψ| (pure state).

The density matrix of a pure state has the special trait thatρ2 = ρ. Note, that this trait holds
only for pure states, i.e.

ρ2 = ρ⇔ pure state.

PROOF. Clearly, if we have a pure-state density matrixρ (ρ = |ψ〉〈ψ|, 〈ψ|ψ〉 = 1),
then

ρ2 = (|ψ〉〈ψ|)(|ψ〉〈ψ|) = |ψ〉〈ψ|ψ〉〈ψ|= |ψ〉〈ψ|= ρ,

which proves one direction (pure state⇒ ρ2 = ρ).
As for the opposite direction, it is simple to show (see the end of this proof) that a

density matrixρ obeysρ2 = ρ if and only if ρ has a single eigenvector|ϕ1〉with eigenvalue
λ = 1, while all other eigenvectors have an eigenvalueλ = 0. If this is indeed the case, then
by the spectral decomposition we may write

ρ = ∑λiΠλi
= 1·Π1 +0·Π0 = |ϕ1〉〈ϕ1|,

4We showed above that if〈ψ|ρ|ψ〉≥ 0 for any state|ψ〉, then necessarily all eigenvalues obeyλk≥ 0. To show
the opposite direction (assuming the operator can be diagonalized), simply write|ψ〉 in the basis of eigenvectors
|ϕk〉

|ψ〉= ∑
k

αk|ϕk〉.

Now 〈ψ|ρ|ψ〉 will give

〈ψ|ρ|ψ〉= ∑
k,k′

αkα∗k〈ϕk′ |ρ|ϕk〉= ∑
k,k′

λkαkα∗k〈ϕk′ |ϕk〉= ∑
k,k′

λk|αk|2δkk′ = ∑
k

|αk|2λk ≥ 0,

which is the desired result〈ψ|ρ|ψ〉 ≥ 0.
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or simply
ρ = |ϕ1〉〈ϕ1|.

We have thus proven the second direction, i.e. thatρ2 = ρ implies thatρ has the form of a
pure state.

To complete the proof, we still have to fill in one gap. We must show, as claimed
above, thatρ2 = ρ corresponds toρ having a single eigenvalue 1 with all others 0. To show
this, simply diagonalizeρ to give ρD. The diagonal elements ofρD are the eigenvalues
of ρ. Sinceρ is a density matrix, then these eigenvalues obey 0≤ λk ≤ 1 and∑λk = 1.
Clearly, in such a case the diagonal matrixρD obeysρ2

D = ρD if and only if a single element
on the diagonal is 1 and all others are 0 (i.e. ifρ has a single eigenvalue of 1 and all the
rest 0).5 Further more, since the diagonalization ofρ to ρD is just a base change, then

ρ2 = ρ⇔ ρ2
D = ρD.

Consequently,ρ2 = ρ if and only if ρ has a single eigenvalue 1, while all others are 0.�

The density matrix (pure or not) has one more important trait: For any projection
operatorΠ, the probability of it measuring true (i.e. of the mixture collapsing, due to the
measurement, to the subspace ofΠ) is

prob(Π = 1) = Tr(ρΠ) = Tr(Πρ).

This trait may be further generalized as follows: the average value〈O〉 of an observableO,
when measured, is

〈O〉= Tr(ρO) = Tr(Oρ).

PROOF. We shall start by proving the simple form of the trait. By definition (recall
ρ≡ ∑i pi |ψi〉〈ψi |)

prob(Π = 1) = ∑
i

pi〈ψi |Π|ψi〉.

If we now use an orthonormal basis|n〉, we know that∑n |n〉〈n|= 1, and we can therefore
write the last relation as

prob(Π = 1) = ∑
i

pi〈ψi |Π
(

∑
n
|n〉〈n|

)
|ψi〉

= ∑
i,n

pi〈ψi |Π|n〉〈n|ψi〉= ∑
i,n

pi〈n|ψi〉〈ψi |Π|n〉

= ∑
n
〈n|

(
∑
i

pi |ψi〉〈ψi |

)
Π|n〉= Tr

[(
∑
i

pi |ψi〉〈ψi |

)
Π

]
= Tr(ρΠ),

which proves the simpler trait.
We can now use the last result to prove the more general trait. By definition

〈O〉= ∑
i

pi〈ψi |O|ψi〉.

5If ρD has more than one non-zero elements on its diagonal, then these elements must be different from 1
(due to∑λi = 1, λi ≥ 0). As a resultρ2

Dwill not give ρD. For example

1
4

3
4

0
...

0



2

=



1
16

9
16

0
...

0

 6=



1
4

3
4

0
...

0

 .
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SinceO is an observable we can always write it in a spectral decomposition

O = ∑
k

λk|ϕk〉〈ϕk| ≡∑
k

λkΠk.

Inserting this into the previous relation and using the trait prob(Π = 1) = Tr(ρΠ) we get

〈O〉= ∑
k

λk∑
i

pi〈ψi |Πk|ψi〉= ∑
k

λk Tr(ρΠk).

Now, since Tr is a linear operator then

〈O〉= ∑
k

λk Tr(ρΠk) = Tr

(
ρ∑

k

λkΠk

)
= Tr(ρO).

To prove that Tr(ρΠ) = Tr(Πρ) and Tr(ρO) = Tr(Oρ), we can simply use the trait of the
trace that

Tr(AB) = Tr(BA).
On the other hand, in proving the simpler form, we could have started with

prob(Π = 1) = ∑
i

pi〈ψi |
(

∑
n
|n〉〈n|

)
Π|ψi〉

instead of

prob(Π = 1) = ∑
i

pi〈ψi |Π
(

∑
n
|n〉〈n|

)
|ψi〉,

which would have led us to
prob(Π = 1) = Tr(Oρ).

�

The traits we have found for the density matrix put constraints on its elementsρnm.
We might therefore ask how many independent (real) parameters describe anN×N density
matrix. If we had no constraints, then there would beN2 complex elements in the matrix,
which would therefore give 2N2 independentreal parameters. However, we have three
constraints

ρ† = ρ,

Trρ = 1,

and
λi ≥ 0 ∀i,

whereλi are the eigenvalues of the density matrix. The first constraint (ρ† = ρ) is actually
N2 equations since on the diagonalρ† = ρ gives

ρnn = ρ∗nn (N equations),

and off the diagonal (n 6= m) we have

ρnm = ρ∗mn (N2−N equations).

Note, that in the off-diagonal case, the number of equations takes into account that we
should have both doubled and halved the number of equations (relative to theN2−N
off-diagonal elements). The number of equations should have been doubled since each
equality gives two equations: one for the real part and a second for the imaginary part. On
the other hand, the number of equations should have been halved since it suffices to count
only the pairsn,m above the diagonal [1

2(N2−N) pairs], as those below will give us the
same equations again. We did not double the equations for the elements on the diagonal,
since these equations only tell us that the imaginary part is zero, but do not tell us anything
about the real part (it equals itself, which is trivial).

To the above constraints we must also add the one on the trace:

Trρ = 1 (1 equation).
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This constraint is just a single equation, since we already know that the trace has no imagi-
nary component (the diagonal elements are all real, due toρ† = ρ). Subtracting the number
of equations from the total number of parameters (in the case of no constraints) we finally
get6

#of independent parameters= N2−1.

Now that we know that density matrices haveN2−1 parameters, the question might
be, how do we parametrize these matrices, i.e. how do we write the matrices as a function
of N2−1 parameters. To do this we note that not only density matrices haveN2−1 pa-
rameters, but that theSU(N) group of matrices7 also hasN2−1 parameters . Since both
sets have the same number of parameters, we might try and relate the two somehow. In
general, it is impossible (at least in a simple way) to construct density matrices using a lin-
ear combination of unitary matrices fromSU(N). However, we may use their generators.8

We shall next see how this is done for the case ofN = 2.
For N = 2, one possible set of generators, ofSU(2), is the Pauli matricesσi .9 For

convenience, we define a vector of matrices

~σ≡ (σx,σy,σz)≡ (σ1,σ2,σ3),

and an inner product of matrices10

〈A,B〉 ≡ Tr(A†B).

Using this last definition we find that the Pauli matrices are orthogonal to one another

〈σi ,σ j〉= 2δi j .

If we also add the unit matrix to the Pauli matrices, we now haveN2 = 4 matrices, and
these four (using complex coefficients) span the space of 2×2 matrices. To see this, note
that if we define

σ0 ≡ 1,

6Note, that we have not used the constraint that all eigenvalues must be non-negative. This constraint does
not change the number of parameters, it just reduces the range of the parameters. It reduces the region of allowed
parameters in theN2−1 dimensional space.

7TheSU(N) group (SpecialUnitary group) is the group of allN×N unitary matrices with determinant+1:

U ∈ SU(N)⇔U†U = 1,det(U) = +1.

(In general, unitary matrices have a determinant ofeiθ, with θ ∈ R).
It is easy to see thatSU(N) hasN2−1 independent (real) parameters, sinceU†U = 1 givesN2 equations, and

det(U) = +1 is another equation. Thus we haveN2 +1 equations for the 2N2 real parameters ofU (i.e. N2−1
real independent parameters). The 2N2 original real parameters are due to the fact that anN×N matrix hasN2

elements, but each has two components: a real part and imaginary part. Note, that this logic does not work for
the number of equations inU†U = 1 and det(U) = +1. This is becauseU†U mixes real and imaginary parts, and
thus we cannot split theN2 complex equation into 2N2 equations (real and imaginary).

8The generators of a group, in this case, are a set of matricesgi such that any element in the group may be
written as

∏eiθ j g j (or ei ∑θ′j g j ),

where theθ j ’s are real. For theSU(N) group there areN2−1 generatorsgi .
9Reminder: The Pauli matrices are

σ1 =
(

0 1
1 0

)
; σ2 =

(
0 −i
i 0

)
; σ3 =

(
1 0
0 −1

)
.

10It can easily be checked that Tr(A†B) obeys all the requirements of an inner product (α a scalar):

〈A+B,C〉= 〈A,C〉+ 〈B,C〉,

〈αA,B〉= α∗〈A,B〉,
〈B,A〉= 〈A,B〉∗,

〈A,A〉 ≥ 0 where〈A,A〉= 0⇔ A = 0.
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then the above inner product〈σi ,σ j〉= 2δi j still holds, even wheni, j run from 0 to 3. Since
the four matrices are orthogonal to each other, then they necessarily constitute a basis of
all the 2×2 matrices (a four dimensional space).

Since the Pauli matrices, together with the unit matrix, constitute a basis, then any
density matrix may be written in the form

ρ = a01+a1σx +a2σ2 +a3σ3 ≡ a01+~a·~σ.

To find the coefficientsai we apply the constraints we had on the density matrix. First
we apply the constraint on the trace: Trρ = 1. Since Trσi = 0 for all three Pauli matrices
(i = 1,2,3), then the condition Trρ = 1 becomes (recall that here1 is a 2×2 matrix)

1 = Trρ = a0Tr1+0 = 2a0

⇒ a0 =
1
2
.

Now, the second requirement we had is thatρ be Hermitian (ρ† = ρ). Since the Pauli
matrices themselves (and1) are Hermitian, the requirement becomes

ρ† = (
1
2
1+a∗1σx +a∗2σy +a∗3σz) = (

1
2
1+a1σx +a2σy +a3σz) = ρ,

which means that11

ai = a∗i ⇒ ai ∈ R.

For convenience we define
~p≡ 2~a,

which allows us to write the density matrix as

ρ =
1
2
(1+~p·~σ) (~p∈ R3),

or in matrix form

ρ =
1
2

[(
1 0
0 1

)
+ p1

(
0 1
1 0

)
+ p2

(
0 −i
i 0

)
+ p3

(
1 0
0 −1

)]
=

1
2

(
1+ p3 p1− ip2

p1 + ip2 1− p3

)
.

The final requirement of the density matrix, is that it be a positive operator. Since
we are dealing with a 2× 2 matrix with a positive trace, then a necessary and sufficient
condition is that the determinant be non-negative12

det(ρ)≥ 0.

From the matrix form we found forρ, this means that

det(ρ) =
∣∣∣∣ 1+ p3 p1− ip2

p1 + ip2 1− p3

∣∣∣∣= 1− (p2
1 + p2

2 + p2
3) = 1−~p2 ≥ 0.

Therefore, we finally have the general form of the density matrix

ρ =
1
2
(1+~p·~σ) (~p∈ R3, |~p| ≤ 1).

11Since the Pauli matrices together with the unit matrix constitute a basis, then there is only a single choice of
coefficientsai which gives a certain matrix (if there were more, the matrices would not be linearly independent,
and therefore not a basis). The above condition gives two sets of coefficients{ai} and{a∗i }. For these sets to be
the same we must haveai = a∗i .

12Recall, that the trace of a matrix equals the sum of its eigenvalues, and its determinant is the product of the
eigenvalues. Since we are dealing with a 2×2 matrix, it has two eigenvalues. The trace is 1, which is positive,
and therefore the product of the eigenvalues, i.e. the determinant, must be non-negative for both eigenvalues to
be non-negative.
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The vector~p is called thepolarization vector. The name is used since~p gives the average
direction (polarization) of the spin:

〈σx〉= Tr(ρσx) = px,

〈σy〉= Tr(ρσy) = py,

〈σz〉= Tr(ρσz) = pz.

Note, that as promised, we have three parameters (N2− 1 = 3, for N = 2) which
describe the density matrix. These parameters are the three real components of the vector
~p.

To conclude, we see that we can represent all possible density matrices (of a two
dimensional Hilbert space) by the possible vectors~p. The possible vectors~p (~p≤ 1) form
a ball of radius 1. This ball is known as theBloch sphere.13 We shall see that the case
|~p|= 1 (points on the surface of the Bloch sphere) coincides with pure states.

CLAIM . A 2×2 density matrix describes apurestate if and only if the polarization
vector~p is a unit vector (~p = n̂), i.e.

ρ = |ψ〉〈ψ| ⇔ ρ =
1
2
(1+ n̂·~σ).

PROOF. Let us start with the reverse direction, i.e. that~p = n̂ gives a pure state. We
know that if we haveρ2 = ρ thenρ describes a pure state, thus it will suffice to show that
~p = n̂ implies ρ2 = ρ. Let us therefore start by calculatingρ2 for ~p = n̂. By definition
(when~p = n̂)

ρ2 =
[

1
2
(1+ n̂·~σ)

]2

=
1
4
[1+2n̂·~σ+(n̂·~σ)2],

and

(n̂·~σ)2 = (n1σ1 +n2σ2 +n3σ3)2

= ∑
i

n2
i σ2

i +
1
2 ∑

i, j
i 6= j

(nin jσiσ j +n jniσ jσi)

= ∑
i

n2
i σ2

i +
1
2 ∑

i, j
i 6= j

nin j(σiσ j +σ jσi).

We know that for the Pauli matrices
σ2

i = 1

and
σiσ j =−σ jσi (i 6= j).

Therefore, by the above relation for(n̂·~σ)2, we must have

(n̂·~σ)2 =

(
∑
i

n2
i

)
1= 1.

Thusρ2 becomes

ρ2 =
1
4
[2·1+2n̂·~σ] =

1
2
[1+ n̂·~σ] = ρ.

This result (ρ2 = ρ when~p = n̂) proves thatρ = 1
2(1+ n̂ ·~σ) describes a pure state (and

can thus be written asρ = |ψ〉〈ψ| for some|ψ〉).14

13Yes, the Blochsphere, is actually aball. However, in some places the term Bloch sphere is indeed reserved
only for the boundary of the ball.

14If we definen̂ by the spherical anglesθ andϕ

n̂ = sinθcosϕx̂+sinθsinϕŷ+cosθẑ,
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To complete the proof, we must also prove the opposite direction: ifρ = |ψ〉〈ψ|, then
there exists a unit vector ˆn such that

ρ =
1
2
(1+ n̂·~σ).

However, we have actually proved that already. Ifρ = |ψ〉〈ψ| then we have a pure state
andρ2 = ρ. If we replace ˆn in the above proof with~p, we get

ρ2 =
1
4
[(1+ |~p|2)1+2~p·~σ].

This will give backρ2 = ρ = 1
2[1+~p·~σ] only if |~p|= 1, thus completing the proof. �

So far we have concentrated on qubits and the two dimensional Hilbert space. For an
N dimensional space we can use, instead of the Pauli matrices,N2−1 (linearly indepen-
dent) Hermitian matriceshi with zero trace (i = 1,2, . . . ,N2−1). These matrices are the
generators of theSU(N) group (recall that inN dimensions the density matrix hasN2−1
independent parameters). Using these generators the density matrix can be written as15

ρN =
1
N
1+

1
2

ηihi ,

where
ηi = 〈hi〉= Tr(ρNhi).

The allowed combinations of theηi ’s define a region in anN2−1 dimensional space. If
we denote byλi the N2− 1 eigenvalues ofρN, then the regionV of allowedηi ’s, is the
region for which all the eigenvalues are positive (and add up to 1, which is immediate
since Trρ = 1), i.e.

V = {ηi , i = 1,2, . . . ,N2−1|∑λi = 1, λi ≥ 0}.
The points on the boundary of this region are those point where at least one eigenvalue is
zero (beyond this, some have to be negative which is not allowed for density matrices).

So far, all we have just said is true for anyN, including N = 2. However, there is
a big difference betweenN = 2 andN > 2. ForN = 2, the density matrix has only two

then the state|ψ〉, for whichρ = |ψ〉〈ψ|, is (up to a global phase)

|ψ〉= cos
θ
2

e−i 1
2 ϕ|0〉+sin

θ
2

e−i 1
2 ϕ|1〉.

This is easily seen, since the state|ψ〉 obeys

n̂·~σ|ψ〉 ≡ σn̂|ψ〉= |ψ〉,

and is therefore an eigenstate ofρ with eigenvalue 1. Sinceρ is a density matrix and|ψ〉 is an eigenvector with
eigenvalue 1, then necessarilyρ = |ψ〉〈ψ|.

15A simple choice for thehi ’s is the three types of matrices:

h(k)
i j =


hk,k = 1

hk+1,k+1 = 1

hi, j = 0 otherwise

(k = 1,2. . . .N−1),

h(k,l)
i j =


hk,l = 1

hl ,k = 1

hi, j = 0 otherwise

(k 6= l),

h(k,l)
i j =


hk,l = i

hl ,k =−i

hi, j = 0 otherwise

(k 6= l).

Examples of each type, forN = 3, are

h =

 1 0 0
0 −1 0
0 0 0

 ; h =

 0 1 0
1 0 0
0 0 0

 ; h =

 0 i 0
−i 0 0
0 0 0

 .
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eigenvalues. Since the sum of the two eigenvalues must be 1, then on the boundary, where
one of them is zero, the second must be 1, and we therefore have a pure state. However,
when we haveN > 2, we have more than two eigenvalues, and hence if one eigenvalue
becomes zero, it doesnot necessarily mean that one of the other eigenvalues becomes 1
while all the rest are zero. Rather, it just means that the sum of all the rest must be 1. Thus,
the systems described by the boundary (forN > 2), are not pure states necessarily, although
all the pure states must be on the boundary (since only there some of the eigenvalues are
zero).

Note, that although the density matrix defines unambiguously the results of measure-
ments, several different physical systems may give rise to the same density matrix. This is
shown in the next subsection.

2.3.2. preparation of mixtures. As was mentioned before, there are two basic cases
in which we must use density matrices, when we lack information on the system, and
when studying only part of the system. We shall now elaborate on the first of these two
cases (lack of knowledge), while the second case (studying only part of the system) will be
discussed in the next subsection (2.3.3). The lack of knowledge is represented here by the
use of probabilities. Since we do not know which state the system is in, we give a proper
probability for each possible state to occur.

Assume two sources,A andB, of particles. SourceA produces particles in random
states16 {pA,ψA}NA

A=1, described by the density matrixρA (either pure or not), and sourceB
produces particles in random states{qB,ϕB}NB

B=1, described by the density matrixρB (again,
either pure or not). Now, we want to create a new set of states. We do this by picking states
either out of sourceA with probabilityλ, or else, out of sourceB (with probability 1−λ).

As a result of picking states in the above manner, we can now describe the new col-
lection of states as17

{λ · pA,ψA}∪∗ {(1−λ) ·qB,ϕB},
which, by the definition of the density matrix, gives us18

ρAB = ∑
A

λ · pA|ψA〉〈ψA|+∑
B

(1−λ) ·qB|ϕB〉〈ϕB|

= λ∑
A

pA|ψA〉〈ψA|+(1−λ)∑
B

qB|ϕB〉〈ϕB|,

which is simply19

ρAB = λ ·ρA +(1−λ) ·ρB.

Let us now check that the new matrixρAB is indeed a density matrix. First, its trace is
indeed 1

TrρAB = λTrρA +(1−λ)TrρB = λ ·1+(1−λ) ·1 = 1.

16Recall, that here{pA,ψA}, stands for a set of states{ψA} (A an index), where each stateψA has a probability
pA of occurring.

17The symbol∪∗ stands for adisjoint union. A disjoint union, is a union which keeps track of the set an
element came from, and distinguishes between elements also on this basis. Thus, in our case here, even if we
have someA andB, such thatλ · pA = (1−λ) ·qB andψA = ϕB, our new joined set will include both (once from
A and once fromB). In a regular union, the two identical occurrences would be reduced to a single occurrence.

18In the new collection of states there is a chanceλ · pA for states|ψA〉 to occur and a probability
(1− λ) ·qB for states|ϕB〉 to occur. Since∑A λ · pA + ∑B(1− λ) ·qB = 1 (because∑A pA = 1, ∑B pB = 1 and
λ+(1−λ) = 1), then we can treat the new joined collection of states as a single set of the form{pk,ψk}, where
pk ∈ {λ · pA}∪∗ {(1−λ) · pB} andψk ∈ {ψA}∪∗ {ϕB}.

19A sum of the form

u = λv1 +(1−λ)v2 (0≤ λ≤ 1),

is called aconvex sum(of v1 andv2). We say that a space is aconvex space, if all possible convex sums of all
possible pairs (of elements in the space), belong to this same space.
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It is clearly Hermitian (λ is real)

ρ†
AB = λρ†

A +(1−λ)ρ†
B = λρA +(1−λ)ρB = ρAB.

Finally, it is clearly positive, since it is a sum of positive matrices [andλ,(1−λ)≥ 0]

〈ψ|ρAB|ψ〉= λ〈ψ|ρA|ψ〉+(1−λ)〈ψ|ρB|ψ〉 ≥ 0.

We therefore see thatρAB is indeed a density matrix. Thus, we have been able to create a
new mixture out of two others. Specifically, we could also use two sources of pure states
(each), and create form them a new non-pure mixture, by the method above.

It is important to note, that twophysically differentsources may give the same density
matrix. For example, assume that a sourceA emits particles in state|0〉 with probability
of 50% (p0 = 0.5) and particles in state|1〉 also with a probability of 50%. We would
therefore describe such a system by the density matrix

ρA =
1
2
|0〉〈0|+ 1

2
|1〉〈1|= 1

2
1.

Now, assume that we also have a sourceBwhich emits particles in state|+〉≡ 1√
2
(|0〉+ |1〉)

with probability of 50% (p+ = 0.5) and particles in state|−〉 ≡ 1√
2
(|0〉− |1〉) also with a

probability of 50%. We would therefore describe such a system by the density matrix

ρB =
1
2
|+〉〈+|+ 1

2
|−〉〈−|

=
1
2

[
1√
2
(|0〉+ |1〉) 1√

2
(〈0|+ 〈1|)+

1√
2
(|0〉− |1〉) 1√

2
(〈0|− 〈1|)

]
=

1
2

[|0〉〈0|+ |1〉〈1|]

=
1
2
1.

We see that although both sources (A and B) are physically different, we get the same
density matrix in both.20 Finding the same density matrix in both cases means that we
cannot distinguish between the two sources (by performing measurements).

The above result is just a particular case of the following general rule: For everynon-
pure density matrix (of any dimension) there is an infinite number of physical systems
which give that same density matrix.

PROOF. We shall first prove this for the Bloch sphere (2× 2 density matrices). As
we have already seen 2×2 density matrices may be represented by a polarization vector~p
according to

ρ(~p) =
1
2

(1+~p·~σ) (|~p| ≤ 1).

Now, if ~p can be written as

~p = λn̂1 +(1−λ)n̂2 (0≤ λ≤ 1),

thenρ(~p) also obeys

ρ(~p) = λρ(n̂1)+(1−λ)ρ(n̂2) (0≤ λ≤ 1),

whereρ(n̂i), just likeρ(~p), is defined asρ(n̂i) = 1
2 (1+ n̂i ·~σ). Note, that since ˆni are unit

vectors (on the surface of the Bloch sphere), thenρ(n̂i) represent pure states. Therefore, if
indeed~p = λn̂1 +(1−λ)n̂2, thenρ(~p) describes a physical system having the pure states
ρ(n̂1) andρ(n̂2) occurring with probabilitiesλ and 1−λ respectively.

Now, the question is how many possible sets{n̂1, n̂2,λ} exist such that~p= λn̂1+(1−λ)n̂2.
It is easy to show that for|~p|< 1 (non-pure states) there is an infinite number of such sets.

20In fact every choice of two orthonormal states with equal probability to occur will give us the same density
matrix ρ = 1

21.
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Showing this will prove that there is indeed an infinite number of different physical systems
which give the same non-pure density matrix.

The case|~p| < 1 has an infinite number of sets{n̂1, n̂2,λ}, since every ˆn1 belongs to
such a set. To show this, simply pick an arbitrary unit vector ˆn1. If we now draw a straight
line passing through ˆn1 and~p, the second point at which this line intersects the surface of
the Bloch sphere is at ˆn2: The point is on the surface of the Bloch sphere, so it must be a
unit vector, and since~p lies on the line between ˆn1 andn̂2, then there necessarily is some
λ such that~p = λn̂1 +(1−λ)n̂2. Since, for a given~p, we chose an arbitrary ˆn1 and found
a matching ˆn2, then there must be an infinite number of pairs (one for each possible ˆn1).

Note, that for|~p| = 1, the above logic does not apply, since using the above method
will give us n̂2 = ~p.

One might claim that the above proof is missing the possibility of more than two unit
vectorsn̂i and the possibility of generating~p using vectors~pi with |~pi |< 1. This is indeed
so, however, all we wanted to prove was that there is an infinite number of physical systems
which give the same non-pure density matrix. We succeeded in this, even though there are
more possibilities than the ones covered in the proof.

Although the proof given so far has been for a two dimensional Hilbert space, it also
applies for any higher dimension Hilbert space. This is easily seen, since one may always
examine just a two-dimension subspace of the larger Hilbert space and use for it, the result
proved here. �

The fact that we have an infinite number of ways to create the same mixture in quantum
mechanics, is markedly different from the situation in the classical physics where there is
only one possible way.

2.3.3. combined systems, partial trace, and the reduced matrix.We have so far
seen that density matrices arise from (random) ensembles of initial states. We shall now
see that they can also arise when we study only part of a system which, as a whole, is in a
pure state. Before we do this, however, we must know how to describe a state of two (or
more) particles.

2.3.3.1. Tensor product (combining a number systems into one).Assume two Hilbert
spacesHA andHB (not necessarily of the same dimension), each with its ownbasisof
states:

|ψA
i 〉 ∈HA (i = 1,2, . . . ,NA),

|ϕB
j 〉 ∈HB ( j = 1,2, . . . ,NB).

We define thetensor product(also known asdirect productor outer product) of the two
spaces as

HA⊗B = HA⊗HB = span{|ψA
i 〉⊗ |ϕB

j 〉}.

If the original spacesHA andHB hadNA andNB dimensions respectively, then the new
spaceHA⊗B hasNA ·NB dimensions: Any state in the new space is described by the quantum
number ofHA (NA different possibilities)and the quantum number ofHB (NB different
possibilities for each choice of quantum number fromHA).

To complete the definition of the tensor product, we must give two more of its features:

• The tensor product is linear in the complex coefficients appearing in each space,
i.e.

[α|ψA
i 〉]⊗ [β|ϕB

j 〉] = αβ[|ψA
i 〉⊗ |ϕB

j 〉].
• The tensor product is distributive

[α1|ψA
1〉+α2|ψA

2〉]⊗ [β1|ϕB
1〉+β2|ϕB

2〉] = α1β1|ψA
1〉⊗ |ϕB

1〉+α1β2|ψA
1〉⊗ |ϕB

2〉
+α2β1|ψA

2〉⊗ |ϕB
1〉+α2β2|ψA

2〉⊗ |ϕB
2〉.
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Note, that we shall usually drop the⊗ symbol between states and simply write

|ψA
i 〉|ϕB

j 〉,

or more often
|ψi〉A|ϕ j〉B,

instead of|ψA
i 〉⊗|ϕB

j 〉. In some cases, we shall even drop the indicesA,B and use the order
of the kets to describe which state belongs to what space.

The tensor product can also be written in matrix form. If for example

|ψ〉A = α|0〉A +β|1〉A ≡
(

α
β

)
,

|ϕ〉B = a|0〉B +b|1〉B ≡
(

a
b

)
,

then

|ψ〉A⊗|ϕ〉B =
(

α
β

)
⊗
(

a
b

)
=

 α
(

a
b

)
β
(

a
b

)
=


αa
αb
βa
βb

 .

And for operators/matrices, we would have (as an example)

A⊗B=
(

α β
γ δ

)
⊗
(

a b
c d

)
=

 α
(

a b
c d

)
β
(

a b
c d

)
γ
(

a b
c d

)
δ
(

a b
c d

)
=


αa αb βa βb
αc αd βc βd
γa γb δa δb
γc γd δc δd

 .

2.3.3.2. The partial trace and the reduced matrix.Imagine that we have some state
|ψAB〉 ∈HA⊗HB and an operatorOAB of the form

OAB = A⊗1B,

whereA operates on the degrees of freedom ofHA, and1B (the identity inHB) operates
on the degrees of freedom ofHB. Let the density matrix describing the pure system (in
theHA⊗HB space) beρAB = |ψAB〉〈ψAB|. The result of measuringOAB (according to the
usual rules of quantum mechanics and density matrices) is given by

〈A〉AB ≡ 〈OAB〉= 〈ψAB|OAB|ψAB〉
= Tr(OABρAB)
= TrATrB [OABρAB]
= TrA [ATrB(1B ρAB)]
= TrA [ATrB(ρAB)] ,

where TrA and TrB mean performing the trace only inHA and only inHB respectively
(explained further below). Note, that after taking the trace overB, the operator TrB(ρAB)
now operates solely onHA, and we can therefore drop the tensor product⊗. If we now
define

ρA ≡ TrB(ρAB),

then we may rewrite the previous equation as

〈A〉AB = TrA [AρA] .

This last result is of the standard form〈O〉 = Tr [Oρ], however limited to theHA Hilbert
space (instead ofHA⊗HB.

We call the process of tracing over a subspace of our system (TrB in this case) apartial
trace. The resulting density matrixρA ≡ TrB ρAB is called thereduced density matrix.
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To clarify what a partial trace and what a reduced density matrix are, let us repeat the
above calculation more explicitly. We shall work with the two orthonormal bases,|n〉A of
HA and|m〉B of HB, thus〈A〉AB is

〈A〉AB = TrAB[(A⊗1B)ρAB] =
NA

∑
n=1

NB

∑
m=1

A〈n|B〈m| [(A⊗1B)ρAB] |m〉B|n〉A

=
NA

∑
n=1

A〈n|A

(
NB

∑
m=1

B〈m|ρAB|m〉B

)
|n〉A

≡
NA

∑
n=1

A〈n|A(TrB ρAB) |n〉A

≡ TrA [A(TrB ρAB)]≡ TrA [AρB] .

Another way, equivalent to the last, of viewing this, is to denoteρAB as having four indices
instead of just two:

ρAB
i,m, j,n ≡ A〈i|B〈 j|ρAB|m〉A|n〉B.

In this caseρA = TrB ρAb simply becomes (note the double indexm)

(ρA)i, j = (TrB ρAb)i, j = ∑
m

ρAB
i,m, j,m.

We have so far defined a partial trace and a reduced matrix, but what do they give
us? What we have seen is that they give us a method to find the expectation values for
a subsystem (here subsystemA of AB). Note, that when we start with a pure state in
the Hilbert spaceHA⊗HB, we will generally end up with anon-puredensity matrixρA.
Thus, by studying only part of a system, an actually pure state will generally give rise to
a seemingly non-pure state (it is non-pure for all practical purposes for a person living in
the Hilbert spaceHA). It is the lack of knowledge about the rest of the system (B), which
gives rise to a mixed state with respect to our subsystemA. Note, that although we found
a density matrixρA to describeA, the physical situation is not that of a random source in
systemA—unlike the case we had in the previous subsection.21

Of course, the whole discussion made here could have started with a mixed state in
HA⊗HB, with hardly any change. However, the point here was to see how starting with a
purestate and performing a partial trace gives a non-pure density matrix.

2.3.4. Effects of measurements on the reduced matrix (selective and non-selective
measurements).Let us now see how the reduced density matrixρA is effected when one
performs a measurement in the subsystemHB. For convenience we shall introduce Alice
and Bob again: Alice has access to subsystemA and Bob has access to subsystemB. There
are two cases which will be considered here. The first is when Bob makes aselective
measurementin subsystemB, i.e. Bob makes a measurement, but Alice may measure her
subsystem only if Bob got a desired result (we calculateρA just for a certain result of Bob’s
measurement). The second case is when Bob makes anonselectivemeasurement: he makes
a measurement (onHB), and regardless of the result, Alice may perform measurements on
her subsystemA. As we shall see, in the first case (selective measurement) the resulting
density matrixρA may differ (from the case of no measurements done by Bob) only if we
start with an entangled state (defined later), while in the second caseρA will not differ,
regardless of the system we start with.

To see that reduced density matrices may be influenced by measurements, let us start
with a simple example. Assume a system described by the state

|ΨAB〉=
1√
2

(|0〉A|0〉B + |1〉A|1〉B) ,

21However, as we shall see later, if a non-selective measurement is performed onHB, then the situation is
physically the same as a random source in systemA (see2.3.4).
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where|0〉 and |1〉 stand respectively for the eigenstates of spin up and spin down in the
z-direction (of a spin1

2 particle). If no measurement is made, the reduced densityρA is
simply

ρA = TrB ρAB = B〈0|ρAB|0〉B + B〈1|ρAB|1〉B

=
1
2

(|0〉AA〈0|+ |1〉AA〈1|) ,

where

ρAB =
1√
2

(|0〉A|0〉B + |1〉A|1〉B)(B〈0|A〈0|+ B〈1|A〈1|) .

Now, let us assume that Bob measures thez-component of the spin in his subsystem. Let
us further assumes that he finds the spin in the up direction. In this case the state|ΨAB〉
collapses to

|ΨAB〉
|0〉B measured−−−−−−−→ |Ψ(0)

AB〉= |0〉A|0〉B.

The reduced density matrixρ(0)
A of this new state is easily seen to be

ρ(0)
A = |0〉AA〈0|,

which is clearly different from the reduced matrixρA we found previously.
We have just seen that performing a measurement on one subsystem of the complete

systemAB may influence the reduced density matrix. As we shall prove, the new density

matrix ρ(b)
A (when the valueb is measured in subsystemB) may differ from the original

ρA (when no measurement was done) only if the original|ΨAB〉 maynot be written in the
form

|ΨAB〉= |ψ〉A|ϕ〉B
(with no sum on the righthand side). When|ΨAB〉maynotbe written in this form, the state
is said to beentangled.22 Otherwise (when|ΨAB〉= |ψ〉A|ϕ〉B) it is said to benonentangled.
Using this notation, the above claim may be restated as

ρ(no measurement)
A 6= ρ(b measured)

A ⇒ |ΨAB〉 entangled.

Note, that the opposite direction does not hold.

PROOF. All we need to prove is that when|ΨAB〉 equals|ψ〉A|ϕ〉B, then regardless of
the measurement made, the reduced matrix is the same.

To see this, assume a state|ΨAB〉 of the complete system which is nonentangled, i.e.
|ΨAB〉 = |ψ〉A|ϕ〉B. Now, let us further assume that Bob performs a measurement (in sub-
systemB) and finds a resultb. We know that in this case the original state|ΨAB〉 collapses
to

|Ψ(b)
AB〉=

1√
B〈ϕ|Πb|ϕ〉B

|ψ〉A(Πb|ϕ〉B),

whereΠb is a projection onto the subspace of theb eigenvalue. Thus the new density
matrix (of the complete system) is

ρ(b)
AB =

1

B〈ϕ|Πb|ϕ〉B
Πb|ϕ〉B|ψ〉AA〈ψ|B〈ϕ|Πb.

Performing the partial trace on this density matrix is very simple, we just choose an or-
thonormal basis ofHB which includes the state 1√

B〈ϕ|Πb|ϕ〉B
(Πb|ϕ〉B) as one of its elements.

Thus we get

ρ(b)
A = |ψ〉AA〈ψ|,

which is the same result we would have found if no measurement was made. In other
words we found

ρ(b)
A = ρA (when|ΨAB〉 nonentangled).

22Entanglement is further discussed in2.4.
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This completes our proof: only if|ΨAB〉 is entangled (|ΨAB〉 6= |ψ〉A|ϕ〉B) do we have a

chance of findingρ(b)
A 6= ρA. �

We have seen above that if Bob makes selective measurements on his part of the sys-
tem, then this may effect Alice’s measurements. We now want to see what would happen
if Bob still performs his measurement, but no matter what he gets, he allows Alice to per-
form her measurements as well. In this case, no matter the state|ΨAB〉 which we start with
(either entangled or not), Alice won’t know the difference, and would find the same density
matrix as if Bob made no measurements, i.e.

ρ(no measurement)
A = ρ(nonselective)

A .

PROOF. The most general case of a (pure) state|ΨAB〉 of the complete system is a
state of the form

|ΨAB〉= ∑
i

αi |ψi〉A|ϕi〉B,

where{|ψi〉A} and{|ϕi〉B} are two arbitrary sets of states (the states in each are not neces-
sarily orthogonal, and might even include repetitions). Let us first find the reduced density
matrix appropriate to this state when no measurement is made. Such a state gives the
density matrix (not reduced yet)

ρAB =

(
∑
i

αi |ψi〉A|ϕi〉B

)(
∑

j
α∗j A〈ψ j |B〈ϕ j |

)
= ∑

i, j
αiα∗j |ψi〉A|ϕi〉BB〈ϕ j |A〈ψ j |,

and therefore (when no measurement is made) using∑ |n〉BB〈n| = 1B, the reduced matrix
ρA is

ρA = TrB ρAB = ∑
n

B〈n|

(
∑
i, j

αiα∗j |ψi〉A|ϕi〉BB〈ϕ j |A〈ψ j |

)
|n〉B

= ∑
i, j

αiα∗j |ψi〉A
(

∑
n

B〈ϕ j |n〉BB〈n|ϕi〉B
)

A〈ψ j |

= ∑
i, j

αiα∗j B〈ϕ j |ϕi〉B|ψi〉AA〈ψ j |.

or simply

ρ(no measurement)
A = ∑

i, j
αiα∗j B〈ϕ j |ϕi〉B|ψi〉AA〈ψ j |.

Now, Let us turn to the case of a measurement. Assume that Bob makes a measurement
of operatorB and gets, with some probabilitypb, a resultb. In such a case|ΨAB〉 will
collapse as follows:

|ΨAB〉= ∑
i

αi |ψi〉A|ϕi〉B
collapse−−−−−−−→

(b measured)
|Ψ(b)

AB〉=
1
√

pb
∑
i

αi |ψi〉A(Πb|ϕi〉B),

where, as before,Πb is a projection onto the subspace of theb eigenvalue, and where1√
pb

is a normalization factor (recall thatpb is the probability to measureb). The reduced matrix

ρ(b)
A for the new state|Ψ(b)

AB〉 is then

ρ(b)
A =

1
pb

∑
i, j

αiα∗j

(
∑
n

B〈n|Πb|ϕi〉BB〈ϕ j |Πb|n〉B
)
|ψi〉AA〈ψ j | (with probability pb).

Which using∑ |n〉BB〈n|= 1B, simplifies to

ρ(b)
A =

1
pb

∑
i, j

αiα∗j (B〈ϕ j |Πb|ϕi〉B) |ψi〉AA〈ψ j | (with probability pb).
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Recall however, that we are interested in nonselective measurements. If Bob makes
a nonselective measurement, then by definition23 the density matrix describing the system
after the measurement is

ρ(nonselective)
AB = ∑

b

pb|Ψ
(b)
AB〉〈Ψ

(b)
AB|,

and the partial trace over this density matrix is simply

ρ(nonselective)
A = TrB

(
∑
b

pb|Ψ
(b)
AB〉〈Ψ

(b)
AB|

)
= ∑

b

pbρ(b)
A .

Replacingρ(b)
A with the previous result we found, the reduced density matrixρ(nonselective)

A
may be written as

ρ(nonselective)
A = ∑

b

pb

[
1
pb

∑
i, j

(
αiα∗j B〈ϕ j |Πb|ϕi〉B

)
|ψi〉AA〈ψ j |

]

= ∑
i, j

αiα∗j B〈ϕ j |

(
∑
b

Πb

)
|ϕi〉B|ψi〉AA〈ψ j |

= ∑
i, j

(
αiα∗j B〈ϕ j |ϕi〉B

)
|ψi〉AA〈ψ j |.

If we compare this result toρ(no measurement)
A which we found earlier (when no measurement

was made), we see that we have found, as claimed

ρ(nonselective)
A = ρ(no measurement)

A .

�

Before going on one should notice that although we have

ρ(nonselective)
A = ρ(no measurement)

A ,

the two cases are physically different. When measurements are made nonselectively, the

physical situation is indeed that of states|Ψ(b)
AB〉 occurring with probabilitiespb. However,

when no measurement is made there are no such states (with different probability). In this
latter case, the density matrix is simply the result of lack of knowledge about systemB.

2.3.5. The GHJW24 theorem25. As we saw before, physically different systems may
give rise to the same density matrixρ. We shall now see that all such systems (described
by the sameρ, but having some complexity limit—see below) may all be derived from the
samepure state.

Let there be two sources of states, one emitting states|ψi〉with probabilitypi ({pi , |ψi〉}n1
i=1)

and a second emitting states|ϕ j〉 with probabilityq j ({q j , |ϕ j〉}n2
j=1). We shall say that the

23Given the set of probabilities and states{pb, |ψb〉}, the density matrix is defined as

ρ≡∑
b

pb|ψb〉〈ψb|.

Here the probability of measuringb is pb and after measuringb the state of the complete system is|Ψ(b)
AB〉. Thus,

an observer standing after the measurement apparatus sees states|Ψ(b)
AB〉 with probability pb.

24GHJW stands for Gisin, Hughston, Jozsa and Wooters.
25This subsection was originally taught after “entanglement” and the “Schmidt decomposition” were taught.

It was moved here, because the material presented seemed to conceptually fit better right after the discussion of
density matrices and the partial trace. As a consequence, the use of the Schmidt decomposition is given without
proof. The proof and further material are given later when entanglement and the Schmidt decomposition are
discussed (subsection2.4). Of course, the necessary traits (for this subsection) of the Schmidt decomposition are
described here.
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two sources/systems are two differentrealizations (of the density matrixρA) if both sources
give thesamedensity matrixρA, i.e. if

n1

∑
i=1

pi |ψi〉〈ψi |=
n2

∑
j=1

q j |ϕ j〉〈ϕ j |= ρA (two realizations ofρA).

Note that the two sets{|ψi〉} and{|ϕ j〉} are not necessarily sets of orthogonal states (within
the sets, or between sets), nor necessarily have the same number of elements.

Gisin, Hughston, Jozsa and Wooters have shown (theGHJW theorem) that all realiza-
tions of the same density matrixρA, consisting of up ton pure states (i = 1, . . . ,n),26 may
be produced from a single pure state|Ψ〉AB∈HA⊗HB, whereHB is at leastn dimensional.
The different realizations are produced by measuring|Ψ〉AB nonselectively, using (for each
realization) a suitable observable in theHB space.

PROOF. Assume two realizations of thesamedensity matrixρA

{pi , |ψi〉}n1
i=1 ⇒ ρA =

n1

∑
i=1

pi |ψi〉〈ψi |,

{qi , |ϕi〉}n2
i=1 ⇒ ρA =

n2

∑
i=1

qi |ϕi〉〈ϕi |.

We perform a so called “purification” of the two by enlarging our Hilbert space toHA⊗HB

{pi , |ψi〉}n1
i=1

purification−−−−−−→ |Ψ〉AB =
n1

∑
i=1

√
pi |ψi〉A|βi〉B,

{qi , |ϕi〉}n2
i=1

purification−−−−−−→ |Φ〉AB =
n2

∑
i=1

√
qi |ϕi〉A|βi〉B,

where in both cases we use the same orthonormal states|βi〉B ∈HB

B〈βi |β j〉B = δi j (i, j = 1,2, . . . ,n; n≥max(n1,n2)).

The outline of the proof form here on is as follows. The proof will consist of two steps,
the first acting as a motivation to the next. We shall start by proving that given a unitary
transformationUB such thatUB|Ψ〉AB = |Φ〉AB, then by measuring|Ψ〉AB nonselectively we
may reproduce (using the proper measurement) either of the two realizations{pi , |ψi〉}n1

i=1
and{qi , |ϕi〉}n2

i=1. Having shown that, we shall go on to prove in the next step that such a
transformation indeed always exists, thus completing the proof: Since|Φ〉AB arose from
an arbitrary27 realization ofρA, and further more, a proper measurement of|Ψ〉AB gave the
source/realization corresponding to|Φ〉AB, then an appropriate measurement exists forany
realization (of up ton possible states) ofρA.

LEMMA (first step). If there exists a unitary operator UB (operating onHB), such that

UB|Ψ〉AB = |Φ〉AB,

then by a proper nonselective measurement of|Ψ〉AB one may reproduce the source corre-
sponding to|Φ〉AB (i.e. {qi , |ϕi〉}n2

i=1).

PROOF. Assume an observableB (operating onHB) whose eigenstates are the states
|βi〉B and whose eigenvalues arenondegenerate(there is an infinite choice of suchB’s—
just choose one). Clearly, performing anonselectivemeasurement (see2.3.4) of the states
|Ψ〉AB and |Φ〉AB using this operatorB will give results physically equivalent (for an ob-
server inA) to the two sources ({pi , |ψi〉} and{qi , |ϕi〉} respectively) with which we started.

26This limit on n is the complexity limit mentioned above (at the start of the subsection).
27Arbitrary, apart for the restrictionn2 ≤ n.
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Now, by the assumption of the lemma, letUB be a unitary state such that

UB|Ψ〉AB = |Φ〉AB,

or equivalently
|Ψ〉AB = U−1

B |Φ〉AB.

Expanding the last equation using{|ϕi〉} and{|ψ j〉} this gives

|Ψ〉AB = ∑
i

√
pi |ψi〉A|βi〉B = ∑

j

√
q j |ϕ j〉AU−1

B |β j〉,

or simply
|Ψ〉AB = ∑

j

√
q j |ϕ j〉A|γi〉B,

where we have defined

|γi〉B ≡U−1
B |βi〉 (i = 1, . . . ,n≥max(n1,n2)).

SinceUB is unitary and|βi〉B is an orthonormal set, then necessarily|γi〉B is also an or-
thonormal set, i.e.

B〈γi |γ j〉B = δi j .

Thus, the new expression we got for|Ψ〉AB is similar in form to the one we started with:

|Ψ〉AB = ∑
i

√
pi |ψi〉A|βi〉B is of the same form as|Ψ〉AB = ∑

j

√
q j |ϕ j〉A|γi〉B.

It is therefore clear that if we measure|Ψ〉AB nonselectively, using an observable (operating
on HB) whose eigenstates are the states|γi〉B (instead of|βi〉B) and whose eigenvalues are
nondegenerate, then the result will be physically equivalent to the (second) realization
{q j , |ψ j〉}m

j=1. One observable which obeys the above requirements is

U−1
B BUB,

whose eigenstates areUB|βi〉B ≡ |γi〉B (since|βi〉B are eigenstates ofB), and has the same
eigenvalues asB (and therefore nondegenerate as forB).

We have thus shown that if there existsUB such thatUB|Ψ〉AB = |Φ〉AB, then there ex-
ists an observable (e.g.U−1

B BUB) which will reduce|Ψ〉AB to the realization{q j , |ϕ j〉}n2
j=1

(while we already know thatB will reduce|Ψ〉AB to the realization{pi , |ψi〉}n1
i=1). �

Having proved the first step, we may now go on to prove the second.

LEMMA (second step).If the partial trace (overHB) of both

|Ψ〉AB =
n1

∑
i=1

√
pi |ψi〉A|βi〉B and |Φ〉AB =

n2

∑
i=1

√
qi |ϕi〉A|βi〉B,

give the same density matrixρA, then there exists a unitary operator (acting only onHB)
such that

UB|Ψ〉AB = |Φ〉AB.

PROOF. To prove this we use the Schmidt decomposition (see subsection2.4for more
details). According to the Schmidt decomposition,|Ψ〉AB and|Φ〉AB may always be written
as

|Ψ〉AB =
m1

∑
i=1

√
λi |ai〉A|bi〉B,

and

|Φ〉AB =
m2

∑
i=1

√
λ′i |a

′
i〉A|b′i〉B,

where the four sets{|ai〉A}, {|bi〉B}, {|a′i〉A} and{|b′i〉B} are all orthonormal sets:

A〈ai |a j〉A = δi j B〈bi |b j〉B = δi j ,
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A〈a′i |a′j〉A = δi j B〈b′i |b′j〉B = δi j .

Further more, in this case, we must have

λ′i = λi ,

and may choose a basis such that
|a′i〉= |ai〉.

The reason for these requirements is that the partial trace of both states give the samediago-
nal density matrix. The elements on the diagonal of this matrix areλi |ai〉〈ai | for |Ψ〉AB and
λ′i |a′i〉〈a′i | for |Φ〉AB, but the diagonalization of the the density matrix is unique (up to the
order of the eigenvalues and eigenstates), so we must haveλ′i = λi , and|a′i〉= |ai〉 (if λi ,λ′i
are degenerate, then we may have|a′i〉 6= |ai〉—not just because of different ordering— but
we may always choose a basis which does obey|a′i〉= |ai〉) . Thus we may write

|Ψ〉AB = ∑
√

λi |ai〉A|bi〉B
(

A〈ai |a j〉A = δi j

B〈bi |b j〉B = δi j

)
|Φ〉AB = ∑

√
λi |ai〉A|b′i〉B

(
A〈a′i |a′j〉A = δi j

B〈b′i |b′j〉B = δi j

)
.

Now, since|bi〉B and|b′i〉B are orthonormal bases (with the same number of elements) then
there must exist a unitary transformation between them, i.e.

|b′i〉B = UB|bi〉B (UB = ∑
i
|b′i〉BB〈bi |).

Using this unitary transformation we find

|Φ〉AB = (1A⊗UB)|Ψ〉AB,

Thus we see, that if|Ψ〉AB and|Φ〉AB give the same density matrixρA, then there must exist
a unitary transformation such that|Ψ〉AB = UB|Φ〉AB. �

Recapping the proof, we started by purifying all possible realization (of up ton states)
of a given density matrix. We then showed that if there exist unitary transformations (act-
ing onHB alone) that transform between the purified states, then a single purified state may
be used to generate all possible realizations (by performing appropriate nonselective mea-
surements). Finally we showed that such unitary transformations exist, thus completing
the proof. �

2.4. Entanglement and the Schmidt decomposition

We have already, briefly, encountered entanglement and the Schmidt decomposition,
earlier. It is now time for a more methodic presentation of these two terms.

2.4.1. Entanglement.In Quantum information, entanglement is both an important
tool and a subject of active research in its own right. This section gives the definition of
entanglement. Much of the course will be on the uses and traits of entanglement.

A state|ψ〉AB ∈ HA⊗HB is said to beentangled(betweenA andB) if it cannotbe
decomposed into a tensor product of two states, one inHA and the second inHB (no matter
which basis we choose inHA and inHB). Note, that we must state the spacesHA andHB,
since a different partition of the spaces (intoHA′⊗HB′—instead ofHA⊗HB) might change
the state’s attribute of being entangled/nonentangled.

As an example let us examine the state

|ψ1〉AB = α|0〉A|0〉B +β|1〉A|0〉B.

This state isnotentangled since we can write it as a tensor product of the stateα|0〉A+β|1〉A
in HA and the state|0〉B in HB:

|ψ1〉AB =
(

α|0〉A +β|1〉A
)
⊗|0〉B (nonentangled).
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On the other hand, the state

|ψ2〉AB =
1√
2
(|0〉A|0〉B + |1〉A|1〉B)

is entangled. To see this let us first write the most generalnonentangledstate of two spin
1
2 particles. Such a state (since being nonentangled means that it is a tensor product of two
states) may be written as

|ψ〉AB =
(

a|0〉A +b|1〉A
)
⊗
(

α|0〉B +β|1〉B
)

= aα|0〉A|0〉B +aβ|0〉A|1〉B +bα|1〉A|0〉B +bβ|1〉A|1〉B.

From this expression we see that for a nonentangled state ifaα 6= 0 andbβ 6= 0, thenaβ
andbα must also be non-zero. This condition, however, is not obeyed by our state|ψ2〉AB

(our state includes|0〉A|0〉B and|1〉A|1〉B but not|0〉A|1〉B and|1〉A|0〉B). As a consequence
|ψ2〉AB is not nonentangled, i.e it is entangled:

|ψAB〉=
1√
2
(|0〉A|0〉B + |1〉A|1〉B) (entangled).

The Schmidt decomposition, shown below, gives a systematic way of determining
whether a state is entangled or not (see2.4.2.2).

2.4.2. The Schmidt decomposition.The Schmidt decomposition is an often used
tool in the study of quantum information and entanglement. It is basically a standardized
and convenient form of writing (pure) states.

THEOREM (Schmidt decomposition).For any state|Ψ〉AB ∈ HA⊗HB there is anor-
thonormalbasis|i〉A (i = 1, . . . ,NA) of HA and anorthonormalbasis|ĩ〉B (i = 1, . . . ,NB) of
HB such that|Ψ〉AB may be written as

|Ψ〉AB =
N≤min(Na,NB)

∑
i=1

√
λi |i〉A|ĩ〉B (λi > 0),

(
A〈i| j〉A = δi j ; B〈ĩ| j̃〉B = δi j

)
.

The coefficientsλi (λi > 0 ) in the above expression are called theSchmidt coefficients,
and the decomposition itself is called theSchmidt decomposition.

Before giving the proof of the theorem, let us note some relevant points:

(1) The theorem does not claim that the decomposition is unique (it is unique if and
only if all the λi ’s are different—see2.4.2.1). However, as will be shown,N, the
number of elements in the sum, is unique.

(2) Different states (e.g.|ψ〉AB and|ϕ〉AB) require, in general, a different choice of
the orthonormal bases used.

(3) LetUA andUB be unitary operators operating onHA andHB respectively, and let
UAB be the unitary operator defined asUAB≡UA⊗UB. The Schmidt decompo-
sition ofUAB|ψ〉AB has the same Schmidtcoefficientsas does|ψ〉AB. However, it
uses different bases inHA andHB (|i〉A→UA|i〉A and|ĩ〉B→UB|ĩ〉B). To see this
simply applyUAB onto the Schmidt decomposition of|ψ〉AB.

PROOF. To prove the theorem we need two auxiliary lemmas first.

LEMMA . (Polar decomposition). Every matrix A may be written as a product of a
unitary matrix U and apositive matrixH (a Hermitian matrix with only non-negative
eigenvalues):

A = UH (H =
√

A†A).
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PROOF. We shall start by proving the lemma fornonsingularmatrices (|A| 6= 0). For
such matrices we may always (as explained next) writeA as

A = A
1√
A†A

√
A†A (|A| 6= 0).

To see this we must note thatA†A is apositive(Hermitian) matrix. It is clearly Hermitian
since(A†A)† = A†A. It is positive, since for a given state|ψ〉 we may define

c|ϕ〉 ≡ A|ψ〉,
where|ϕ〉 is somenormalizedstate andc is some complex number (A|ψ〉 isn’t necessarily
normalized). Thus we have

〈ψ|(A†A)|ψ〉= (〈ψ|A†)(A|ψ〉) = |c|2〈ϕ|ϕ〉 ≥ 0.

This is true for any state|ψ〉 and thereforeA†A, by definition, is positive (all eigenvalues
are non-negative or equivalently〈ψ|(A†A)|ψ〉 ≥ 0 for all |ψ〉).

Now, since we assume thatA is nonsingular (|A| 6= 0), then so isA†A, and thus we also
know that the eigenvalues (ofA†A) must bedefinitepositive, i.e.λi > 0 (if we had a zero
eigenvalue, the determinant would also be zero). Therefore,A†A may be written as

A†A = ∑
i

λi |i〉〈i| (λi > 0).

By definition (of functions of matrices)28 we may write
√

A†A = ∑
i

√
λi |i〉〈i|,

and indeed using this definition we have(√
A†A

)2
=

(
∑
i

√
λi |i〉〈i|

)2

= ∑
i

λi |i〉〈i|= A†A.

Clearly (whenλi > 0), the inverse of
√

A†A is(√
A†A

)−1
≡ 1√

A†A
= ∑

i

1√
λi
|i〉〈i|,

which is easily checked:

1√
A†A

√
A†A =

(
∑
i

1√
λi
|i〉〈i|

)(
∑

j

√
λ j | j〉〈 j|

)
= ∑

i
|i〉〈i|= 1.

Therefore we can write, as we did,

A = A
1√
A†A

√
A†A (|A| 6= 0).

Now, let us define

U ≡ A
1√
A†A

28If an operator/matrixA is diagonalizable, i.e. if it may be written in the form

A = ∑
i

λi |i〉〈i|,

then f (A) is defined as
f (A)≡∑

i
f (λi)|i〉〈i|.

This definition may be used even ifA is not Hermitian (whenλi are not necessarily real).
If a Taylor expansion off (x) exists (f (x) = a0 +a1x+a2x2 + · · ·), then we may also definef (A) as the Taylor

expansion inA:
f (A) = a01+a1A+a2A2 + · · · .

The two definitions are not always available for use (there may be no Taylor expansion aroundx = 0, or A may
not be diagonalizable). However, if the two are possible, then they coincide.



42 2. BASICS OF QUANTUM INFORMATION

and

H ≡
√

A†A.

Clearly U is unitary (UU† = 1) and H is Hermitian (H† = H), so assuming thatA is
nonsingular, we have what we were looking for

A = UH (|A| 6= 0).

To complete the proof we must now treat the singular case as well. Let us assume that
A is anN×N matrix. If A is indeed singular, then it must have eigenvectorsvi , i = 1, . . . ,n
(n≤N), with eigenvalue zero (since|A|= 0, the columns ofAare linearly dependent, and so
there must exist vectorsvi such thatAvi = 0). The vectorsvi define a subspace of dimension
n for which we can choose an orthonormal basisei , i = 1, . . . ,n. Let us now complete the
orthonormal basis (of the subspace) to anN dimensional orthonormal basisei (i = 1, . . . ,N)
of the whole space (on whichA operates). Since the{ei} form an orthonormal basis and
since theei , for i = 1, . . . ,n, are eigenvectors with eigenvalue zero, then there exists some
unitarymatrixV such that

V†AV =


0

...
0

Ã

 (V† = V−1),

whereÃ is an(N−n)× (N−n) nonsingular matrix, and the number of zeros on the diag-
onal isn.

SinceÃ is nonsingular we can use the result we found above and write

V†AV =


0

...
0

ŨH̃

=


1

...
1

Ũ




0
...

0
H̃

 ,

whereŨ is a unitary matrix and̃H is a positive Hermitian matrix (both(N−n)× (N−n)
matrices). From this we easily find that

A = V


1

...
1

Ũ

V†V


0

...
0

H̃

V†.

Defining

U ≡V


1

...
1

Ũ

V†,

and

H ≡V


0

...
0

H̃

V† =
√

A†A,

we see that, as declared,

A = UH

whereH is a positive (Hermitian) matrix andU is a unitary matrix. �



2.4. ENTANGLEMENT AND THE SCHMIDT DECOMPOSITION 43

LEMMA . (Singular value decomposition). Every matrix A may be written as a product
of a unitary matrix U, a diagonal matrix D, and another unitary matrix V :

A = UDV

PROOF. According to the previous lemma, we can always writeA as

A = U1H.

SinceH is Hermitian, then there is a unitary matrixT which diagonalizes it

T†HT = D

⇒ H = TDT†.

Therefore, we can write
A = U1TDT†.

We now define
U ≡U1T

and
V ≡ T†.

These new matrices are clearly unitary, and we therefore have

A = UDV.

�

Having proved the above two lemmas, we may now prove the Schmidt decomposition.
By definition, a state|ΨAB〉 can be written in general as29

|ΨAB〉= ∑
i, j

ai j |αi〉A|β j〉B,

where|αi〉 is an orthonormal basis ofHA and |β j〉 is an orthonormal basis ofHB. The
coefficientsai j define a matrixA

(A)i j ≡ ai j .

By the second lemma there are matricesU,D,V such that (sinceD is diagonal)

A = UDV ⇒ ai j ≡ Ai j = ∑
k

UikDkkVk j.

Substituting this into|ΨAB〉 gives then

|ΨAB〉 = ∑
i, j,k

UikDkkVk j|αi〉A|β j〉B

= ∑
k

Dkk

(
∑
i

Uik|αi〉A

)(
∑

j
Vk j|β j〉B

)
.

Now, sinceU andV are unitary matrices then they transform an orthonormal basis into a
new orthonormal basis. Thus, we may define two new orthonormal bases

|k〉A ≡∑
i

Uik|αi〉A

and
|k̃〉B ≡∑

j
Vk j|β j〉B.

29By definition (|ψi〉A and|ϕ j 〉B are arbitrary states)

|ΨAB〉= ∑
i, j

βi j |ψi〉A|ϕ j 〉B.

If we expand each of the states|ψi〉A using the orthonormal basis|ai〉A and similarly forHB, we get the above
result.
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Using these definitions we now have

|ΨAB〉= ∑
k

Dkk|k〉A|k̃〉B,

which isalmostthe Schmidt decomposition. To have the Schmidt decomposition we must
haveDkk =

√
λk and thereforeDkk must be positive. In generalDkk can always be written

as
√

λkeiθk. If we push the phaseeiθk into the definition of our orthonormal bases, then we
finally get the desired form.

�

As an example let us examine two cases. The first is

|ΨAB〉=
1√
2
(|0〉A|0〉B + |1〉A|1〉B).

This state is already in a Schmidt decomposition since|0〉 and |1〉 are orthonormal and
further more the same ket does not appear in two different elements.

However, if we examine

|ΨAB〉=
1√
2
(|↑z〉A|↑z〉B + |↓z〉A|↑x〉B),

this is not a Schmidt decomposition since|↑z〉B is not orthonormal to|↑x〉B.
We may now ask how do we find the Schmidt decomposition appropriate for a given

state. When theλi ’s arenondegeneratethis is quite simple (shown next). Assuming the
Schmidt decomposition is of the form

|ΨAB〉= ∑
i

√
λi |i〉A|ĩ〉B,

the reduced density matrices inHA andHB are

ρA = TrB |ΨAB〉〈ΨAB|= ∑
j

B〈 j̃|(|ΨAB〉〈ΨAB|) | j̃〉B = ∑
i

λi |i〉AA〈i|

ρB = TrA |ΨAB〉〈ΨAB|= ∑
j

A〈 j|(|ΨAB〉〈ΨAB|) | j〉A = ∑
i

λi |ĩ〉BB〈ĩ|.

We see that the sameλi ’s appear in both density matrices (when they are diagonalized).
Further more,λi is the coefficient of both|i〉AA〈i| in ρA and of |ĩ〉BB〈ĩ| in ρB (the same
index i in all). Thus, if we diagonalize each of the reduced density matrices we can match
eigenstates with identical eigenvalues and so deduce the Schmidt decomposition.

As an example of this method let us return to our previous example

|ΨAB〉=
1√
2
(|↑z〉A|↑z〉B + |↓z〉A|↑x〉B).

The reduced density matrixρB for this state is

ρB =
1
2

(|↑z〉BB〈↑z|+ |↑x〉BB〈↑x|)

=
2+

√
2

4
|0〉BB〈0|+

2−
√

2
4

|1〉BB〈1|,
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where we have defined (by finding the eigenstates ofρB)30

|0〉B =
1√

3+2
√

2

[
(1+

√
2)|↑z〉B + |↓z〉B

]
,

|1〉B =
1√

3−2
√

2

[
(1−

√
2)|↑z〉B + |↓z〉B

]
.

For ρA we get31

ρA =
1
2

[
|↑z〉AA〈↑z|+

1√
2
|↑z〉AA〈↓z|+

1√
2
|↓z〉AA〈↑z|+ |↓z〉AA〈↓z|

]
=

2+
√

2
4

|0〉AA〈0|+
2−

√
2

4
|1〉AA〈1|,

where we have defined here (again after finding the eigenstates of the density matrix)

|0〉A =
1√
2

(|↑z〉A + |↓z〉B) ,

|1〉A =
1√
2

(|↑z〉A−|↓z〉B) .

Having found the (nondegenerate) eigenstates of the two partial density matrices, we can
now finally write down the Schmidt decomposition, as follows:

|ΨAB〉=
2+

√
2

4
|0〉A|0〉B +

2−
√

2
4

|1〉A|1〉B.

Note, that if the Schmidt coefficientsλi are degenerate, then the eigenvalues of the
density matrices will also be degenerate and we won’t be able to make the one-to-one
correspondence between the orthonormal states ofHA andHB. This means that we cannot
use the density matrices to find the Schmidt decomposition when there is a degeneracy.

30Using|↑x〉= 1√
2
(|↑z〉+ |↓z〉), we can write (dropping the indexB)

ρB =
1
2

(
|↑z〉〈↑z|+

1
2
[(|↑z〉+ |↓z〉)(〈↑z|+ 〈↓z|)]

)
=

3
4
|↑z〉〈↑z|+

1
4
|↓z〉〈↓z|+

1
4
|↑z〉〈↓z|+

1
4
|↓z〉〈↑z|.

In thez basis, this is the same as the matrix

ρB =
1
4

(
3 1
1 1

)
,

whose eigenstates and eigenvalues are

v± =
1√

3±2
√

2

(
1±

√
2

1

)
,λ± =

2±
√

2
4

.

Thus, the (normalized) eigenstates ofρB are

|±〉=
1√

3±2
√

2

[(
1±

√
2
)
|↑z〉+ |↓z〉

]
.

31Using|↑x〉= 1√
2
(|↑z〉+ |↓z〉), we may write

|ΨAB〉 =
1√
2

[
|↑z〉A|↑z〉B +

1√
2
|↓z〉A(|↑z〉B + |↓z〉B)

]
=

1√
2

[(
|↑z〉A +

1√
2
|↓z〉A

)
|↑z〉B +

1√
2
|↓z〉A|↓z〉B

]
so that (dropping the indexA)

ρA =
1
2

(
|↑z〉+

1√
2
|↓z〉
)(

〈↑z|+
1√
2
〈↓z|
)

+
1
4
|↓z〉〈↓z|

=
1
2
|↑z〉〈↑z|+

1

2
√

2
|↑z〉〈↓z|+

1

2
√

2
|↓z〉〈↑z|+

1
2
|↓z〉〈↓z|.
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However, we can always find the decomposition using the method described in the proof
of the Schmidt decomposition.

2.4.2.1. Uniqueness of the Schmidt decomposition.We have claimed at the start that
the Schmidt decomposition is unique if and only if the Schmidt coefficients are nonde-
generate. Further more, it was claimed that even if the decomposition is not unique, the
numberof elements (in the decomposition) is unique. We shall now prove this.

Showing the uniqueness of the number of elements (in the decomposition) is simple.
Assuming the Schmidt decomposition to be given by

|ΨAB〉=
N

∑
i=1

√
λi |i〉A|ĩ〉B,

it is easy to see that the density matrix describing the state is

ρAB =
N

∑
i=1

λi(|i〉A|ĩ〉B)(B〈ĩ|A〈i|).

In this form the density matrix is already diagonal, and it is clear that it hasN nonzero
eigenvalues (N is also the number of elements in the Schmidt decomposition). Since the
density matrix is unique it is clear that thenumberof elements in the Schmidt decomposi-
tion must also be unique.32

We must now show that the decomposition is unique if and only if the Schmidt coef-
ficients are nondegenerate. Actually, we have already shown above that fornondegenerate
coefficients the decomposition is unique: We have shown that by diagonalizing each of the
reduced density matricesρA andρB we can find the Schmidt coefficients and the unique
bases|i〉A and|ĩ〉B (see above). Therefore, to complete our proof we need only show that
for the degenerate case the decomposition cannot be unique.

If the coefficients are degenerate, then the Schmidt decomposition includesat least
two elements with the same coefficient. Thus, the decomposition may be written (concen-
trating only on two of the degenerate elements) as

|ΨAB〉= · · ·+λ|i〉A|ĩ〉B + · · ·+λ| j〉A| j̃〉B + · · · ,
or, after renumbering the states, as

|ΨAB〉= λ
(
|0〉A|0̃〉B + |1〉A|1̃〉B

)
+ · · · .

To prove that a different Schmidt decomposition exists, it suffices to show that there always
exist (nontrivial)orthonormalstates|a〉A, |b〉A and|ã〉B, |b̃〉B such that

|0〉A|0̃〉B + |1〉A|1̃〉B = |a〉A|ã〉B + |b〉A|b̃〉B.

This is easily shown by defining

|a〉A ≡ cosα|0〉A +sinα|1〉A,

|b〉A ≡ eiθ sinα|0〉A−eiθ cosα|1〉A,

|ã〉B ≡ cosα|0̃〉B +sinα|1̃〉B,

and
|b̃〉B ≡ e−iθ sinα|0̃〉B−e−iθ cosα|1̃〉B.

With these definitions we have

|0〉A = cosα|a〉A +eiθ sinα|b〉A
|1〉A = sinα|a〉A−eiθ cosα|b〉A,

|0̃〉B = cosα|ã〉B +e−iθ sinα|b̃〉B,

32Again, since many states can give the same density matrix, then this does not necessarily mean that the
Schmidt decomposition is unique.
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and
|1̃〉B = sinα|ã〉B−e−iθ cosα|b̃〉B.

A straight forward calculation33 then shows that

|0〉A|0̃〉B + |0〉A|0̃〉B = |a〉A|ã〉B + |b〉A|b̃〉B,

regardless of the anglesα,θ chosen. Thus, we see that there is an infinite choice of or-
thonormal bases which give a valid Schmidt decomposition (when there is a degeneracy in
the coefficients).

2.4.2.2. The Schmidt decomposition and entanglement.We have seen above that the
number of elements in the Schmidt decomposition is unique. As you may recall, anentan-
gled state is defined as a state whichcannotbe written as a tensor product of two states.
On the other hand, a nonentangled state is one which can be written in this form (e.g.
|ΨAB〉 = |0〉A|0̃〉B). Thus we see that if the Schmidt decomposition has only a single ele-
ment (|ΨAB〉= |0〉A|0̃〉B) then the state is nonentangled. Otherwise, the state is entangled.

33The calculation is:

|0〉A|0̃〉B + |1〉A|1̃〉B =

=
(

cosα|a〉A +eiθ sinα|b〉A
)(

cosα|ã〉B +e−iθ sinα|b̃〉B
)

+
(

sinα|a〉A−eiθ cosα|b〉A
)(

sinα|ã〉B−e−iθ cosα|b̃〉B
)

= (cos2 α+sin2 α)|a〉A|ã〉B +(sin2 α+cos2 α)|b〉A|b̃〉B
+(e−iθ cosαsinα−e−iθ sinαcosα)|a〉A|b̃〉B
+(eiθ sinαcosα−eiθ cosαsinα)|b〉A|ã〉B

= |a〉A|ã〉B + |b〉A|b̃〉B.
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CHAPTER 4

Hidden variables

4.1. The EPR1 Paradox

Assume a two particle wave function of the form

ψ≈ δ(x1−x2−L)δ(p1 + p2),

whereδ are not exactly delta functions but only arbitrarily good, normalizable approxima-
tions. The operatorsx1− x2 and p1 + p2 commute,2 so we can measure both simultane-
ously.

From the wave functions we know that

x1−x2 ≈ L (distance between particles)

p1 + p2 ≈ 0 (total mommentum).
Clearly, if Alice measuresx1, then she knows thatx2 ≈ x1−L, on the other hand, if she
measuresp1 then she knowsp2 = −p1. Let us now assume that the distanceL is large
enough so that the during time it takes to make a measurement, light cannot travel between
the two particles. Thus we assume that particle 2 isn’t effected by measurements on particle
1.

Following EPR (Einstein, Podolsky, Rosen) We define anelement of realityas a quan-
tity which may be predicted with certainty without disturbing the system at all. In our case
here bothx2 andp2 are elements of reality3 because we may find them without disturbing
particle 1 (only particle 2). Since the measurements are done far away from particle 2, then
the particle is not effected by them andx2, p2 must be both elements of reality.

However, from the uncertainty principle, we cannot know bothx2 andp2, and thus we
find a contradiction with quantum mechanics, which tells us that the theory is incomplete.
Further more, since the result of the measurement of the system is unaffected by the mea-
surement on particle 1, one might think that the result of the measurements on 2, where
already “written” somewhere. This lead to the thought of hidden variables theory (HV).

We should also mention Bohm’s version of the EPR paradox, sometimes known as
EPRB. His version is discrete. He uses the entangled state

|ψ〉=
1√
2

(↑1↓2−↓1↑2)

which has a total spin of zero. One can now measure the spin (in thez-direction) of particle
1 and deduce that of particle 2. From here on it is similar to the original EPR paradox.

4.2. Bell inequalities

The EPR paradox led to the thought that there might exist hidden variable theories
which give the same predictions as quantum mechanics. Bohm (1952) had found the pilot
wave interpretation which was anonlocalhidden variable theory. The question remained,

1Einstein-Podolsky-Rosen
2

[x1−x2, p1 + p2] = [x1, p1]− [x2, p2] = 0.

3We could similarly also choosex2, p2 as the elements of reality, but thenx1, p1 won’t be????
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however, whether alocal hidden variable theory might be possible. Finally, in 1964, Bell
had shown that for a Hilbert space above 2 dimensions, one cannot have a local hidden
variable theory (actually he showed an inequality which such a theory must obey, and
quantum mechanically does not obey it experimentally—see below)

4.2.1. A local hidden variables theory for spin 1
2. Before going on to Bell’s in-

equality let us first show (following Bell) an example where a hidden variable theoryis
possible (a 2 dimensional Hilbert space).

Assume a spin12 system in a state

|ψ0〉= |↑z〉.

In quantum mechanics the expectation value ofσn̂ is4

〈σn̂〉ψ0 = n̂· ẑ≡ cosθnz,

where
σn̂ ≡ n̂·~σ,

and whereθnz is the angle between ˆn and ẑ (~σ is the vector of Pauli matrices). We now
wish to find whether we can produce a hidden variable theory which will reproduce the
same results.

To achieve this let us assume, as a parameter (the hidden variable), a unit vectorλ̂
with equal probability to point anywhere on the upper-half (z > 0) of a unit sphere (but
zero probability to point towards the lower half). Wedefinethe the result of measuringσn̂

as the valueVσn̂ given by5

Vσn̂(λ̂)≡ sign
(

n̂· λ̂
)

= sign(cosθnλ) .

Since we assume thatλ̂ is (for some unknown reason) uniformly distributed on the upper
half of the unit sphere, then within an area of 2π θnz

π (of the upper hemisphere) we get

negative values for ˆn · λ̂ while in the rest of the upper hemisphere (area of 2π−2π θnz
π ) we

get a positive value for ˆn · λ̂ (note that the area of half a sphere is1
24πr2, which for r = 1

gives 2π). As a result, the average value we get is

〈Vσn̂〉=
(−1) ·

(
2π θnz

π

)
+(+1) ·

(
2π−2π θnz

π

)
2π

= 1− 2θnz

π
,

where
cosθnz≡ n̂· ẑ.

Clearly, this result does not give us the desired quantum result (cosθnz). To achieve that
we simply use a different ˆn in the expression forVσn̂(λ̂). Instead of ˆn we shall use ˆn′ at an
angleθ′ (with thez-axis) such that

1− 2θ′

π
≡ cosθnz = n̂· ẑ.

The important point is that we can make a one-to-one a mapping betweenθ andθ′ and
therefore we can have a hidden variable theory, as desired. In this new theoryλ̂ is still

4

〈σn̂〉ψ0 = 〈↑z|cosθσz+sinθcosφσx +sinθsinφσy|↑z〉
= cosθ〈↑z|σz|↑z〉+sinθcosφ〈↑z|σx|↑z〉+sinθsinφ〈↑z|σy|↑z〉
= cosθ+0+0

5The function sign() gives the sign of its operand, i.e.

sign(x) =

{
+1 x≥ 0

−1 x < 0
.
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uniformly distributed on the upper half of the sphere but the value of a measurement (of
σn̂) is given by (note that ˆn appears only in the first term while ˆn′ appears in the rest)

Vσn̂(λ̂)≡ sign
(

n̂′ · λ̂
)

= sign(cosθn′λ) ,

wheren̂′ obeys

n̂′ · ẑ= cosθ′ = cos
[π

2
(1−cosθnz)

]
= cos

[π
2
(1− n̂· ẑ)

]
.

(For example if ˆn = x̂sinθcosϕ+ ŷsinθsinϕ+ ẑcosθ then we can define
n̂′ = x̂sinθ′ cosϕ+ ŷsinθ′ sinϕ+ ẑcosθ′).

Note, that we could have also constructed our hidden variable theory differently. For
example, we could have constructed a model with a parameterλ uniformly distributed
between 0 and 1, such that

σn̂ =

{
1 0< λ < cos2 θnz

2
−1 cos2 θnz

2 < λ < 1
.

This would give us
〈σn̂〉= cosθnz,

where of course
n̂· ẑ= cosθnz.

Before going on to the general case, let us try and see if we can construct a hidden
variable theory for a system of more then one spin such as a system of two entangled
spins.

Assume a system of two spins with total angular momentum zero. For such a system,
if we measure spin number 1 in thez direction and get “up”, then measuring spin number
2, also in thez direction, must give “down”. We need a model to give us this behavior.
We cannot use the exact same model as before (for each spin separately), since theλ in
each spin would be independent and we won’t get the desired result. Instead, let us try
a modified model. In our new model the two spins are in opposite directions, but the
direction of spin 1 is random, i.e. particle 1 has spin “up” in the random directionĵ1 and
particle 2 has spin “up” in the direction̂j2 = − ĵ1. We shall use the random parametersĵ i
instead of the random parameterλ̂ in the previous model. Thus, we now have (with some
change of notation):

Vi(n̂) = sign(n̂· ĵ i) ( ĵ2 =− ĵ1),

where i is the index of the particle being measure and ˆn is the direction in which the
measurement is performed. We shall denote by ˆa andb̂ the directions in which we measure
particles 1 and 2 respectively.

We can easily see, that by our assumption ofĵ1 being random, we get, as in QM

〈V1(â)〉 ĵ1
= 〈V2(b̂)〉 ĵ1

= 0,

where〈·〉 ĵ1
denotes averaging of̂j1.

Now let us calculate〈V1(â)V2(b̂)〉. Clearly (sinceĵ2 =− ĵ1), the case ˆa = b̂ gives the
regular QM result

〈V1(â)V2(â)〉 ĵ1
=−1.

To find the result for general directions ˆaandb̂we draw two half-spheres on the unit sphere,
one centered around ˆa and the second aroundb̂. These half-sphere represent, respectively,
the directionsĵ1 and ĵ2 for whichV1(â) andV2(b̂) are positive. Thus, when̂j1 either falls
in the intersection of the two hemispheres, or when it falls outside ofbothhemisphere, we
have

V1(â)V2(b̂) =−1 (area of
2π−2θ

2π
4π),
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while on the rest of the unit sphere we have

V1(â)V2(b̂) = +1 (area of
2θ
2π

4π).

If we denote byθ the angle between ˆa andb̂, then the first case occurs on a surface area of

2π−2θ
2π

4π (V1(â)V2(b̂) =−1)

and the second on an area of
2θ
2π

4π (V1(â)V2(b̂) = +1).

(It is easier to calculate the area of the second case first.). Taking the average over the areas
gives

〈V1(â)V2(b̂)〉 ĵ1
=−1+

2θ
π

,

while the result in quantum mechanics is6

〈σâσb̂〉=−cosθab.

Not surprisingly, as before, we got different results. The question, however, is whether we
can correct our model (as before) so that we get the correct answer. We shall see (in the
next two subsection) that the answer is no. The reason is that the parameter in the results
is the angle between ˆa andb̂. We cannot make a deterministic change,separatelyon each
functionVi(n̂), so that we will get a correct result when combined. (The change in each
function may not depend on the direction of measuring the other particle. Otherwise the
theory is nonlocal)

4.2.2. The CHSH7 inequality8. Let us assume that alocal hidden variables theory
exists, where by local we mean that that every particle has its own set of hidden variables
which determine its behavior (regardless of what the others do). We shall now see that this
assumption requires a certain inequality to always hold. Since quantum mechanics does
not alwaysobey the inequality, then the only conclusion is that quantum mechanics is not
a local hidden variable theory.

We shall again study the system of two spin1
2 particles with total angular momentum

0. This time however, particle 1 can be measured either in direction ˆa or in â′ and particle

6The simplest way to see this is to note that for any direction ˆn we have

1√
2

(|↑ẑ↓ẑ〉− |↓ẑ↑ẑ〉) =
1√
2

eiϕnz (|↑n̂↓n̂〉− |↓n̂↑n̂〉) ,

whereϕnz is some global phase. This is because the state (up to a global phase) is uniquely defined by itstotal
angular momentum and the momentum in the ˆz direction. On both sides of the equations, these values are zero,
so the states must be physically the same.

Using this relation, we can write the state as

|Ψ〉12 =
1√
2

eiϕ (|↑â↓â〉− |↓â↑â〉) ,

whereâ is the direction in which we measure particle 1. Using this basis, we may write

σb̂ = cosθabσâ +sinθabσ⊥,

whereθab is the angle between ˆa andb̂, andσ⊥ is an operator measuring perpendicular to ˆa. It is now easy to see
that

12〈Ψ|σ
(1)
â σ(2)

b̂
|Ψ〉12 =

=
1
2

(〈↑â↓â|− 〈↓â↑â|)e−iϕ
[
σ(1)

â (cosθabσ(2)
â +sinθabσ(2)

⊥ )
]

eiϕ (|↑â↓â〉− |↓â↑â〉)

= −cosθab.

7Clauser Horne Shimony and Holt.
8Bell’s original inequality is discussed in the next subsection (4.2.3).
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2 can be measured either in directionb̂ or in b̂′. Although we cannot measure both ˆa and
â′ simultaneously (nor̂b andb̂′), the fact that we have hidden variables allows us to know
in advance what the result would be (should we make the measurements). We shall use
these “results” to develop the inequality. We shall denote the result of measuringσâ by a
the result of measuringσâ′ by a′ and so on.

The possible results of any measurement (ofσn̂) are only±1, thus (as explained next)
we may write

(a+a′)b+(a−a′)b′ =±2.

This is because either

a+a′ = 0⇒ (a−a′) =±2 (b′ =±1)

or
a−a′ = 0⇒ (a+a′) =±2 (b =±1).

Although we do not know the distribution (of occurrence) of the values+2 and−2 in our
hidden variables theory, we can conclude that we must have9∣∣〈(a+a′)b+(a−a′)b′〉

∣∣≤ 2 (for hidden variables)

or equivalently ∣∣〈ab+a′b+ab′−a′b′〉
∣∣≤ 2 (for hidden variables)

writing this in standard quantum mechanical form we can write∣∣〈σâσb̂ +σâ′σb̂ +σâσb̂′ −σâ′σb̂′〉
∣∣≤ 2 (for hidden variables)

or ∣∣〈σâσb̂〉+ 〈σâ′σb̂〉+ 〈σâσb̂′〉−〈σâ′σb̂′〉
∣∣≤ 2 (for hidden variables).

Each one of the four averages (within the absolute value) can be measured in experiment
and then the inequality checked. This inequality is called theCHSH inequality.

Let us see if QM (always) obeys this inequality. As an example we shall take the case
where all direction are in the same plane such that (see figure4.2.1)

â⊥ â′ , b̂⊥ b̂′ , â· b̂ = cos
π
4

andâ′ · b̂′ = cos
3π
4

.

Since in QM〈σ̂(1)
n̂ σ̂(2)

m̂ 〉= n̂· m̂ then for the above choice we have

â

â′

b̂′ b̂
π
4

π
4

π
4

FIGURE 4.2.1. The geometry used for the example of the CHSH in-
equality violation. The spin of particle 1 is measured either in the ˆa or
the â′ directions, while the spin of particle 2 is measured either in theb̂
or theb̂′ directions.

〈σâσb̂〉= cos
π
4

=
√

2
2

,

〈σâ′σb̂〉= cos
π
4

=
√

2
2

,

9If we have probabilityp2 of +2 occurring and probabilityp−2 = 1− p2 of −2 occurring, then the average
result is ∣∣〈(a+a′)b+(a′−a)b′〉

∣∣= |(+2)p2 +(−2)(1− p2)|= |4p2−2| ≤ 2

(since 0≤ p2 ≤ 1).
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〈σâ′σb̂′〉= cos
π
4

=
√

2
2

,

〈σâσb̂′〉= cos
3π
4

=−
√

2
2

,

and we get ∣∣〈σâσb̂〉+ 〈σâ′σb̂〉+ 〈σâ′σb̂′〉−〈σâσb̂′〉
∣∣= 2

√
2 � 2.

Experiments confirm that QM indeed holds in this case, and therefore QM cannot be a
local hidden variables theory. Again, local here means that every particle has its own set
of hidden variables which determine its behavior, regardless of what the other particles do
(once the hidden variables are determined).

Note, that it can be shown, that for two spins the maximum violation is when the
absolute value equals 2

√
2 as we got here.

4.2.3. Bell’s inequalities.Bell was the first to give a proof that QM contradictslocal
hidden variables. Like CHSH (who came after Bell) he found an inequality which a local
hidden variables theory must obey. Since quantum mechanics does not necessarilyalways
obey the inequality it cannot be alocal hidden variables theory. We shall now develop this
inequality .

Assume two spins emitted with opposite spins, as before. We measure spin 1, either
in directionâ or in directionĉ and we measure spin 2, either in directionb̂ or in directionĉ
(the same ˆc as a for spin 1). We shall denote the results of such measurements asa,b,c1,c2

respectively (ci the result of measuring spini in directionĉ). Since the spins are in opposite
direction we shall use

c≡ c1 =−c2.

Note, that we can measure either of the pairs(a,b), (a,c) or (b,c), but not all three quan-
tities (a, b andc). However, since we assume hidden variables we can know the results of
all three quantities in advance (even if we measure only two of them). Since the spins are
in opposite direction (and the measurements take values of±1) we can write (explained
next)

±a(b−c2) = (1+bc1).
This is true since ifb = c2, thenb = −c1 and both sides give zero. On the other hand,
if b = −c2, then both sides give 2, up to a sign. Since the result has a± on the left and
−1 < 〈bc1〉 < 1 (and therefore 1+ 〈bc1〉 > 0), then taking the average on all possible
hidden variables gives10

|〈ab〉−〈ac2〉| ≤ 1+ 〈bc1〉,
or usingc = c1 =−c2

|〈ab〉+ 〈ac〉| ≤ 1+ 〈bc〉,
The Bell states we already encountered are also calledmaximally entangled. They

are maximally entangled in the respect that they give the maximal violation of the Bell
inequalities

ψ− =
1√
2

(|0〉A|1〉B−|1〉A|0〉B)

ψ+ =
1√
2

(|0〉A|1〉B + |1〉A|0〉B)

φ− =
1√
2

(|0〉A|0〉B−|1〉A|1〉B)

10When we average overa(b−c2), we sometimes add positive values and sometimes negative values, and so
we have

|〈a(b−c2)〉| ≤ 〈|a(b−c2)|〉= 〈|1+bc1|〉= 〈1+bc1〉,
where the last equality is due to the fact that 1+bc1 ≥ 0.
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φ+ =
1√
2

(|0〉A|0〉B + |1〉A|1〉B) ,

4.3. Contextuality11

4.3.1. Definition of Non-Contextuality. Non-contextuality is a hidden variables “the-
ory”. Which assumes:

Non-contextuality: The result of a measurement is independent of whether other
compatible (i.e. commuting) measurements are made. If[A,B] = [A,C] = 0 then
measuringA; measuringA andB ; or measuringA andC would all give the same
result forA.

Functional consistency: If [A,B] = 0 and measuringA,B would give (respectively)
α,β, then measuringf (A,B) would give f (α,β). The result f (α,β) may be
assumed to have been measured even if the measurement was never taken

NOTE. Non-contextuality cannot be tested experimentally since one cannot make the
different measurements on a state: once measure onlyA and once bothA,B. Once a
measurement is made the state collapses other compatible tests, will leaveα (the result
of measuringA) unchanged.

4.3.1.1. Mathematical formulation.Non-contextuality means that one may define a
truth functiont(P), wheret(P) ∈ {0,1} (i.e. a value of either 0 or 1), such that forevery
completeset of orthogonal projections{Pi}

∑
i

Pi = I (PiPj = δi j Pi ,P
†
i = Pi),

the truth function obeys

∑
i

t(Pi) = 1 (t(P) ∈ [0,1]).

The truth functiont tells us in each possible basis (depending on our measuring device)
which value we would measure. The difference between the non-contextuality and the
standard case, is that in the standard case the truth functiont gives the probability and
therefore may return any value between 0 and 1, i.e.t(P) ∈ [0,1].

4.3.2. Contradicting Non-Contextuality. Contradicting non-contextuality is achieved,
not by comparing it to experiments, but rather, by showing that it is logically inconsistent
(assuming a continuous Hilbert space of 3 dimensions or higher). Two theorems to prove
this are the Gleason theorem and the Kochen-Specker theorems (Bell also had one). For a
4-dimensional Hilbert space Mermin

4.3.2.1. The Gleason theorem.Gleason replaced the usual axioms of QM by a smaller
(more abstract) set of axioms:

(1) Elementary tests (yes-no questions) are represented are represented by projectors
in a complex vector space.

(2) Compatible tests (yes-no questions that can be answered simultaneously) corre-
spond to commuting projectors.

(3) If Pu andPv are orthogonal projectors, then the projectorPuv ≡ Pu + Pv has the
expectation value

〈Puv〉= 〈Pu〉+ 〈Pv〉

This new set does not contradict the regular axioms, and therefore any result obtained from
it must also be true for the standard set.

11Largely based on the book of A. Peres[1].
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THEOREM. The above axioms plus continuity of the vector space require that the
expectation value of any Projector P must be of the form

〈P〉= Tr(ρP) ⇒ 〈A〉= Tr(ρA),

whereρ is a non-negative operator with unit trace (i.e. a density matrix) which depends
only on the state of the system; not on the “quantity” measured.

If we now assume that a truth functiont indeed exists then it must obey〈P〉 = t(P).
However, contrary to the truth function (in non-contextuality) which returns discrete values
(0 or 1), it is clear that the function〈P〉 = Tr(ρP) would return a continuous spectrum of
values (if the projectionsP are continuous). This gives a contradiction and therefore non-
contextuality contradicts Gleason’s axioms and thus also the standard axioms of QM.

4.3.2.2. The Kochen-Specker theorem.

THEOREM. In a Hilbert space of 3-dimensions or higher, it isimpossibleto define a
truth function t which associates a value of either0 or 1 with every possible projection P
such that if

∑
i

Pi = I and [Pi ,Pj ] = 0,

then

∑
i

t(Pi) = 1 where t(Pi) ∈ {0,1}

PROOF. (Due to Peres)
We start by proving the theorem for the case of 3 dimensions. Instead of referring

to projections one may use the vectors defining them: ifu is a vector, then it defines
the projectionPu ≡ uu†. More precisely, it is sufficient to refer to rays, since the length
(including negative lengths) plays no role. A complete set of commuting projections may
therefore be defined by a complete set of orthogonal states/vectors/rays. the truth function
t associates with each such ray a value of either 0 or 1.

The proof of the theorem has the following general form:

• Choose several complete sets of orthogonal rays, some of them sharing the same
rays (but of course not sharing all of the rays). The same ray, in different sets,
must of course correspond to the same value of the truth-functiont, in all sets.

• Since some sets share rays, this creates constraints on the truth values allowed in
different sets. The proof shows, that these constraints cannot all be maintained
without a creating a contradiction (for all possible truth functions).

Since the 3-dimensional Hilbert space is isomorphic toR
3 we may work inR3. We shall

study here only 33 different rays13. The possible values of the ray components treated will
be 0,±1,±

√
2, where for simplicity of notation

√
2 will be denoted as 2; and−1, −

√
2

will be denoted as̄1, 2̄ respectively. Note that the 33 rays are not all the possible rays one
can construct using the given components (for example the ray 111 won’t be used). One
important feature of the set of rays is that it has the rotation symmetry of a cube. The proof
is given in the following table. In each row a set of three orthogonal rays are given under
the “Orthogonal triad”; one of these must correspond to a truth value of 1 (referred to as
green) and the other two must correspond to a truth value of 0 (referred to as red). The
green (truth value 1) ray is written first in bold-face and then the other two (red — truth
value 0). If the red rays have already been mentioned in a previous row they are written in
italics. If needed later, more rays, orthogonal to thegreen(truth value 1) ray are also given
under the column “Other rays”. These extra rays must be red (truth value 0), since they are
orthogonal to to the green ray. The third column explains why the first ray was chosen as
green.

13This is a subset of all possible rays but it suffices to show a contradiction.
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Orthogonal triad Other rays The first ray isgreenbecause of

001 100 010 110 1̄10 arbitrary choice ofz axis
101 1̄01 010 arbitrary choice ofx vs.−x
011 01̄1 100 arbitrary choice ofy vs.−y
11̄2 1̄12 110 2̄01 021 arbitrary choice ofx vs. y
102 2̄01 010 2̄11 orthogonality to 2nd and 3rd rays
211 01̄1 2̄11 1̄02 orthogonality to 2nd and 3rd rays
201 010 1̄02 1̄1̄2 orthogonality to 2nd and 3rd rays
112 11̄0 1̄1̄2 02̄1 orthogonality to 2nd and 3rd rays
012 100 0̄21 12̄1 orthogonality to 2nd and 3rd rays
121 1̄01 1̄21 01̄2 orthogonality to 2nd and 3rd rays

From the table, the rays 100 (first row), 021 (fourth row), and 01̄2 (last row) are all red
(truth value 0). However these three rays are all orthogonal to one another. This cre-
ates a contradiction since this gives∑ t(u) = 0 instead of∑ t(u) = 1, as required by non-
contextuality for complete orthogonal rays/vectors/states.

The proof so far has been for 3 dimensions; for higher dimensionsd > 3 one can use
the same proof14 but addd−3 rays which are orthogonal to all the 33 used above (after
adding to all the rays hered−3 components of 0, in order to make themd-dimensional).
The same d− 3 rays are added to the orthogonal sets of each row in the table (making
each a set ofd orthogonal rays). These newd−3 rays are always red (truth value 0) due
to the first row. Since, fundamentally, the same table is used, then the same contradiction
appears. �

4.3.2.3. Mermin’s proof (4 dimensions).Mermin has given a simple proof contradict-
ing the premises of non-contextuality in 4 dimensions. He examined the following array
of operators15

1⊗σz σz⊗1 σz⊗σz

σx⊗1 1⊗σx σx⊗σx

σx⊗σz σz⊗σx σy⊗σy

.

In this array all the operators have eigenvalues of±1, and the three operators in each row,
as well as in each column, commute with each other. Further more, the product of the first
two operators (from the left) in each row, and the first two (from the top) in each column,
give the third operator in the row/column. The only exception, is in the final column, where
the product gives−σy⊗σy instead of−σy⊗σy.

Now, if non-contextuality is possible, then by choosing the values (±1) for the four
operators determines the values for the rest of the array [e.g. if1⊗σz would return 1 and
σz⊗ 1 would return−1, thenσz⊗σz = (1⊗σz)(σz⊗ 1) would return−1 = 1 · (−1)].
However, since the product of the first two operators in the lower row (σy⊗ σy) gives
minus the product of the first two operators in the third column (−σy⊗σy), then there is
no possible choice of values±1 which will not lead to a contradiction. Mathematically, if

14For 4 dimensions there is also a different proof using only 24 rays.
15Reminder: The Pauli matrices are

σx =
(

0 1
1 0

)
; σy =

(
0 −i
i 0

)
; σz =

(
1 0
0 −1

)
,

and they obey the relations
σ2

x = σ2
y = σ2

z = 1

σxσy = iσz ; σyσx =−iσz ⇒ [σx,σy] = 2iσz,

σzσx = iσy ; σxσz =−iσy ⇒ [σz,σx] = 2iσy,

σyσz = iσx ; σzσy =−iσx ⇒ [σy,σz] = 2iσx,

which may be summarized by
σiσ j = δi j1+ iεi jk σk.
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there exist a value functionV which gives the value of the operator thatwould have been
measured, then using the assumption of functional consistency premise on the last row
gives

V(σy⊗σy) = V(σx⊗σz)V(σz⊗σx) = [V(1⊗σz)V(σx⊗1)][V(σz⊗1)V(1⊗σx)]
= V(1⊗σz)V(σx⊗1)V(σz⊗1)V(1⊗σx).

On the other hand, using functional consistency on the last column gives

V(σy⊗σy) = −V(σz⊗σz)V(σx⊗σx) =−[V(1⊗σz)V(σz⊗1)][V(σx⊗1)V(1⊗σx)]
= −V(1⊗σz)V(σx⊗1)V(σz⊗1)V(1⊗σx).

Thus we have found thatV(σy⊗σy) =−V(σy⊗σy) which is impossible since the eigen-
values of all our operators (and hence the allowed values to be measured) are±1. This
contradiction means once again that the assumptions of non-contextuality are contradict
quantum mechanics.



CHAPTER 5

Uses of Entanglement

5.1. Encoding information

Recall the four Bell states (which are maximally entangled)

ψ− =
1√
2

(|0〉A|1〉B−|1〉A|0〉B) ,

ψ+ =
1√
2

(|0〉A|1〉B + |1〉A|0〉B) ,

φ− =
1√
2

(|0〉A|0〉B−|1〉A|1〉B) ,

φ+ =
1√
2

(|0〉A|0〉B + |1〉A|1〉B) .

These four states span the whole Hilbert space of two spin1
2 particles.

We now define two operatorsB1 andB2

B1 ≡ σA
x σB

x ,

B2 ≡ σA
z σB

z ,

which commute1

[B1,B2] = 0.

Each of these two operators have two eigenvalues of±1

Bell state eigenvalueB1 eigenvalueB2

ψ+ +1 −1
ψ− −1 −1
φ+ +1 +1
φ− −1 +1

We see that measuring a single operator, cannot distinguish between the four Bell
states, but measuring both operators (they commute) determines a single state (see which
eigenvalues are measured for each operator and compare to the above table). The only
problem is that the two operatorsB1 andB2 are both non-local: they operate simultaneously
on both particleA and on particleB (even when they are far away).

We saw that we can encode 2 bits of information (the eigenvalue ofB1 and eigenvalue
of B2) in the four Bell states. Now, let us assume that Charlie creates one of the four Bell
states and gives one particle (particleA) to Alice and one to Bob (particleB). We might
ask whether Alice and Bob can determine the given state using onlylocal operations(LO)
andclassical communication(CC) where local operations means that Alice can use any
operator which operates only on particleA (and maybe other particles which belong to
Alice) and Bob can perform any operation which operates only on particleB (and maybe

1They commute since we are dealing with two particles and not just one. Usingσzσx = −σxσz = iσy, we
find that

[σA
x σB

x ,σA
z σB

z ] = σA
x σB

x σA
z σB

z −σA
z σB

z σA
x σB

x

= i2σA
y σB

y − (−i2)σA
y σB

y = 0.
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other particles which belong to Bob).2 Classical communication means that Alice and Bob
may transmit classical bits between them, but not qubits (Alice can’t send particleA to
Bob, but she can pass a sheet of paper saying what was the result of her measurement+1
or −1). The combination of both local operations and classical communication is often
denoted asLOCC.

Using only local operations, the best that Alice and Bob can do is extract a single bit
of information. They can either both measureσz on their particles and compare results,
or both measureσx and compare results. In theσz case, if both get a spin in the same
direction, they know that the Bell state is eitherφ+ or φ−. On the other hand if the get
results of opposite directions they know that the Bell state is eitherψ+ or ψ−. If however,
they measure in theσx direction, then if their results are in the same direction, the Bell
state is eitherψ+ or φ+. Otherwise the Bell state is eitherψ− or φ−.3 Since they are both
performing local operations, thenσx andσz do not commute (unlikeσA

x σB
x andσA

z σB
z ) and

therefore they cannot do both types of measurements and find the specific Bell state.
We conclude therefore that using only local operations and classical communication

Alice and Bob can extract only a single bit of information.

5.2. Data hiding

Assume that Charlie has one bit of information which he wants to hide from Alice and
Bob, where Alice and Bob may only perform local operations and use classical communi-
cation. One method of doing this4 is if Charlie producesn states, each selected randomly
(equal probability) from the four Bell states and gives Alice the first qubit of each pair and
Bob the second qubit of each pair. Charlie encodes his bitb by making sure thatψ− appear
an odd number of times ifb = 0 and appear an even number of times ifb = 1.

It can be shown that by performing measurements, Alice and Bob have a chance of(
1
2

)n
to find withcertaintythe bitb.

5.3. Cryptography

Lets assume that Alice and Bob want to communicate (send messages between them),
but that Eve wants eavesdrop to their messages. Alice and Bob of course want to prevent
this.

The solution to this problem is simple, and is the same classically and QM (we shall
see the difference later on). First, Alice and Bob agree (before hand) on a common keyK
which is a sequence ofL bits, e.g.

K = 01100. . .1.

2In theHA⊗HB Hilbert space, a local operation of Alice would be written as

UA⊗1B,

and similarly for a local operation of Bob.
3Using

|↑x〉= 1√
2
(|↑z〉+ |↓z〉)

|↓x〉= 1√
2
(|↑z〉− |↓z〉)

⇒
|↑z〉= 1√

2
(|↑x〉+ |↓x〉)

|↓z〉= 1√
2
(|↑x〉− |↓x〉)

one finds that

ψ− =
1√
2

(|↓x〉A|↑x〉B−|↑x〉A|↓x〉B) ,

ψ+ =
1√
2

(|↑x〉A|↑x〉B−|↓x〉A|↓x〉B) ,

φ− =
1√
2

(|↑x〉A|↓x〉B + |↓x〉A|↑x〉B) ,

φ+ =
1√
2

(|↑x〉A|↑x〉B + |↓x〉A|↓x〉B) .

4Terhal, DiVincenzo and Leung quan-ph/0011042.
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Now, in order to encrypt her messageM e.g.

M = 01010. . . ,

Alice performs a xor5 operation on her message and key K and generates a new message
M′, e.g.

M′ = M⊕K =

0 1 0 1 0 . . .
0 1 1 0 0 . . .

0 0 1 1 0 . . .
.

Since Eve doesn’t know the key she cannot decipher the message, however Bob which does
know the key may perform another xor on the sent messageM′ and retrieve the original
messageM.

The only problem left for Alice and Bob is how to generate the key without Eve
learning it as well (they must transmit messages which Eve might intercept). We shall now
use quantum mechanics to generate such a key. The problem is known asquantum key
sharing.

Let us assume that Charlie (not Eve) produces entangled states in theψ− Bell state

ψ− =
1√
2

(|0〉A|1〉B−|1〉A|0〉B) ,

and each times sends one (qubit) of the pair to Alice and the second (qubit) to Bob. Alice
and Bob can measure their qubits in thez-direction, the result will random but correlated
(if Alice gets “up” the Bob gets “down” and vice versa) and so they can create their key.
However Eve, since she knows the direction Alice and Bob measure in, can learn the key
with out Alice and Bob finding out about it. She Basically has to measure the spin in the
z-direction of Bob’s (or Alice’s) particle and then let it pass on to Bob (or Alice). Bob will
measure the same result as Eve (due to the collapse) and this result will be correlated to
Alice’s result).

Let us assume however that making a measurement destroys the particle (but unitary
operators, do not), can Eve still measure the spin without Alice and Bob knowing about it?
Yes she can. Assume that Eve has her own spin1

2 particle in the “up” state. The total state
(Alice Bob and Eve) will now be

|ψ0〉ABE =
1√
2

(|↑〉A|↓〉B−|↓〉A|↑〉B) |↑〉E.

We are now looking for a unitary operator such that

|ψ0〉ABE
UAE−−→ 1√

2
[(|↑〉A|↑〉E) |↓〉B− (|↓〉A|↓〉E) |↑〉B] .

This transformation leaves particleE unaffected ifA is in the spin up state, and it flips the
spin of particleE if A is in the down state. It can be written explicitly as6

UAE = UCNOT = |↑〉AA〈↑|⊗1E + |↓〉AA〈↓|⊗σE
x

=
1
2
(1A +σA

z )⊗1E +
1
2
(1A−σA

z )⊗σE
x

5The xor operation is denoted by⊕ and is addition modulo 2 i.e.

0⊕0 = 0

0⊕1 = 1⊕0 = 1

1⊕1 = 0.

6Recall that
σx|↑z〉= |↓z〉 ; σx|↓z〉= |↑z〉.
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or in matrix form

UCNOT =
(

1 0
0 0

)
⊗
(

1 0
0 1

)
+
(

0 0
0 1

)
⊗
(

0 1
1 0

)
=


1 0
0 1

0

0
0 1
1 0

 .

This unitary operator is known as acontrolled-not(CNOT). The particleA which does not
change (but determines howE will change) is called thecontrol, while particleE which
may change is called thetarget. The CNOT is symbolized as

|ψA〉

|ψE〉 target

control

.
Another way to write the CNOT is to useUCNOT= 1

2(1A+σA
z )⊗1E + 1

2(1A−σA
z )⊗σE

x ,
which can also be written as

UCNOT = 1A⊗1E−
1
2
(1A−σA

z )(1E−σE
x ).

Now, sinceσ2
k̂
= 1 then

(1−σk̂)
2 = 2(1−σk̂)⇒ (1−σk̂)

n = 2n−1(1−σk̂) (n 6= 0).

Therefore we can write7

UCNOT = e−i π
4 (1A−σA

z )(1E−σE
x ).

We now return to the key sharing problem. We saw that if Eve knows in which direction
Alice and Bob measure their spins, then she can find out the key, without them knowing
about it.8 This is true as long as Alice and Bob always measure in thez-axis. If they
suddenly switch to measuring in thex-axis (and Eve keeps using the same CNOT) then
they will now see that someone is interfering since they will now find that

〈σA
x σB

x 〉= 0

if Eve is using the previous CNOT, where as if Eve is not listening then they would find

〈σA
x σB

x 〉=−1.

What Alice and Bob can do therefore is to measure their spins in random direction
independent of the other: Alice chooses randomly on her side in which direction to mea-
sure,x or z, and Bob chooses randomly on his side if to measure in thex or z direction.
After performing all the measurements Alice and Bob Publish in the open the direction
and result of some of their measurements (but not all). From those measurements which
they both performed in the same direction they find the average of the product. If it is−1
then with a good probability, Eve did not listen in, and if it is closer to 0 then Eve did listen
in (neglecting noise in the system). If they conclude that Eve did not listen in, they can

7SinceσA
z ,σB

x each commute with themselves and with each other, we may write

UCNOT = e−i π
4 ei π

4 σA
z ei π

4 σE
x e−i π

4 σA
z σE

x .

The operatorsei π
4 σA

z andei π
4 σE

x , are local operations, ande−i π
4 is just a phase. Therefore, up to local operations

and a phase we may write that

UCNOT = e−i π
4 σA

z σE
x (up to local operations and a phase).

8We can take the partial trace over Eve’s particle and we’ll get different reduced density matricesρAB if Eve
used the CNOT and if she hadn’t. However

Tr(ρABσA
z σB

z ) =−1

in both cases, so Alice and Bob cannot know that Eve has been listening (and if one gets “up” the second will
measure “down” so they cannot in fer from this any change).



5.4. TELEPORTATION 67

publish the rest of the directions they measured in (but this time without the results). From
the measurements which they both made in the same direction the can now produce the
keyK.

Alice and Bob can achieve the previous protocol even without having entangled states
between them. Alice can create spins in one of the four states

|↑z〉, |↓z〉, |↑x〉, |↓z〉.
She then sends them to Bob who measures them randomly in either thex direction orz
direction. From here on the protocol is the same as before (except that this time if Alice
and Bob measure/create in the same direction they will find the same result, both “up”
or both “down” unlike the previous protocol, in which if Alice measured “up” then Bob
measured “down” and vice versa).

5.4. teleportation

Assume that Alice and Bob have an entangled state|φ+〉ab between them

|φ+〉ab =
1√
2

(|0〉a|0〉b + |1〉a|1〉b) .

Now, Alice has a third particleA in state|ψ〉
|ψ〉A = α|0〉A +β|1〉A,

and she wants to pass the state itself (not the particle) to Bob.9 The sate of the whole system
(all three particles) is|ψ〉A|φ+〉ab, however it can also be written as10

|ψ〉A|φ+〉ab = (α|0〉A +β|1〉A)
1√
2

(|0〉a|0〉b + |1〉a|1〉b)

=
1√
2

(α|0〉A|0〉a|0〉b +α|0〉A|1〉a|1〉b +β|1〉A|0〉a|0〉b +β|1〉A|1〉a|1〉b)

=
|φ+〉Aa+ |φ−〉Aa

2
α|0〉b +

|ψ+〉Aa+ |ψ−〉Aa

2
α|1〉b

+
|ψ+〉Aa−|ψ−〉Aa

2
β|0〉b +

|φ+〉Aa−|φ−〉Aa

2
β|1〉b

=
1
2
|φ+〉Aa(α|0〉b +β|1〉b)+

1
2
|ψ+〉Aaσb

x(α|0〉b +β|1〉b)

+
1
2
|ψ−〉Aa(−i)σb

y(α|0〉b +β|1〉b)+
1
2
|φ−〉Aaσb

z(α|0〉b +β|1〉b)

=
1
2

[
|φ+〉Aa|ψ〉b + |ψ+〉Aaσb

x|ψ〉b + |ψ−〉Aa(−i)σb
y|ψ〉b + |φ−〉Aaσb

z|ψ〉b
]
.

We see now that if Alice makes a measurement in the basis of the Bell states of particles
a,A then particleB would collapse to one of the states of the formσb

i |ψ〉b (i = 0,1,2,3
whereσ0 = 1).11 The result of Alice’s measurement is two bits (the two bits needed to
determine which of the four Bell states she found). Alice can send the two bits to Bob,

9We may assume that particlesa,b,A are of different types or of similar types - there is no restriction.
10Recall that

|ψ−〉Aa≡
1√
2

(|0〉A|1〉a−|1〉A|0〉a) ,

|ψ+〉Aa≡
1√
2

(|0〉A|1〉a + |1〉A|0〉a) ,

|φ−〉Aa≡
1√
2

(|0〉A|0〉a−|1〉A|1〉a) ,

|φ+〉Aa≡
1√
2

(|0〉A|0〉a + |1〉A|1〉a) .

11OK, for i = 2 the state isiσb
y|ψ〉b not σb

y|ψ〉b.
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who can then perform on his particleb the appropriate inverse operator (in this case the
sameσi). After this operation Bob will hold in his hand particleb in a state which was
previously associated with particleA held by Alice.

the following things should be noted:

• The thing that was passed between Alice and Bob (besides the two bits of infor-
mation), was a state, not a particle. The state which once described particleA
now describes particleb.

• the no-cloning theorem still holds. After the process, the particleA is no longer
in its original state but in an entangled state witha.

• The two bits of information we use are completely random (since the collapse
is random to one of four possible states). So they are not the ones carrying the
information.

• Although Alice sent Bob two bits of information, Bob was able to extract two
continuous variables (α and β). However, Bob never knows what these two
variables were. He only knows that they were passed correctly.

One consequence of teleportation is that allows one to do non-local operations (assume
you have an entangled state). Simply teleport one state to a particle in the vicinity of the
second particle, make the measurement there (locally) and then teleport back the new state
of the particle.

5.5. Ramsey spectroscopy

5.6. Remote operations

To our list of types of bits we now add the ebit which is simply an entangled state.
By changing the basis we choose for each particle (or equivalently performing a unitary
operation non each) we can always bring to the Bell state|φ+〉

ebit=
1√
2
(|0〉|0〉+ |1〉|1〉).

Bennett wrote “equations” which describe the different process. The “equations” were
constructed from ebits, qubits and (classical) bits. For example for teleportation one needs
an entangled state and to pass two classical bits (the result of Alice’s measurement on her
two states). Since teleportation is actually the communication of one qubit (the state, not
the particle is passed from Alice to Bob), then it can be written as

1ebitAB+2bitA→B ⇒ 1qbitA→B.

One could also use teleportation to create an entangled state. Simply do a local operation
(say a CNOT) on two particles and entangle them. Then teleport the state of one of them
to a distant particle and you have two distant entangled particles. This would be written as

teleportation⇒ ebitAB.

Dense coding may also be described in this manner. In dense coding we started with an
entangled state, Alice then performed a local operation on her particle (encoded two bits in
to it) and then sent the particle to Bob (equivalent to teleportation). In Bennett’s language
this would be written as

teleportationA→B +ebitAB⇒ 2bitA→B.

In quantum computation we would like to create interactions between distant particles,
i.e. non-local (or remote) operations. However, the rules of the game are as follows:

Locality: Only local operations are allowed. This includes local unitary operators
and local measurements. Note that local operation alone cannot create entangle-
ment.
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Classical communication: Only classical communication is allowed between our
systems (only passing of classical bits). It is not allowed to exchange quantum
particles (i.e. not allowed to exchange qubits). Note that classical communica-
tion together with local operations, still cannot create entanglement.

Entanglement resources:There are pairs of particles in entangled states, ready to
be used. These pairs are given/prepared before the beginning of the calculation
and no more pairs may be added after the start of the calculation.

Given the rules of the game we would like to create protocols that will produce the effect of
non-local unitary operations. These protocols must give the desired operator regardless of
the state we perform the operation on. Such a process will require both the use of entangled
pairs (ebits) and the communication of classical bits (usually random ones).

One simple method of doing any non-local operation is with two teleportations. Sim-
ply teleport one state to the locality of the second perform a local operation on the two and
then teleport the state of one particle back (note that the resultant state will not be back
on the original state, but rather on a new one). Such a procedure (two teleportations) will
require from us to use 2 ebits and send 4 bits of classical information (1 ebit and 2 bits for
each teleportation - see above).

We would like to see if we can do this more efficiently. We shall study the CNOT
operation. We shall see that one teleportation and one classical bit suffice to create a
CNOT.

CLAIM . A CNOT is equivalent to a teleportation in the sense that

CNOT+1 bitA→B ⇒ teleportA→B,

teleportA→B +1 bitA→B ⇒ CNOT.

PROOF. To prove the claim we assume an initial state

|ψ〉A|0〉B ≡ (α|0〉A +β|1〉A) |0〉B.

If we perform a remote CNOT, with|ψ〉A as the control then we get

CNOT|ψ〉A|0〉B ≡ α|0〉A|0〉B +β|1〉A|1〉B

= α
|↑x〉A + |↓x〉A√

2
|0〉B +β

|↑x〉A−|↓x〉A√
2

|1〉B

=
1√
2
|↑x〉A (α|0〉B−β|1〉B)+

1√
2
|↓x〉A (α|1〉B +β|0〉B) .

Now if Alice measuresσx of particleA and sends the result (1 bit) to Bob, then Bob can
perform on his particleσz if Alice measured “up” or performσx if Alice measured “down”.
By doing this particleB will now be in stateψ and we have teleportation, where we have
used a remote CNOT and a transfer of 1 classical bit of information (the result of Alice’s
measurement).

For how to do the opposite: create a CNOT using teleportation and a single bit see the
stator below (creating a stator). �

5.7. State-operators (stators)12

We define astate-operator, or for shortstator, as a “creature” which is a combination
of states in one Hilbert space and operators in another. Generally speaking it will be written
as

S= ∑ci |i〉A⊗OB
i ,

12See also: quant-ph/0107143
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where the|i〉A are states in the Hilbert spaceHA (of say, particleA), andOB
i are operators

which operate on (states in) the Hilbert spaceHB. Thus, when the stator is applied to a
state inHB, the result is a state inHA⊗HB:

S|ψ〉B ∈HA⊗HB (|ψ〉B ∈HB).

Here, we shall be interested in pairs of operators which obey14

AS= BS,

whereA operates onHA andB operates onHB. Such pairs do not necessarily consist of two
Hermitian operators, but we shall be interested in the cases where they do. For example
for

S= |0〉A⊗1B + |1〉A⊗σB
z ,

we have
σA

x S= σB
z S.

When a pair of operatorsA,B does indeed obey the relation

AS= BS,

then necessarily15

AnS= BnS,

and therefore (using a Taylor expansion)

f (A)S= f (B)S.

Specifically, forA andB which are also Hermitian, we have

eiαAS= eiαBS,

whereeiαA andeiαB are now unitary operators (sinceA,B are Hermitian).
Now, let us assume that Alice has a (unitary) operatorUα = eiασA

x , and Bob wants to
use thesameparameterα in applyingeiασB

z on his particle.16 To do this we shall use our
previous stator

S= |0〉A⊗1B + |1〉A⊗σB
z .

We start by Alice applying her operator on the statorS, i.e. performing

UαS= eiασA
x S.

For the specific statorS chosen here, we haveσA
x S= σB

z S= SσB
z , and therefore we can

write
eiασA

x S= SeiασB
z .

Thus we get (for any|ψ〉B)

UαS|ψ〉B = SeiασB
z |ψ〉B =

(
|0〉A⊗1B + |1〉A⊗σB

z

)
eiασB

z |ψ〉B.

14As we shall see, we are actually interested in

AS= SB.

15SinceA,B operate on different regions (on different Hilbert spaces), then they necessarily commute. To be
more exact, we should writeA⊗1B and1A⊗B instead ofA andB. With this notation it is clear that

(A⊗1B)(1A⊗B) = A⊗B = (1A⊗B)(A⊗1B) .

Now, if AS= BSand as we sawAB= BA, then we have

A2S= A(AS) = ABS= B(AS) = B2S,

and by induction
AnS= BnS.

16Note, that Bob does not know the valueα which Alice is holding. However, he wants to use the sameα for
his own operation.
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To finish the process, Alice measures her spin and sends the result to Bob. The measure-
ment causes a collapse into one of the two states

(|0〉A⊗1B)eiασB
z |ψ〉B = |0〉A⊗eiασB

z |ψ〉B (Alice measured 0),

or (
|1〉A⊗σB

z

)
eiασB

z |ψ〉B = |1〉A⊗σB
z eiασB

z |ψ〉B (Alice measured 1).

Now, if Alice measured 0 (and sent this to Bob), then Bob knows that he haseiασB
z |ψ〉B on

his side, which is just what he wanted. However, if Alice sent Bob a 1, then Bob knows
that he hasσB

z eiασB
z |ψ〉B on his side. Bob must therefore fix his state (get rid of the extra

σB
z operator). He does this by performing anotherσB

z on it (sinceσ2
z = 12×2), ending again

with the desired resulteiασB
z |ψ〉B.

We have thus seen that by using the statorS, together with Alice sending a single
classical bit (0 or 1 — which Bob used to perform the right corrections), Bob was able
to applyeiασB

z on his side, whereα is any real number chosen by Alice (and unknown to
Bob).

The methods just used may be generalized to also achieve a remote CNOT (up to local
operations and a phase)

U"CNOT" = e−i π
4 σA

z σB
x (A CNOT up to local operations and a phase).

To do this we generalize our stator to

S= |↑x〉a⊗1AB+ |↓x〉a⊗
(
σA

z σB
x

)
,

which obeys
σa

zS= σA
z σB

x S= SσA
z σB

x .

Therefore, if Alice appliese−i π
4 σa

z , we get

e−i π
4 σa

xS= Se−i π
4 σA

z σB
x .

Thus, as in the previous case

e−i π
4 σa

xS|ϕ〉A|ψ〉B = Se−i π
4 σA

z σB
x |ϕ〉A|ψ〉B

=
(
|↑x〉a⊗1AB+ |↓x〉a⊗σA

z σB
x

)
e−i π

4 σA
z σB

x |ϕ〉A|ψ〉B.

Alice then measures the spin in thex direction of particlea. If she finds “up”, then Alice
performsσA

z on particleA and Bob performsσB
x on his particleB. Otherwise they do

nothing. In both cases the final result is the operatione−i π
4 σA

z σB
x on the remote (from each

other) particlesA andB.

5.7.1. Creating a stator. Assume a general, two-level system, unitary operatorU .
We wish to construct a stator of the form17

S= |0〉A⊗1B + |1〉A⊗UB.

We start with three particles, an ancillab and the two particlesA,B. We start with the
configuration

|Ψ〉=
1√
2
(|0〉A|0〉b + |1〉A|1〉b)|ψ〉B,

17To create the more general stator

S= |0〉A⊗UB0 + |1〉A⊗UB1

we simply need

S= S′UB0 =
[
|0〉A⊗1B + |1〉A⊗

(
UB1U

−1
B0

)]
UB0.
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where particlesA,b are entangled in advance. Bob performs a local “CNOT” between
particlesB andb (particleB is the target) and we get

1√
2
(|0〉A|0〉b + |1〉A|1〉b)|ψ〉B

CNOTBb−−−−−→ 1√
2
(|0〉A|0〉b + |1〉A|1〉bUB)|ψ〉B.

We now write particleb in thex basis

1√
2
(|0〉A|0〉b + |1〉A|1〉bUB)|ψ〉B =

1
2
(|↑x〉b + |↓x〉b)|0〉A|ψ〉B +

1
2
(|↑x〉b−|↓x〉b)|1〉AUB|ψ〉B

=
1
2
|↑x〉b

(
|0〉A + |1〉AUB) |ψ〉B +

1
2
|↓x〉b

(
|0〉A−|1〉AUB) |ψ〉B.

Bob, now measures the spin of his ancillab in thex direction. Thus collapsing the system
into one of the states

1√
2
|↑x〉b

(
|0〉A + |1〉AUB) |ψ〉B σb

x = "up",

1√
2
|↓x〉b

(
|0〉A−|1〉AUB) |ψ〉B σb

x = "down".

Now, Bob sends the result of his measurement to Alice, who accordingly decides,
whether to perform aσA

z on her system (ifσb
x = "down") or if to do nothing (σb

x = "up").
We can now disregard the particleb, and since this process was done for any general|ψB〉,
then we can say that we performed the statorS.

The creation of a CNOT using a teleportation and a single bit is very similar. The only
difference is that instead of starting with an entangled pair, we create it using teleportation
(begin with two spins, locally entangle them and then teleport one to Alice/Bob).

5.8. POVM (Positive Operator Valued Measures)

When we perform regular measurements we cause the state of the system to collapse.
We would like to avoid this collapse. To do this we use an auxiliary particle, called an
ancilla, which we first interact with the system, and after words measure it - thus collapsing
the the ancilla and not the system.

We shall first review the standard Von Neumann measurements. In these measure-
ments, the operator describing the quantity measured is

A = ∑λiΠi ,

whereΠi is a projection on one of the orthogonal subspacesi

∑Πi = 1,

ΠiΠ j = 1δi j ,

and whereλi is the eigenvalue associated with the subspace whichΠi projects on to. When
we make a measurement the result is one of theλi , and for such a result the state|ψ〉 of the
system collapses toΠi |ψ〉 times a normalization

|ψ〉 measureA−−−−−→ Πi |ψ〉
〈ψ|Πi |ψ〉

.

If we start with a mixture (a density matrix), then

ρ measureA−−−−−→ ΠiρΠi

Tr(Πiρ)
.

We now turn to the new type of measurements. We start adding an auxiliary particle,
an ancilla, in aknownstate

|Ψ〉tot = |ψ〉sys|0〉a.
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We shall assume that the ancillaa belongs to a Hilbert space of dimensionNa, and therefore
in some orthonormal base (which|0〉a belongs to)

Na

∑
µ=1

|µ〉aa〈µ|= 1a.

We now cause the ancilla and our system to interact for a short time. The effect of this
interaction may be described by a unitary operatorU which operates on bothU |Ψ〉tot. This
can also be written as

U |Ψ〉tot = 1aU |Ψ〉tot =

(
∑
µ
|µ〉aa〈µ|

)
U |0〉a|ψ〉sys

= ∑
µ

(a〈µ|U |0〉a) |µ〉a|ψ〉sys.

If we now define theKraus operatorKraus

Mµ≡ a〈µ|U |0〉a,
which operates on the Hilbert space of the system, then the last equation may be written as

U |Ψ〉tot = ∑
µ

Mµ|µ〉a|ψ〉sys.

If we now measureµ for the ancilla, then the state would collapse to a singleµ

U |Ψ〉tot
measuredµ−−−−−−→ |µ〉aMµ|ψ〉sys,

this would occur with a probability prob(µ)

prob(µ) = tot〈Ψ|U†|µ〉aa〈µ|U |Ψ〉tot

= sys〈ψ|M†
µMµ|ψ〉sys.

Since the sum of probabilities (for allµ) must be 1, then

1 = ∑
µ

prob(µ) = sys〈ψ|

(
∑
µ

M†
µMµ

)
|ψ〉sys,

or (since this is true for any|ψ〉sys ) simply19

∑
µ

M†
µMµ = 1sys.

In analogy to the Von Neumann measurements, we may now write, for measurements
using an ancilla

|ψ〉sys
measuredµ−−−−−−→Mµ|ψ〉sys (not normalized),

ρ measuredµ−−−−−−→
MµρM†

µ

Tr(MµρM†
µ)

,

Fµ≡M†
µMµa positive operator (∑

µ
Fµ = 1sys),

prob(µ) = Tr(Fµρsys),
where in the first equation we look (after the measurement) only at the system itself and dis-
regard the ancilla, and whereM†

µMµ is a positive operator since we saw that prob(µ)= sys〈ψ|M†
µMµ|ψ〉sys.

Probability is always non-negative, and|ψ〉syscould be any state, and thereforeM†
µMµ must

be a positive operator (M†
µMµ is clearly Hermitian, which is also a necessary condition).

19This could also be found directly from the definition of theMµ

∑
µ

M†
µMµ = ∑

µ
a〈0|U†|µ〉aa〈µ|U |0〉a = a〈0|U†U |0〉a = 1sys.
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SinceFµ ≡ M†
µMµ is a positive operator, then it is called apositive operator valued

measureor POVM for short.
We see that we got a very similar behavior to that of the Von Neumann measurements,

where the Kraus operatorsMµ replace the projectionsΠi . The only difference is that, here,
the Kraus operators are not necessarily orthogonal, and as a consequence the number of
eigenvaluesµ may exceed the number of dimensions of the Hilbert space of the system
itself (the dimensionNa of the space of the ancilla is arbitrary).

Note, that it may be shown that if there exists operatorsMµ that obey the above rules,
then there exists an appropriate ancilla for the system.

An important difference between regular (Von Neumann) measurements and the POVM
ones, is that in the latter case, the results are not eigenvalues of an operator and the system
alone, but rather of an operator and the system together with the ancilla. However, one can
find correlations between the measuredµ and the state of the system.

5.8.1. Neumark’s theorem (without proof). We have just seen that by adding an
ancilla and thus enlarging our Hilbert space we could reach the POVM formalism. The
contrary is also true, given ann dimensional Hilbert space with a POVM set ofN ele-
ments (Fµ, µ = 1, . . . ,N), then we can always realize it as standard measurements in anN
dimensional Hilbert space.20 This theorem is known asNeumark’s theorem.

5.8.2. Distinguishing between non-orthogonal states.This is especially good for
distinguishing between non-orthogonal states of the system, as is shown next.

Assume two non-orthogonal states of a system

|ψ1〉= |↑x〉 ; |ψ2〉= |↑z〉=
|↑x〉+ |↓x〉√

2
.

We know that they have the same probability1
2 to occur (there are no other possibilities),

and we wish to know which one has occurred (in which state the particle we are holding
out of the ensemble is). If we measureσx, then we may get two results. If we findσx = 1
(probability 1

2 + 1
2 ·

1
2), we cannot deduce anything since both|↑x〉 and|↑z〉 have a non zero

part which is|↑x〉. If however we measureσx = −1 (probability 1
2 ·

1
2) then we know for

certain that the particle was in state|↑z〉 (since only it has a non-zero component in the
“down” x direction). Thus we see, that by using a standard measurement we will know, for
certain, the state of the system only in1

4 of the cases.21 In other words we do not no the
answer for certain, in34 of the measurements.

Now, instead of making standard measurements, let us define

F1 = λ|↓z〉〈↓z|,

F2 = λ|↓x〉〈↓x|,

F3 = 1sys−F1−F2.

Note that in these definitions,F1 uses a state orthogonal to|ψ2〉 andF2 uses a state orthog-
onal to |ψ1〉. This time, if we measureµ = 1, then we know the system is in state|↑x〉
(since the probability of measuringµ= 1 for the case of|ψ2〉 is 〈ψ2|F1|ψ2〉= 0), and if we
measureµ = 2, then we know the system is in state|↑z〉. If however, we measureµ = 3,

20We assume that the Hilbert space dimensionalityn is smaller than numberN of Fµ’s in our POVM. If we
have more dimensions (in the Hilbert space), we can always make a change of basis so that onlyN of them will
be relevant to the POVM while the rest will be independent and thus irrelevant to the problem. In Neumark’s
theorem, we then enlarge the number of relevant dimensions.

21We could do the same usingσz instead. This time we would also know in14 of the cases which direction the
spin was, however this tome those cases will tell us that the particle was in the “up”zdirection. Measuring in any
other direction (except±ẑ or±x̂) will give us now information at all, since they all have non-zero projections on
both x̂ andẑ.
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then we cannot know the state of the system. We see that only in the case ofµ = 3 we
cannot tell the state of the particle. The probability ofµ= 3 occurring is simply22

prob(µ= 3) = 1−
(

1
2

λ
2

+
1
2

λ
2

)
= 1− λ

2
,

which can also be found using the trace

prob(µ= 3) = Tr(ρF3)

where

ρ =
1
2
|↑x〉〈↑x|+

1
2
|↑z〉〈↑z|.

We would like to findλ such that the probability of not knowing for certain the original state
will be minimal (.i.e. prob(µ = 3) = 1− λ

2 will be minimal).23 clearly by our definitions
F1 andF2 are positive operators (if and only ifλ > 0). The condition we require is thatF3

will also be positive (and we are looking for the maximumλ which gives this). Since it is a
2×2 matrix it is enough to require that the trace and determinant both have the same sign.
The optimalλ is then

λ = 2−
√

2,

which gives us the minimum probability of not knowing for certain

prob(µ= 3) =
1√
2
.

This result is indeed better than the one we had before, with standard measurements, which
gave us a chance of failure of3

4. This is indeed an improvement although not a very large
one in this case.

5.9. Measure of entanglement (Distillation)

Let us assume that we have a system in a state

|Ψ〉ab = α|0〉a|0〉b +β|1〉a|1〉b (|a| ≤ |β|),

where we knowα,β and we assume|a| ≤ |β|. Unless|α|, |β| are both 1√
2
, the state is not

maximally entangled (does not maximally violate the Bell inequality). We now want to
distill this state, in order to get the maximally entangled state

|φ+〉ab =
1√
2

(|0〉a|0〉b + |1〉a|1〉b) .

22There is a probability1
2 of state|ψ1〉 occurring and a probability12 of state|ψ〉2. The probability of

measuringµ= 1 andµ= 2 for |ψ1〉 are

prob(µ= 1)|ψ1〉 = 〈ψ1|F1|ψ1〉=
λ
2

; prob(µ= 2)|ψ1〉 = 〈ψ1|F2|ψ1〉= 0

and similarly for|ψ2〉

prob(µ= 2)|ψ2〉 = 〈ψ2|F2|ψ2〉=
λ
2

; prob(µ= 1)|ψ2〉 = 〈ψ2|F1|ψ2〉= 0.

Recalling that each state occurs wit probability1
2 , the probability of gettingµ 6= 1,2 (i.e. gettingµ= 3) is

prob(µ= 3) = 1−
(

1
2

λ
2

+
1
2

λ
2

)
.

23Actually to make sure we get the best results we should have used differentλ’s for positive measure

F1 = λ1|↓z〉〈↓z|,

F2 = λ2|↓x〉〈↓x|.
However, after all the optimization, we get the same result.
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We want to do this using only local operations. To do this we shall use theProcrustean
method. If we define the Kraus operator24

M0 ≡ λ
(

β
α
|0〉aa〈0|+ |1〉aa〈1|

)
,

then whenever we measureµ= 0, the state we will find is

|Ψ〉ab
µ=0−−→ M0|Ψ〉ab√

ab〈Ψ|M†
0M0|Ψ〉ab

=
λ√

ab〈Ψ|M†
0M0|Ψ〉ab

β(|0〉a|0〉b + |1〉a|1〉b) ,

where clearly (because of the normalization) we will find that

λ√
ab〈Ψ|M†

0M0|Ψ〉ab

β =
1√
2
.

We see therefore, that if choosing such a Kraus operator, will distill our state to the Bell
state whenever we measureµ= 0. This will occur probability prob(µ= 0) given by

prob(µ= 0) = ab〈Ψ|M†
0M0|Ψ〉ab = |λβ|2 (b〈1|a〈1|+ b〈0|a〈0|)(|0〉a|0〉b + |1〉a|1〉b)

= 2|λβ|2.

Clearly, to increase the probability of the desired distillation, we would like|λ| to be as
large as possible (β is given). However we cannot raise it arbitrarily since we require
M†

0M0 to be a positive operator. By our definition

M†
0M0 = |λ|2

( β∗
α∗ 0
0 1

)( β
α 0
0 1

)
= |λ|2

( ∣∣∣ β
α

∣∣∣2 0

0 1

)
.

Since, however we must have25

∑
µ

M†
µMµ = 1=

(
1 0
0 1

)
,

and theM†
µMµ are all positive operators then necessarily, we must have

|λ|2
∣∣∣∣βα
∣∣∣∣2 ≤ 1

⇒ |λβ|2 ≤ |α|2.
Using, this last result, we see that the maximum probability possible for distillation (recall
that|a| ≤ |β|) is26

prob(µ= 0)≤ 2|α|2 ≤ 1.

M1 ≡U

(
1−

√
M†

0M0

)
,

M2 ≡ 1−M1−M0,

whereU is any arbitrary unitary operator.

24Note, that althoughM0 operates only on the Hilbert space of particlea, the system we consider is both
particlesa andb. The ancilla used for the POVM measurement is a third particle.

25We could also define the “complementary”M1 of M0 by

1= M†
0M0 +M†

1M1

⇒M1 = U
√
1−M†

0M0.

Requiring that it be a positive operator, would give us the same result.
26The requirement that|a|< |β|, comes in the form, that if we had the opposite then|α|2 would be larger than

1
2 , and we would get a probability of findingµ= 0 of 2|λβ|2 which is greater than 1.
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5.9.1. Distillation of n pairs. Assume that we now have two pairs of non-maximally
entangled states, where the two pairs are described by the same state which we know (we
know the parametersα,β)

|Ψ〉⊗2 = (α|0〉a|0〉b +β|1〉a|1〉b)(α|0〉a′ |0〉b′ +β|1〉a′ |1〉b′) (|a| ≤ |β|).
As before we would like to extract a maximally entangled state out of this pair. We can
write the above state also as

|Ψ〉⊗2 = α2|0〉a|0〉a′ |0〉b|0〉b′+β2|1〉a|1〉a′ |1〉b|1〉b′+
√

2αβ
(
|0〉a|1〉a′ |0〉b|1〉b′ + |1〉a|0〉a′ |1〉b|0〉b′√

2

)
.

If now Alice measures the operatorσT ≡ σa
z +σa′

z on her two particlesa,a′, then there are
three possible results

|Ψ〉⊗2 σT=2−−−→ |0〉a|0〉a′ |0〉b|0〉b′ ,

|Ψ〉⊗2 σT=−2−−−−→ |1〉a|1〉a′ |1〉b|1〉b′ ,

|Ψ〉⊗2 σT=0−−−→ 1√
2

(|0〉a|1〉a′ |0〉b|1〉b′ + |1〉a|0〉a′ |1〉b|0〉b′) ,

where the last case, which is of interest to us, has the probability

prob(µ= 0) = 2|αβ|2,
to occur. If the original state|Ψ〉⊗2 indeed collapse to this last state, then we almost have a
purely entangled state. All that is needed is that both Alice and Bob perform local CNOT
operations on their two particles, where the primed particles (a′, b′) are the targets. As a
result we get

|Ψ〉⊗2 σT=0−−−→ 1√
2

(|0〉a|1〉a′ |0〉b|1〉b′ + |1〉a|0〉a′ |1〉b|0〉b′)

CNOTa,a′
b,b′−−−−−−→ 1√

2
(|0〉a|1〉a′ |0〉b|1〉b′ + |1〉a|1〉a′ |1〉b|1〉b′)

=
1√
2
|1〉a′ |1〉b′ (|0〉a|0〉b + |1〉a|1〉b) .

We now have two particlesa,b in an entangled state and two more in the same “up” state.
Now let us examine a more general case, withn pairs

|Ψ〉⊗n = (α|0〉ai |0〉bi +β|1〉ai |1〉bi )
⊗n

= αn
n

∏
i=1
|0〉ai |0〉bi +αn−1β

n

∑
j=1

(
|1〉ai |1〉bi ∏

i 6= j

|0〉a j |0〉b j

)
+ · · · ,

that is we have a tensor product ofn pairs numberedi = 1, . . . ,n. In analogy to the previous
case we now define

σa
T ≡∑σzi .

We can group the elements making up the product above, according to the coefficient
αmβn−m. Clearly (use the binomial expansion) the coefficientαmβn−m appears

(n
m

)
= n!

m!(n−m)! .

When Alice measuresσa
T she will therefore get resultm− (n−m) = 2m−n with a proba-

bility of
(n

m

)
|αmβn−m|2 (similar to the factor of 2|αβ|2 we had forn = 2 above)

prob(σa
T = 2m−n) =

(
n
m

)∣∣∣αmβ(n−m)
∣∣∣2 =

n!
m!(n−m)!

∣∣∣α2mβ2(n−m)
∣∣∣ .

If we now examinen→ ∞ the probability will be maximal, and approach a delta function
atm= |α|2n+O(

√
n).27 Thus for largen we may examine only the case ofm= |α|2n. For

a givenmall the elements we add are all orthogonal to one another and are each symmetric

27This is true regardless of the values ofα,β (as long as none of them is zero).
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in Alice and Bob’s particles, therefore we can make a change of base28 so that that the
system have the form (not normalized) for a givenm

|0〉A|0〉B + |1〉A|1〉B + · · ·+ |
(

n
m

)
〉A|
(

n
m

)
〉B,

whereA is a new “particle” with
(n

m

)
states which replace all theai particles (i = 1, . . . ,n)

which were originally held by Alice, and similarly forB which replaces Bob’sbi ’s. Now
that for a givenm all the A,B pairs are symmetric, let us view the case ofk identical,
maximally entangled states. This situation will be described as (up to normalization)

(|0〉ai |0〉bi + |1〉ai |1〉bi )
⊗k.

Doing the product we will get 2k elements which are all orthogonal to each other and with
the same coefficient (the case ofα = β above). Therefore if we have above

(n
m

)
orthogonal

elements each with the same coefficient, then we can deduce that this is equivalent tonH
entangled pairs, where we define the functionH such that

2nH ≡
(

n
m

)
.

We are interested in the most likely case ofm, which ism= |α|2n and we therefore have

nH(m= |α|2n) = log2

(
n

|α|2n

)
= log2

(
n!

(|α|2n)! (n−|α|2n)!

)
= log2

(
n!

(|α|2n)! (|β|2n)!

)
,

where in the last equality we used the fact that (|α|2 + |β|2 = 1). Using the Stirling’s
formula

logn! ≈ 1
2

log(2πn)+nlogn−nloge≈ nlogn,

we get here

nH(m= |α|2n) ≈ nlogn−n|α|2 log2(n|α|2)−n|β|2 log2(n|β|2)
= n

[
log2n− (|α|2 + |β|2) log2n−|α|2 log2 |α|2−|β|2 log2 |β|2

]
= −n

[
|α|2 log2 |α|2 + |β|2 log2 |β|2

]
.

If we define
p≡ |α|2

⇒ (1− p) = |β|2,
Then we may write

H =− [plog2 p+(1− p) log2 p] .
To conclude we saw that if we use the scheme of measuringσa

T (the sum of spins
in the z direction of Alice’s particle), then on the average we will get out of initiallyn
non-maximally entangled states,nH maximally entangled states, where

nH = −n
[
|α|2 log2 |α|2 + |β|2 log2 |β|2

]
= −n[plog2 p+(1− p) log2 p] .

28It is enough to make a change of names. We simply number all the permutations ofmelements out ofn and
then call thejth permutation| j〉A. We do the same for| j〉B, and we automatically get

|0〉A|0〉B + |1〉A|1〉B + · · ·+ |
(

n
m

)
〉A|
(

n
m

)
〉B.
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Or simply
n non-maxiamlly entangled→ nH maxiamlly entangled.

The ratio of maximally entangled pairs, out of the original number of pairs is

E(ψ)≡ maxiamlly entangled pairs
non-maxiamlly entangled pairs

= H =−
[
|α|2 log2 |α|2 + |β|2 log2 |β|2

]
+O

(
1√
n

)
,

ψ≡ α|0〉+β|1〉 (single non-maximally entangled particle)
We can therefore giveE(ψ) the meaning ofmeasure of entanglementof a single pair of
particles (because on average we can extractH < 1 pairs of maximally entangled pairs).

The result we found here may be generalized further.29 If |Ψ〉AB has theSchmidt
decomposition

|Ψ〉AB =
n

∑
k=1

√
pk|k〉A|k〉B,

then one gets theShannon entropy

H(Ψ)≡−∑
k

pk log2 pk (Shannon entropy).

We then say that
E(Ψ)≡ H(Ψ) =−∑

k

pk log2 pk

is the entanglement associated with|Ψ〉AB. If two systems have no correlations between
them then we simply add their entanglement

E(ψ1⊗ψ2) = E(ψ1)+E(ψ2).

This is true, since the Schmidt decomposition in such a case is

|ψ1⊗ψ2〉= ∑
i

√
pi |i〉A1|i〉B1 ∑

j

√
q j | j〉A2| j〉B2 = ∑

i, j

√
piq j |i〉A1|i〉B1| j〉A2| j〉B2,

where the last element is also in a Schmidt decomposition form. Using the formula for the
Shannon entropy we get

H(ψ1⊗ψ2) = −∑
i, j

piq j log2(piq j) =−∑
i, j

piq j (log2 pi + log2q j)

= −∑
i

pi ∑
j

q j log2q j −∑
j

p j ∑
i

qi log2 pi =−∑
j

q j log2q j −∑
i

qi log2 pi

= H(ψ1)+H(ψ2).

Since the Shannon entropy may be added then so can the entanglement.
Note, that the entanglement measure we defined is a good measure in the sense that it

does not depend on the base we chooselocally. If we make a local unitary transformation
of the formUA⊗UB (unlike a unitary transformationUAB which may be non-local), then
the specific orthonormal basis vectors we use in the Schmidt decomposition will change,
but the Schmidt coefficients will not (a unitary transformation, transforms an orthonormal
basis to an orthonormal basis).

Note also that although we can use POVM’s to distinguish between non-orthogonal
states, with a better chance than regular measurements, we cannot use it to increase entan-
glement of the system (on average).

As we shall see, the quantityH has the traits of classical entropy. It is called the
Shanon entropy.

29See also Von Neumann entropySand entanglement measure.





CHAPTER 6

Quantum information

6.1. Data compression (classical)

Assume that we have a verylong message ofn letters, written in an alphabet ofk
letters. As in any language some letters appear more often then others. We can therefore
describe the language by the probability of each letter to appear (we assume that the prob-
ability of appearance is independent of the letter/letters before or after it). The set of letters
and probabilities we denote asXk

Xk = {ax, px}k
x=1 (

k

∑
x=1

px = 1).

This is actually equivalent to a density matrix of states.
We would now like to compress our message before sending it, i.e. send less let-

ters/bits which will convey the same message. Since the message is long, then in atypical
message of lengthn, theax will appearpxn times. The number of possible ways to order
the letters of atypicalmessage are therefore1

n!

∏x(npx)!
.

Using the definition of theShannon entropy

H ≡−∑
x

px log2 px

we can therefore write (using the Stirling approximation)2

#typical messsages≈ n!

∏x(npx)!
≈ 2nH.

Thus to encode the the differenttypicalmessages, we can simply number them 1,2, . . . ,2nH

and then send this number instead. The number of bits we need in order to encode all these
number isnH. We therefore say that we can encode a message ofn letters using an alphabet
of k letters, using justnH bits

n letters
k letter alphabet

compression−−−−−−→ nH bits (H =−∑
x

px log2 px).

This of course holds only for the typical messages, whose weight in the overall ensemble
of messages increases asn→ ∞.

Another way of reaching the same conclusion, is to examine a single message of length
n

message= (x1,x2, . . . ,xn)
where in theith position the letteraxi appears. The probability of such a message occurring
is

prob(message) = prob(x1,x2, . . . ,xn) = px1 px2 · · · pxn

1We use here the same logic as was used above, in determining a measure for entanglement.
2Recall that

log(n!)≈ nlogn.
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or
log2 [prob(x1,x2, . . . ,xn)] = log2(px1 px2 · · · pxn) = ∑

i
log2 pxi .

By the central limit theorem, forn→ ∞ we have

−1
n

log2 [prob(x1,x2, . . . ,xn)]∼−〈log2 p〉 ≡ H,

where the average on the right is with respect to the probability distribution defined by
the pi ’s. We thus see that the probability of a typical message to occur is 2−nH. As we
saw the number of typical messages is 2nH, and thus we see that the set of all the typical
messages occurs with a probability very close to one, so that the case of other messages
may be neglected.

More rigorously (without proof), we may write that for anyε,δ > 0 there existsnε,δ
sufficiently large such that for anyn > nε,δ the following is true: There is a set of “typical”
messages (out of all possible sequences of lengthn) with a total probability greater than
1−ε to occur, such that each “typical” message has a probabilityP to occur,3 which obeys

2−n(H+δ) ≤ P≤ 2−n(H−δ).

Since the total probability of all the typical messages to occur is greater then 1− ε, then
we can put a bound on the numberNε,δ of “typical” messages4

(1− ε)2n(H−δ) ≤ Nε,δ ≤ 2n(H−δ).

Thus we see that in the limit ofn→ ∞ only 2nH of the 2n possible messages will occur,
and therefore we can usenH bits to encode these “typical” messages.

To conclude we see thatH gives a measure of uncertainty of letters in the message.
If H = 0 then only one letter appears in the message, and is therefore predetermined. If
however,5 H = log2n then all letters are equally likely to appear and we cannot compress
our message. We can also say thatH is the information that each letter carries. If we again
look at the case ofH = 0 then all letters are identical and the addition of a new one does not
give us new information, if on the other hand we haveH = log2n, then each added letter
gives us new information about the message which requires an extra log2n bits to encode
it.

6.2. Data compression (Quantum)

We would now like to do the equivalent of classical data compression in the quantum
case. In the quantum case the letters will be replace by pure quantum states, so the ensem-
ble describing the “language” is now replaced by a density matrix. The difference between
the classical case and the quantum case arises when the density matrix is constructed of
non-orthogonal states (ρ = ∑ pi |ψi〉〈ψi | where the|ψi〉 are not necessarily orthogonal)6.
In such a case the different states (which were the letters before) cannot be distinguished
between.

3Each typical message may have a slightly different probability to occur, but all these different probabilities
obey the inequality given.

4The bound comes from
NPmax > 1− ε

NPmin < 1

5When all letters are likely to appear then

H =−
n

∑
i=1

1
n

log2
1
n

=− log2
1
n

= log2 n.

6We can of course diagonalize the density matrix and get orthonormal states. However, the real physics (for
some reason) is that our source emits non-orthogonal states with different probabilities.
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The measure we shall use to determine how good our compression is, will be the
fidelity F. If our original message is|ϕi〉 and we send instead a message which after
decompression is|ϕ j〉 then the fidelity is defined by how close the two state vectors are

F = |〈ϕi |ϕ f 〉|2.
For a random (original) state/message described by a density matrixρ, coded as|ϕ〉 the
fidelity is defined as

F ≡ 〈ϕ|ρ|ϕ〉= Tr(|ϕ〉〈ϕ|ρ),
which for a pure state degenerates to the first definition. If both the original message
and the decompressed message have different probabilities of occurring then we take the
fidelity as the average (weighted by the probabilities).

Let us start with an example, assume a density matrix

ρ =
1
2
|↑z〉〈↑z|+

1
2
|↑x〉〈↑x|,

we would like to find a state|ϕ〉 with a maximum fidelity for this density matrix. If we
diagonalize the matrix we get

ρ = cos2
π
8
|↑n̂〉〈↑n̂|+sin2 π

8
|↓n̂〉〈↓n̂|,

where

n̂ =
x̂+ ẑ√

2
and

|↑n̂〉= cos
π
8
|↑z〉+sin

π
8
|↓z〉,

|↓n̂〉= sin
π
8
|↑z〉−cos

π
8
|↓z〉.

It can easily be shown that the maximum fidelity is reached when

|ϕ〉= |↑n̂〉
which gives

F = 〈ϕ|ρ|ϕ〉= cos2
π
8

= 0.853. . . .

Now let us assume that Alice has a message made of three particles emitted from a
source with the same density matrixρ as above (ρ = 1

2|↑z〉〈↑z|+ 1
2|↑x〉〈↑x|). Alice wants

to send the message to Bob but wants may send only 2 of the particles (qubits) to him. We
might think that the best she could do is simply send

|ϕ〉= ρ⊗ρ⊗|↑n̂〉〈↑n̂|,
where the density matricesρ stand for the original particles and|↑n̂〉 is the same state we
used above for maximum fidelity. Since the first two particles, which Alice sent, are the
original ones, then their fidelity will be 1, thus the fidelity will change only because of the
last particle and we’ll get

F = 1·1·cos2
π
8

= 0.853. . . .

However, Alice can increase the fidelity of her message. Since she is sending only two
qubits and determines the third then the Hilbert space described by her new state belongs to
a subspace of the original Hilbert space. We would like to project the original three qubits
onto a subspace which is more probable and thus gives us the maximum fidelity (see the
following). If we change our basis to the one in whichρ is diagonal, then for any state|ψ〉
of the three particles (due to the symmetry of the density matrix with respect to|↑z〉, |↑x〉)
we get

|〈↑n̂↑n̂↑n̂|ψ〉|2 = cos6
π
8

= 0.62

|〈↑n̂↑n̂↓n̂|ψ〉|2 = |〈↑n̂↓n̂↑n̂|ψ〉|2 = |〈↓n̂↑n̂↑n̂|ψ〉|2 = cos4
π
8

sin2 π
8

= 0.107
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|〈↑n̂↓n̂↓n̂|ψ〉|2 = |〈↓n̂↑n̂↓n̂|ψ〉|2 = |〈↓n̂↓n̂↑n̂|ψ〉|2 = cos2
π
8

sin4 π
8

= 0.018

|〈↓n̂↓n̂↓n̂|ψ〉|2 = sin6 π = 0.003

The dimension of the Hilbert subspace we can encode with just 2 qubits is 4, thus we are
looking for a subspace spanned by 4 of the above combination which will occur in the
highest probability. This, condition will be fulfilled by taking the Hilbert subspaceH1

spanned by the first 4 states

H1 = span{|↑n̂↑n̂↑n̂〉, |↓n̂↑n̂↑n̂〉, |↑n̂↓n̂↑n̂〉, |↑n̂↑n̂↓n̂〉} ⊂H .

If we also define

H2 = span{|↓n̂↓n̂↑n̂〉, |↓n̂↑n̂↓n̂〉, |↑n̂↓n̂↓n̂〉, |↓n̂↓n̂↓n̂〉} ⊂H ,

then we have7

H = H1⊕H2.

The procedure we shall use is the following. Alice performs a unitary operationU on the
3-particle state emitted from her sources. The unitary operator is such that

U : H1 → |·〉|·〉|0〉,

and

U : H2 → |·〉|·〉|1〉.

Having done that Alice measures the last particle and projects it onto eitherH1 with proba-
bility of p1 = 0.62+3·0.107= 0.94 or ontoH2 with probability ofp2 = 0.003+3·0.018= 0.06.
If Alice measures 0 the she sends the first two qubits to Bob, Bob adds a third qubit in state
|0〉 and then performsU−1 (the sameU that Alice used) to decode the message. If how-
ever, Alice measured 0, then best she can do is to send the two qubits in a predetermined
state such that after Bob decodes (by the same method as before) he gets|↑n̂↑n̂↑n̂〉, which
is the most probable single state. If we denote byΠi the projection on subspaceHi then
the messages Bob decodes are

Π1|ψ〉√
〈ψ|Π1|ψ〉

⊂H1 (with probability p1 = 〈ψ|Π1|ψ〉= 0.94),

|↑n̂↑n̂↑n̂〉 ⊂H1 (with probability p2 = 〈ψ|Π2|ψ〉= 0.06),

where the denominator in the first equation is merely for normalization purposes. The
fidelity of Alice’s message can now finally be found, by comparing the message Bob de-
coded and the original one. Since, however, Alice may send different messages, depending
on the result of her measurement, then we regard the average fidelity8

F = 0.94

∣∣∣∣∣〈ψ| Π1|ψ〉√
〈ψ|Π1|ψ〉

∣∣∣∣∣
2

+0.06|〈ψ|↑n̂↑n̂↑n̂〉|
2 = 0.942 +0.06·0.62= 0.92.

We see, that by ruining the states of all three particles instead of just one, we got a higher
fidelity.

7Note that we use addition (⊕) of spaces, and not a tensor product. This is because we are dealing with
subspaces.

8Again note, that due to the special symmetry between the two possible states of the original system|↑x〉,
|↑x〉, we do not treat here the cases differently, however for a general case we would have to.
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6.3. Schumacher’s noiseless encoding

Having solved the above example let us now generalize it. We would like to have
an analogy of Shannon’s theorem for the quantum case. Clearly, if our source emits states
which are mutually orthogonal, then we can distinguish between them and we can therefore
use Shannon’s classical theorem for compressing the information. The problem arises
when the emitted states are not all mutually orthogonal.

Assume a source of states|ψi〉 (not necessarily all orthogonal to each other,i = 1, . . . , Ñ)
described by the density matrix

ρ =
Ñ

∑
i=1

pi |ψi〉〈ψi |.

A message ofn (uncorrelated) letters will therefore be described by the density matrixρn

ρn = ρ⊗ρ · · ·⊗ρ︸ ︷︷ ︸
n

= ρ⊗n.

Similarly to the subset of “typical” messages we had in the classical case, we shall see that
here we have a probable/likely subspace of the Hilbert space (for large enoughn). To see
this we diagonalize our density matrixρ

ρ =
N

∑
k=1

λk|k〉〈k| (〈k|k′〉= δk,k′).

Once we do this, we are back to the the classical theorem of Shannon (since the states
|k〉 are all mutually orthonormal and therefore distinguishable). We now have an “alpha-
bet” of N letters each with probabilityλk of appearing. Using Shannon theorem we can
compress a message ofn such letters to a message ofnH (H = ∑λk log2 λk) bits or nH
qubits. We now define theVon Neumann entropy Sas

S(ρ)≡−Tr(ρ log2 ρ),

which is most easily calculated (and actually thus defined) whenρ is diagonal. In this case
we get

S=−
N

∑
k=1

λk log2 λk,

which is just the Shannon entropy for the diagonalized form of the density matrix (but not
of the original form, for which we would have used thepi ’s). Thus we can say that the
dimension of the “likely” or “probable” Hilbert subspace is

dimHprob = 2nS(ρ).

As a consequence Alice can compress her message ofn particles/states intonSqubits.
Bob receiving the message can then decompress it and find the originaln state message.
Note, however, that unless the possible states are all mutually orthogonal then Bob cannot
know for certain what message he has (although he knows, that it is the same as Alice
sent). By Holevo’s theorem (see earlier), he can extract only 1 (classical) bit out of every
qubit.

Before continuing, it is worth to note the difference between the Von Neumann entropy
Sand the Shannon entropyH. Given the density matrix above

ρ = ∑ pi |ψi〉〈ψi |,

the Shannon entropy treats the different states|ψi〉 as distinguishable even though they are
not necessarily mutually orthogonal, and thus

H(ρ) =−
Ñ

∑
i=1

pi log2 pi .
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On the other hand the Von Neumann entropy is found by first diagonalizing the density
matrix which gives

S=−
N

∑
k=1

λk log2 λk.

The two definitions coincide when the states|ψi〉 are mutually orthogonal, but do not
coincide otherwise. further more the Shannon entropy depends on the way the density
matrix was constructed (which states are actually emitted by the sources) and not only on
the density matrix itself.

6.3.0.1. Measure of entanglement.As we saw before the Shannon entropyH gave us
measure for the entanglementE (if we haven non-maximally entangled pairs, then we can
can distill from themnE maximally entangled pairs). We found that after writing the state
in the Schmidt decomposition form

|Ψ〉AB = ∑
k

√
pk|k〉A|k〉B (Schmidt decomposition),

the measure of entanglement was

E(Ψ)≡ H(Ψ) =−∑
k

pk log2 pk.

Using the Schmidt decomposition we can write the density matrix of the two particles as

ρAB = ∑
k

pk|k〉A|k〉BB〈k|A〈k|.

We see, that in this case the entanglement is simply the trace ofρ log2 ρ. Thus we can say
that the entanglement of two particles/regions is

E = S(ρAB),

where again we use the Von Neumann entropy since it doesn’t depend on the basis we use,
while the Shannon entropy does. Further more if we take a partial trace ofρAB overA or B
we get

ρA ≡ TrB ρAB =
n

∑
k=1

pk|k〉AA〈k|,

ρB ≡ TrA ρAB =
n

∑
k=1

pk|k〉BB〈k|.

We see that the coefficientspk have not changed from the originalρAB and thus we can
also write that

E = S(ρAB) = S(ρA) = S(ρB) (measure of entanglement).

6.3.1. dilution. We have so far discussed only the problem distillation: turningn non-
maximally entangled states tonSmaximally entangled states. The reverse,dilution, is also
possible: turningnSmaximally entangled states ton non-maximally entangled states. The
protocol is very simple. Alice starts withn local pairs in the non-maximal entangled state.
To create the non-maximal entangled pairs between her and Bob she must now teleportn
particles to him. However, Alice and Bob have onlynSEPR pairs between them. To over
come this, Alice compresses then pairs tonSpairs and then teleports (using thenSEPR
pairs) one particle from each pair to Bob. Bob and Alice then decompress their particles
and finally get then non-maximally entangled states they wanted.

Note that this protocol, holds only for very largen, since only then the compression
will have the efficiencynS.
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6.4. Communication with noise (classical)

Assume that Alice wants to send a message to Bob, using an alphabetX = {x, px)N
x=1

(total of N letters and letterax appears with probabilitypx), while Bob uses an alphabet
Y = {y,qy}N

y=1 (note that the two alphabets have the same number of letters). The problem
is that there is noise in the communication channel between them, and thus a letter sent by
Alice may change with different probabilities to different letters which Bob receives. We
denote the probability that receives the lettery if Alice sentx asp(y|x)

x
p(y|x)−−−→ y.

Now, assuming that Bob knows Alice’spx and knows the noise behaviorp(y|x), what
can he deduce from the message he receives?

We denote the probability that Alice sentx and Bob receivedy asp(x,y). By the above
definitions we get

p(x,y) = p(y|x)px.

Similarly we also have (note the exchange ofx,y in the last probability)

p(x,y) = pyp(x|y).
We further assume that we know the Shannon entropy ofx andy

H(X) =−∑ px log2 px =−〈log2 px〉px,

H(Y) =−∑ py log2 py =−〈log2 py〉py.

We Similarly define thetotal entropy H(X,Y) as

H(X,Y)≡−∑
x,y

p(x,y) log2 p(x,y) =−〈log2 p(x,y)〉p(x,y),

and theconditional entropy H(X|Y) as

H(X|Y)≡−∑
x,y

p(x,y) log2 p(x|y) =−〈log2 p(x|y)〉p(x,y).

By the definitionp(x,y) = pyp(x|y), the last definition can also be written as

H(X|Y) =−〈log2 p(x,y)〉p(x,y) + 〈log2 p(y)〉p(x,y) = H(X,Y)−H(Y),

and similarly
H(Y|X) = H(X,Y)−H(X).

Note, that by definition we have

H(X|Y),H(Y|X)≥ 0.

The meaning of the conditional entropy is that it tells us how much information needs to be
sent to Bob in order to convey a message, if healready knowsthe sequencey. If Bob knows
that he got a lettery then the probability of it coming from a letterx is p(x|y). Therefore,
as far as Bob is concerned, Alice does not use the alphabet{x, px} but rather the alphabet
{x, p(x|y)}, and therefore in order to convey the message (using Shannon’s theorem) it
suffices to send himH(X|Y) bits per letter (instead ofH(X) bits, when he doesn’t know
they’s).9

We can now define themutual information I(X;Y)

I(X;Y)≡ H(X)−H(X|Y).

This quantity tells us how correlated thex’s andy’s are. It tells us how many bits per letter
x I have save from sending if I knowy. If for examplex,y are completely on correlated,
then having learnedy doesn’t help me at all andH(X|Y) = H(X) which will give usI = 0.

9??? Note, that we are actually talking about an average, sincep(x|y) is different for every different lettery
Bob has in his sequence. ???
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On the other hand if they are completely correlated (one-to-one) then having learnedy I
need no more information. In this caseH(X|Y) = 0 andI = H(X).

Note, that the mutual informationI is symmetric:

I(X;Y) = H(X)−H(X|Y) = H(X)−H(X,Y)+H(Y)
= H(Y)−H(Y|X)
= I(Y;X).

6.5. Accessible Information

We now turn to a quantum case. Assume that Alice has source of states which emits
particles in state|ψi〉 with probability pi

ρ = ∑ pi |ψi〉〈ψi |.
Now, Bob wants to determine which state has been emitted. For this he may choose any
POVM set{Fy}. The probability that Bob measurey of the particle is in a given state|ψx〉
is given by

p(y|x) = 〈ψx|Fy|ψx〉.
We define the amount of information Bob can deduce fromρ as theaccessible information
Acc(ρ)

Acc(ρ)≡max
{Fy}

I(X;Y).

If the states|ψi〉 are all mutually orthogonal then they are distinguishable (usingFy = |ψy〉〈ψy|)
and we are back to the classical case

Acc(ρ) = H(X).

If however, the states are not all mutually orthogonal, then there is no general formula but
it can be proven that

Acc(ρ)≤ S(ρ),
where an equality is reached only for very long messages (n→ ∞).

6.6. Decoherence and the measurement problem

We call a pure state, a coherent one. We shall see that once the state interacts with
an environment, then the reduced density of the state (without the environment) becomes
non-pure. This process is calleddecoherenceor dephasing.

As an example of decoherence, assume a pure state

|ψ〉= |0〉+eiα|1〉,
which is described by the density matrix

ρ = ρ2 =
(

1 eiα

e−iα 1

)
.

We now add an environment to the system which is in an initial state|ẽ〉

|Ψ〉tot = |ψ〉|ẽ〉=
1√
2

(
|0〉+eiα|1〉

)
|ẽ〉.

We further assume that the interaction of the system and the environment is very weak and
we get after some time of interaction

|Ψ〉tot →
1√
2

(
|0〉|e0〉+eiα|1〉|e1〉

)
,

where|e0〉, |e1〉 are some states of the environment, not necessarily orthogonal. The density
matrix of the system alone (the reduced matrix after tracing over the environment) is now

ρ→ 1
2

(
〈e0|e0〉 eiα〈e0|e1〉

e−iα〈e1|e0〉 〈e1|e1〉

)
=

1
2

(
1 eiα〈e0|e1〉

e−iα〈e1|e0〉 1

)
.
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Except for very special cases that|e0〉 and |e1〉 differ only by a phase, the new density
matrix is no longer a pure one.

6.6.1. density matrices and entanglement.Let us now examine how this effects
entanglement. This time we shall start with a system plus environment in a state

|Ψ〉tot =
1√
2

(|↑〉A|↑〉B + |↓〉A|↓〉B) |↑〉E.

We now activate an interactionUAE between particlesA andE such that

UAE|Ψ〉tot =
1√
2

(|↑〉A|↑〉B|↑〉E + |↓〉A|↓〉B|↓〉E) .

We can write this state as a density matrixρABE =UAE|Ψ〉〈Ψ|U†
AE. Taking the partial trace

over the environmentE we get

ρAB =
1
2

(|↑〉AA〈↑|⊗ |↑〉BB〈↑|+ |↓〉AA〈↓|⊗ |↓〉BB〈↓|) .

This looks like an entangled state, but is it? If we look at the entangled state

1√
2

(|↑〉A|↑〉B + |↓〉A|↓〉B) ,

and write its density matrix, we will get a different result than the above (there will appear
mixed elements with both “up” and “down” states).

The criteria for entanglement in density matrices, is slightly different than the one for
pure states. Here we say that a density matrix isentangledif we cannotwrite it as a sum
of product density states. That is

ρAB 6= ∑ piρA⊗ρB ⇒ entangled.

6.6.2. The measurement problem.We saw that interaction with the environment
leads to decoherence, and the behavior of a system as if it were described by a density
matrix. This seems to explain collapse, but it does not, since first of all it does not explain
why the collapse is to a certain state, and it doesn’t solve the problem that macroscopically
large systems may be in superposition - the system plus the environment are still in a
superposition (Schrodinger’s cat, both alive and dead).

6.7. Error correction - Shor’s algorithm

Assume that we want to send a classical bit over a noisy channel. If we simply send
one bit (say 0) it might be corrupted by the noise and the bit received (say 1) will be
different than the one sent. When dealing with classical bits it is relatively simple to solve
the problem (when the noise is weak). We simply duplicate the bit two extra times and
send three identical instead of just one

0̃≡ 000,

1̃≡ 111.

Assuming the noise to be weak, at most one bit of the three will be corrupted, we can then
correct the error by using the majority rule method (if one bit differs from the other two it
is changed to agree with the two).

We now turn to the quantum case. The problem here is two fold. First, due to the no
cloning theorem, we cannot duplicate our qubits; second, if we make measurmentmeasure-
ment to determine what has changed we collapse our state and change it.

Before solving the problem, let us first see what type of errors might occur. We start
with a general qubit and an environment

|Ψ〉tot = (α|0〉+β|1〉) |Env.〉.
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The most general unitary operator which couples the environment and the qubit but does
not entangle them may be written as

U = eiθEnv.n̂Env.~σsys = 1+ ε1σx + ε2σy + ε3σz,

where theεi are some constants and the Pauli matrices on the right operate on the qubit.
We can write the effect of each element in the sum

|0〉
|1〉

1−→ |0〉
|1〉 ,

|0〉
|1〉

σx−→ |1〉
|0〉 (bit flip),

|0〉
|1〉

σy−→ i|1〉
−i|0〉 ,

|0〉
|1〉

σz−→ |0〉
−|1〉 (phase flip).

We see that there are basically two errors we should treat, thebit flip and thephase flip(the
effect ofσy can be reproduced by their combination and an extra global phase).

Let us start by treating the bit flip. Although we cannot duplicate qubits, we can use a
CNOT (actually two) which will give a similar effect. We add to our qubit two more qubits
in a known “up” state, and perform a unitary operatorU , which is actually a CNOT of the
original qubit with each of the two new ones

U

[
1√
2

(α|0〉+β|1〉) |0〉|0〉
]

=
1√
2

(α|0〉|0〉|0〉+β|1〉|1〉|1〉) .

Now, assume that a bit flip occurs in one of the three qubits

1√
2

(α|0〉|0〉|0〉+β|1〉|1〉|1〉) bit flip−−−→ or


1√
2
(α|1〉|0〉|0〉+β|0〉|1〉|1〉)

1√
2
(α|0〉|1〉|0〉+β|1〉|0〉|1〉)

1√
2
(α|0〉|0〉|1〉+β|1〉|1〉|0〉)

.

If we make a measurement we will cause a collapse of the wave function, unless the wave
function is already an eigenvector. The possible state are all eigenvalues of the operators
σ1

zσ2
z andσ2

zσ3
z, but the values measured are different according to which bit has flipped:

σ1
zσ2

z σ2
zσ3

z flipped bit

1 1 non
−1 1 1
1 −1 3
−1 −1 2

Let us now generalize the above procedure to take care of all possible errors. Shor
suggested the use of 9 qubits to protect a single one. He suggested to use a unitary operation
such that

↑→ ↑̃=
1

2
√

2
(↑↑↑+↓↓↓)(↑↑↑+↓↓↓)(↑↑↑+↓↓↓) ,

↓→ ↓̃=
1

2
√

2
(↑↑↑−↓↓↓)(↑↑↑−↓↓↓)(↑↑↑−↓↓↓) .

If we define

|0〉 ≡ 1√
2

(↑↑↑+↓↓↓) ,

|1〉 ≡ 1√
2

(↑↑↑−↓↓↓) ,
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then the qubitψ = 1√
2
(α↑+β↓) becomes

ψ =
1√
2

(α↑+β↓) U−→ 1√
2

(α|0〉|0〉|0〉+β|1〉|1〉|1〉) .

We can protect each of the|0〉 and|1〉 against bit flip by the same method as above. For
protection against a single phase flip, we notice that under a phase flip (of a single qubit)
|0〉 becomes|1〉 and vice versa|1〉 becomes|0〉. Thus, if we treat|0〉 and|1〉 as a single
two-level “particle”, the problem of a phase flip is the same as the problem of a bit flip we
had before.

Note, that although Shor’s algorithm, was the first quantum error-correction code, it is
not the most efficient. The most efficient code requires just 5 qubits (instead of the 9 here)
to protect a single one.
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