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Part 1

Introduction






CHAPTER 1

Physics and Information

1.1. Maxwell's demon (classical)

Assume two adjoining room& andB, each filled with a gas at equal temperatiite
Now, imagine also a small dembwho control’s a shutter between the rooms. The shutter
is assumed to be ideal, so that no work is produced by opening and closing it. The demon
opens and closes the shutter so as to allow fast particle to pass fronBrmormomA, and
allow slow particles to pass in the opposite direction, from r@ota roomB. As a result,
at the end of the process, we have faster gas particles in Aomma slower ones iB, and
therefore

Ta>Tg

without any work being done.

Now, from thermodynamics we know that for quasi-static processes the eriropy

obeyg i
_dQ
ds= T

Since the system of the two rooms is a closed one, then thedfpagjoing into roomA
must come from roomB so that
dQa = —dQs.

Thus, the change in entrof& of the whole system (both rooms) is

[ (2) ) (2-%)

which is negative sincdQp > 0 (the fast energetic particles are going into roajrand

Ta > Tg. We have therefore managed to reduce the entropy of a closed system without do-
ing any work (the opening and closing of the shutter requires no work), thus contradicting
the second law of thermodynamics.

1.1.1. The Szilard model.One way out of the paradox is to say that in order to
decide when to open and close the shutter, one must know which particle is approaching
the shutter, and thus we have a connection between entropy and information (see also the
end of this section). As an example of this let us studyShidard mode(1929).

In the Szilard model one assumes a small cell with a single particle in it. If the particle
is in the left-hand side of the cell, we say that the cell is in state “0”, and if the particle is
in the right-hand side, we say the cell is in state “1”. We can thus code information in a
sequence of such cells, each cell in one of the binary states 0 or 1.

Now, in order to keep the particle on the left-hand side of the cell (or on the right-
hand), we must put a barrier in the middle. However, before we put the barrier the particle
may be anywhere in the cell. Thus, in order to force it to be on one side, we have to
push a piston from one side of the cell (until we reach the middle). Pushing such a piston
isothermallyrequires work to be done, and so we connect work and information.

IThis paradox was suggested by Maxwell and is therefore called “Maxwell's demon paradox”.

2Recall thadSis an exact differential, whildQ is an inexact one. Inexact differential means that the change
in the heatQ depends not only on the initial and final physical (macroscopical) states of the system (defined by
pressure, volume, temperature, ...), but also on the path taken from one state to the other.

5



6 1. PHYSICS AND INFORMATION

To find the work done by the piston when moving (isothermally) to the middle of the
cell, we assume for the moment that the cell is filled with an ideal gas. The force acting
on the piston, by the gas, equals the piston’s & &mes the gas pressuRe The change
in volume of the cell, when the piston moves a distabices |8V | = |AdX|. Thus the work
OW done (on the system, by the piston) when the volume of the cell is changad (olpue
to the piston’s movement)is

oW = Fdx = —PoV.
We have assumed that the gas we use is an ideal gas, so it obeys
PV = NkgT,

whereN is the number of particles in the gas aglis Boltzmann’s constant. Thus the
work done by the piston may be written as

V.
W= _/PdVZ _/ Nl 4y — NigTIn 2.
vi V Vo
Now, since the temperature was unchanged during the process, the velocity distribution of
the gas particles has not changed either (the internal energy of the system has not changed).
The question is therefore where has the work-energy gone to? It has gone to heating the
heat bath surrounding our system.

As we just saw, the internal energy of our gas has not changed. We know from
thermodynamics that we may write the internal endiggs

U=F+TS
or in differential form
oU =0F +TaS,
but also
oU =W+3Q=W-+T3S

whereF is the free energy of the systellv,is the work done on the system, adb@ is the
heat which entered the system. Since in our case the tempefatareonstant, and we
haveAU = 0, then we must hale

AF =W = —TAS

Thus, from the result we had for the work done, we may write

V.
AF = NkgTIn -2,
Vo

= AS= —ngll’l\é
Vo

If we now return to the case of our cell, having a single partisle=(1) confined to half of
the cell > = 1V;), we find that

AF =kgTIn2,
and
AS= —kgIn2.
This last result should not be surprising, since entropy may also be defined as
S=—-kglnQ,

SNote the minus sign. When the piston is pushed (doing work on the system), the volume of the cell is
reduced, and sdV is negative.
4Since fordU =0
0=0F +TdS=W+T3S



1.1. MAXWELL'S DEMON (CLASSICAL) 7

whereQ is the total number of possible states of the system. In our case the system can
be in one of two states (“0” left-hand side, or “1” - right-hand side), which gives the above
result.

1.1.2. The Landauer principle. The Szilard model has shown us that there is con-
nection between information and energy/work. Landauer used this connection to give a
lower bound on the energy expenditure needed for performing a computation.

ThelLandauer principlesays that in order teraseinformation we must expend energy
which then goes into heating the environment. We shall show that this leads to a lower
bound on the energy expenditure for performing a computation.

We shall first examine why it requires energy to erase information. For this we start
with a Szilard cell. Assume that we are given a cell which has a particle either on the left
or on the right (we don’t know where). We shall say that the cell is erased, if the particle
is (for certain) on the left-hand sideA method of achieving this, is to take the barrier out
of the cell and then push our piston half way from the right, thus confining our particle to
the left half. As we have already seen, the work done in pushing the piston, when done
isothermally, goes to heating the environmentAfy = ksT In2. Thus, we see that the
process of erasing information causes the heating of the surroundings.

Now, if we look at logical gates in a computer, they are schematically described as
irreversible process in which two bits of information go in, while oplye comes out.
Thus, in theirreversibleprocess of a logic gate we have necessarily erased one bit, which
requires an energy of at ledgtTIn2.° We have therefore found a lower bound for the
energy expenditure for doing a calculation. Note, that in today’s computers the energy
expenditure £ 10°%kgT per bit) is much higher than Landauer’s lower bound.

1.1.3. Bennett's reversible computer.lt has been emphasized that the lower bound
given by Landauer is only good for irreversible gates. Bennett (1973) has shown that if one
uses reversible gates, one may construct a computer which requires no energy expenditure
at all. In Bennett's computer a gate still accepts two bits as input, however (unlike before),
the output is also two bits: One bit, is the logical result we wanted (from the gate) while
the second bit (together with the first) allows us to find the initial input bits.

Although, such a gate gives us superfluous information for the calculation, it does
allow us to reverse the process. Now, during the computation, using reversible gates, we
shall not erase any cells and therefore no energy will be wasted. However, in order to make
a different calculation (after the first) we must reuse our cells which means erasing them,
and thus seemingly returning to Landauer’s principle. But, as you recall we used reversible
gates, therefore we can write down the result at the end of the first computation and then
reverse the process of computation. This reverse computation will bring us back to the
initial conditions with no net energy expenditure. The cells in their initial condition can
then be used for our next calculation, and so we have built a computer which requires no
energy?

Having found a connection between storage of information and entropy/energy, we
can now return to the Maxwell's demon paradox. Bennett (1982) suggested a resolution
between the demon paradox and the second law of thermodynamics. The resolution is that

5w use this definition of erasure since we are assuming that the computer has a limited amount of memory.
It therefore has to recycle its bits, which means erasing them as we defined here. To manipulate a cell we must
first know in which state it is, and we know this for the erased cells.

6after passing through the gate, we no longer know the state of one of the cells. In order to reuse this cell
(our computer has a finite amount of memory cells), we must erase it and thus waste energy.

7Since we have two bits of input, and two bits of output, then we can code the input in the output (for logic
operators such as “and” and “or”).

8Note that the cells in the initial conditions are all in known states, either “0” or “1”, but known to us. With
this information we can construct any other initial conditions by flipping the necessary cells. The process of
flipping requires no work; we don't push a piston we simply flip the whole cell.



8 1. PHYSICS AND INFORMATION

every time the demon opens and shuts the shutter he is actually performing a computation
(he is performing an “if” statement which can be broken into logical gates). a computation
means that he needs memory bits. Assuming that the number of bits is finite, the demon
will have to erase them and thus the demon will give rise to work and entropy (although
the shutter itself requires no work to operate it). This entropy will ensure that the second
law of thermodynamics is upheld.

1.2. Quantum information

In the previous section we studied information using classical objects. We now wish
to introduce information theory using quantum objects. The following table compares
the classical and quantum manifestations of the main points of importance in information
theory:

] \ Classicall \ Quantum \
basic information unit bit: {0,1} qubit: a|0) + B|1) (superposition principle)
dynamics deterministic (causal) deterministic (unitary evolution)

measurements | do not influence systemeffect the system (uncertainty principle + collapse)

We shall see that the superposition principle and the different effects of measurements
will cause the quantum theory of information to display very different traits from those of
the classical theory.

1.2.1. the qubit. In the classical case, the basic unit of information we used was the
bit, which could accept either the value “0” or the value “1”. In the quantum case, the basic
unit we use is a two state systéive shall generally denote the two statestasand|1),'°
however, due to the superposition principle, the general state of such a system is

W) =al0) +Bl1)  (Wly)=1= |a]*+|B*=1).

Sincea andp are complex numbers, they are each described by two parameters (real and
imaginary parts) which gives us four parameters describing the|gtatelowever, we also
have the requirememti|? + |B|? = 1 (due to the normalizatiof|y) = 1), which reduces
us to just three continuous parameters. Of these parameters, one is the global phase of
the system which has no physical importance. Thus we are left with just two (physical)
continuous parameters for describiidg.

One method of writingy) with two parameters is

p) = cosge*ig|0> +sin9e+i%\1>.
2 2
Since we have two continuous parameters, one might think that we can use a single
qubit to store an infinite amount of information (unlike the classical bit which can store
only 0 or 1). This is indeed true, we can store in a qubit an infinite amount of information,
however Holevo (1961) has shown that we can extract from a qubit (with 100% certainty)
a maximum of only one bit of information. Thus, for all practical reasons we can store in
a qubit only a single bit of information.

%The simplest non-trivial Hilbert space is a two dimensional one.
107he two state system can be any kind of system with two orthonormal states. For example, it can be a spin
% system with the two staté$) and||), or a system with two energy stat€s) and|Ey).
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1.2.2. no-cloning theorem.As we noted above, one cannot extract more then one bit
of information from a qubit. In spite of this let us now try. Assume two qubits: the first we
shall denote ak,")g

6 _; L
| o= cosée*'%’|0> +S|n§e+'%|1>
and the second will simply be the spin up qubit
1) =10).

These two states together give
i 0
(1/)e=e ' cosz,

so that the probability of measuring spin-up for a staté)g is co§g. If we could now
make many such measurements, then according to the statistics of our measurement we
could deduceé® up to any accuracy. Thus, apparently we can encode in a qubit a continuous
parameter and then extract it (to any desired precision).

The problem with the previous scheme, is that in order to perform a multiple number
of measurements, we must first replicate, or clone, our initial $tate; while we do not
know what it is. Only then (after cloning) can we do the measurements and determine
8. The problem is that in quantum mechanics we cannot clone (unknown states). This is
called the no-cloning theorem.

PrRoOF The proof of the no-cloning theorem rests on the fact that the evolution of a
quantum state must be described by a unitary opetatior.order to clone our particlsl
times we must start witN particles in a known state, which we shall denotéOasThus,
our initial state before cloning starts, is

|Wi) =10)[0)---|0)W).
At the end of the process we want to have a state
(1) =U10)[0)---[0)|@) = [W)[W) - - [W).

Now, assume that we have found such an opetdtorhich we use on two stateg(®)
and|p®):

W) U W) =U0)[0) - 0)|@Y) = WD) wD) ... [,

W) =U W) =U(0)[0)-[0)w?) = [W@)|w?). - [?).
Since the operatdd it is unitary UT = U 1) then necessarily
W) = (P uTu ) = P w).
However, by definition

W) = (W10l (0]) (10)-++10)w@) ) = ((010)M W @) = (V@)

WPy = (O] OO ) (W@ - @) @) = (WD @)L,

11Recall that the Hamiltonian in quantum mechanics must be Hermikidn=(H). The (time) evolution

operator is thety (t) = e~ #H:

W(t)) =e "M w(t = 0)) =U (t)|w(t =0)),
which is necessarily unitariaty{ = U~1). Note, that this is all true, assuming that the Hamiltonian is time

independent . If the Hamiltonian is time dependent, then the evolution operaeér%iéHd‘, which is also
Unitary.
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Thus, if there exists a unitary cloning operatdr then we must have (since we need
<qJ(f1) |LIJ(f2)> = <qu(1) |LIJi(2)>) that for any two states

(w®w))

This is certainly not true fomny two states, and therefore there cannot exist a cloning
operator. O

N+1

= (@),

Please note, however, that if we choose an orthonormal basis, we can create a unitary
operator which clones the elements of the basis, but not their linear combingtions.

1.2.3. Bit vs. qubit. Although we can extract from a qubit only one bit of informa-
tion, the qubit is not equivalent to a classical bit. For example, assume that we are given
the integral

1
/ f(t)dt = na,
0

where we knowf (t) anda, and we know thah (an integer) is either even or odd. Now,
in order to find whethen is even or odd, classically we require an infinite number of bits,
sincet is continuous, and we need an infinite number of bits to describe a continuum (to
calculate the integral numerically). However, if we use qubits, it suffices to use just a single
qubit to find whethen is even or not.

To solve the problem gquantum mechanically we take a spin “up” inxtd&ection
|T)x, and construct a Hamiltonian

H(t) = Af(1)S, = )\f(t)%hoz,

whereg, is one of the Pauli matrices

and?

Ozl T)x = [L)x-

125uch an operator for two particles could be

u :IZ\i>|i><i\<Ol+ Z H>\i><i|<il+IZ|0>\i><i|<i\,
#1,0

which gives
U10)[i) = [i}i)
and

VUt =S DGl = 1.

13Recall that in the basis

1
=5 (e 112,
Ux= —= (I1)e=I1)2)-

N

2
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The evolution of the spifi))x is then given by
UM)[1)x = e 2h-oHdozp) J%naoZH)X
02502 1)x

(cos)\na
2

Ana .
COST|T>X_ISInTH>X-

Now if we choose\ so that
AO =TT
then we have

()IT)xZCOS [Mx—isin= Il>x,

and thus, iinis odd, we get|)x (up to a muIt|pI|cative factor), and i is even, we gelt])x
(again, up to a multiplicative factor). Therefore, by measuring the spin ir direction at
the end, we can determine whetimds even or odd.

We have thus been able, with just one qubit, to find something that we couldn’t do
classically at all. Note however, that the information we got was just a single bit (“even”
or “odd”).

1.2.4. simulating a quantum computer with a classical oneAs we saw above, we
can use qubits to get results which are much harder, or even impossible to reach using
just simple classical bits. However, when we consider a computer, it is simply some black
box which accepts some vectors as input, operates on them, and returns a new vector as
an output. All the operations which we do quantum mechanically we can also simulate
classically (manipulate vectors, take their projections, ...). The question that should be
asked is how much resources does this require?

AssumeN qubits. The state describing them is

) = |_|(0||0 +Bil1)i) ZCJM’

where|¢); areN-particle states, which give a||N2pOSSIb|e combinations dfl particles
being in either stat{0) or state|1). For example for the case bf= 3 we have

3
ai|0)i + Bi|1)i

i|:|( i10)i +Bil1)i)

€1/0)[0)|0) +¢2/0)|0)[1) + c3]0)[1)|0) + €4|0)[1)[1)

+¢5/1)|0)[0) +C5/1)[0) |1) 4 €7|1)[1)|0) + cg[1)|1)[1).

The number of parameters describing such a state2¥ 2 2: We have ¥ coefficientsc;,

each one of those is actually two number since these are complex numbers, however if we

require thatp be normalized (one constraint) and don’t mind if it is multiplied by a global

phasee®, then two parameters may be dropped giving u8¥— 2. If we assume that

we need at least one bit for every such parametthis means that for aN qubit system

we need at least -2 — 2 bits for the classical simulation. Such a fast increase makes

simulations impossible very quickly.

)

1.2.5. examples.

Lsinceo? = 1, theno?™ = 1 ando2™! = g,. Therefore the Taylor series fel%z can be written as
éeﬁzfz (i8oy)" =0, 5 E(ie)”Jr S —'(ie)”:iozsin6+cose.

nodd "™ neven'™

15since theg are continuous parameters we need an infinite number of bits to describe each parameter.
However, if we settle for a finite precision for tlegs, then a finite number of bits will suffice to describe each
one of them.
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1.2.5.1. Deutsch’s problemAssume a black box which accepts a single bit as input
and gives a single bit as output. We shall denote the effect of the bbkagif the input
bit is x then we getf(x) as output]. There are of course 4 different possible functions
f(x) which may describe the black box (each of the two possible inputs has two possible
outcomes). We would like to know wheth&(x) is a constant function, i.ef (0) = f(1),
or whether it is a balanced function, i.&(0) # f(1).16

Classically, to determine the type of function, we must makeruns of the system.

First we enter a “0” input and see the result, and then we enter “1” as input and see what
the outcome is. Such a test would giféx) exactly and will therefore also tell us ff(x)

is constant or balanced. However, as we shall see, using quantum mechanics and the
superposition principle we can find the type of function (constant or balanced) with just a
single run.

Now, in order to use quantum mechanics, the effect of our black box must be describ-
able by a unitary operator. Iff(x) is “balanced” there is no problem, howeverfifx) is
constant, then we do have a problem: A unitary operator cannot transform two orthogonal
states into the same state (a unitary transformation, sends a basis to a new basis, and a
constantf (x) lowers the dimension of the basis). We therefore need a slightly different
box.

Instead off (x) we shall use a unitary operatdp. This operator will both accept and
give as output two qubits of information according to the rule

X)aly)z =2 alye ()2,
where® means adding and then taking the modulo 2 of the result:
[160) = 1),

|l1e1) =|060) = |0).

Before using this new operator let us first check that it is indeed unitary. Clearly by the
definition ofUp we have

Upb[x)1/0)2 # Up[X)1/1)2
and

Up|0)1ly)2 # Up|1)1ly)2  (anyy.y),

where in the second relatigrandy’ may be the same or different. Thereforex(it 0 or 1,
andy = 0 or 1) we must have (sind@|1) = 0)}’

Up[X)1/0)2 L Up|X)1|1)2,

and
Up|0)1]y)2 L Up|1)1]y)2,
or simply

iy oty (I )

By this last result we see that applyiblg to the orthogonal basis
{10)1]0)2,(0)11)2,[1)1(0)2, [1)1|1)2}

16Note that we don't care whdit(x) is exactly. Iff(0) = f(1) =0 or f(0) = f(1) = 1 doesn’t matter to us.
In both cases the function is constant.

17 x; = 0or1 andy; = O or 1, then applyindJp on |x)1|yi)2 will give |x)1y;}2> with X =0 or 1 and
yi =0or1. Thus if we know that two stateflf) = Up|x1)1|y1)2 and |2) = Up|xz)1]y2)2) are different, it
necessarily means that their inner prodydt;(W-)) must include(0|1) (or (1|0)), and sinc€0|1) = 0, then they
must be orthogonal.
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gives us a new set of four mutually orthogonal stafesSince the four new states are
mutually orthogonal, they must constitute a basis. Thus, the transformagiaook us
from one orthonormal basis to another, which meansidgatust be unitary, as claiméd.

To find, using our new quantum black box, whettiéx) is a constant function or a
balanced one, we can of course run it twice (once puttiag0 and oncex= 1) and see .
However, we can also use the superposition principle to determine this with just a single
run. To see this let us first try as ingot= 0); and%(\y =0)2—|y=1)2). By applying
Up we have

Up [~ 10)1(10)2— [1)2) | = = [0) (IO@f(0)>—I1@f(O)>)—(_1)f(0) 0)2(10) = 11))
D \/2 1 2 2 _\/é 1 = \/2 1 )

where the last equality is due to the fact that
0@ f(0)) — |1 f(0)) =]0) —|1) for f(0)=0,

and
0@ £(0)) — [1@ F(0)) = |1) — [0) for £(0) = 1.
By the same logic, if we inpuk = 1)1 and%qy: 0)2 — |y =1)2) we get

—_1)f@
Uo | Z5l111(02 1) = 50— 11012 1)
Taking a super positio (|0)1 +|1)1) (|0)2 — |1)2) of the two inputs will therefore give us
Uo [; (10)1+ L)1) (0)2 - 1>z>} = 3 (CD@10)1+ (-1 ®]2)1) (10)2 - 1)
(-1

s— (101+ (=D~ [2)1) (10)2—[2)2)..

If we now examine particle 1 after applyitdp, we see that we get (up to a global multi-
plicative factor)

0)1+1)1 if £(0) = (1)

0)1— 1)1 if £(0) # f(1)
These two new states are orthogonal to one another, and so may be distinguished by
a single measurement [simply measure particle 1 in the basis- %(\0) +11)) and

|-) = %QO) —|1)]. Thus, by applyindJp to a single state

%(IO>1+ 111) (([0)2—[1)2)

and performing a singlguantunmeasurement we can distinguish whethgq) is constant
or balanced, a feat we could not accomplish classically (we had to &gplywice, to two
different inputs).

Note, that once again we manged to extract by our measurement just a single bit of
information (f is constant or not). The power of quantum mechanics entered in the fact
that we can use superposition which cannot be used classically.

1.2.5.2. Beam splitters and the Mach-Zender interferometer.

18The new states are all different, since two identical states would not be mutually orthogonal to each other
(unless they are identically zero, whitky cannot produce).
19¢ |&) is an orthonormal basis anld ) is a second orthonormal basis then the transformation &torh is

U=y Il

which is clearly unitary.
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1.2.5.3. dense codingAs we saw earlier one can store a lot of information in a qubit,
however only 1 bit may be extracted with certainty. We shall now see how, with the use of
entanglement, we can communicat® bits of information by transferring singlequbit.

Our system will include two qubitsq(andB), which we will describe using a special
basis known aBell states

W =5 (0o~ [1al0))
W = (0De +[10e)
o = 5 (0A0)o~ [1aL)o)
0" = = (08I0 + DalDe).

where the subscripts, B tell us to which qubit/particle the ket belongs (in many cases we
shall drop the subscripts and keep the order of the kets constant).

This special basis has the convenient traits that it is orthonormal and that all four
states are entangled (see sec®of). The basis is also the set of mutual eigenvectors of
the complete set of commuting operafdts

Ox,Oxg and 07,04
[0%4Oxg, 024,025] = 0.

We now define (using the Pauli matrices) a new set of unitary opellaiﬁé)rsuch that

Ugo' = 1a,
Upr' = O
Ul(é) = Oy,
Uﬁ) = Ogz,.

From the traits of the Pauli matricésit is easy to see that applying these operators on the
Bell state|y~) gives™

U W) = ),
U ) = —lo),
U ) =ile"),

20Note that the operators commute since there are two particles. For just one particle we have
0x07 = —0,0x = —i0y = [0x,07] = —2i0y.
However, when we have two particles the minuses cancel and we get

Oxp 024 Oxg Oz = 025 Oxp 025 Oxg = —OynOyg = [Ox Oxg,02,025] =0

ZINote thatoy, 0y, also commutes witloy, Oy, ando,,05,. However, it suffices to look for eigenvectors
common taox, Ox, andagz, dz, in order to uniquely define the four Bell states (see sedi@n Thusoy, 0x, and
02,0z (Or any other pair of operators frogy, Oxg, 0z, 0z;anday, Oy, ) constitute a complete set of commuting
operators.

2%Recall that

o) =) © oll)=-Il),
adl) =1 & o) =11,
oyl =ill) & oll)=-i[1).

23Note that the operatots® operate only on the single particde Thus to be rigorous, the operator operating
on|y~) is actuallyu M1g. That s, it's an operator which applie§” on particleA and does nothing to particle
B.
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Ui o) = wh).

Having constructed our tools, we can now turn to our original problem: communicat-
ing two bits of information using only a single qubit. To see how this may be done let Alice
and Bob be two distant persons, Alice holding partislend Bob holding particl®. The
particles, as Alice and Bob both know, are given to be in the Bell §iate. Now, assume
that Alice wishes to communicate to Bawo bits of information:i andj (i = 0,1 and

j =0,1). To do this Alice operates locally on her particle with the oper‘df@) we de-

fined. As a result (according to the effectLin) on|Y~) given above) the two particlels
andB together, are now in one of the orthonormal Bell states (up to a global phase). Next,
Alice sends her particle, which is a single qubit, to Bob. Having both particles, Bob can
now make a measurement (locally) on the state and determine in which of the orthogonal
states the two particles afé.since Bob knows, that the particles were originally in state
|[W™), he can therefore infer which operator Alice applied on her particle and thus find

We have thus seen that by merely passing a single qubit from Alice to Bob, Alice could
communicate (to Bob) two bits of information. The extra (second) bit communicated was
hidden in the entanglement of the two particles.

Note, that a benefit of this method is encryption. If a third person tries to intercept the
message, all he gets is a single qubit, which ghi@sno information at all. Unlike Bob,
any other person who gets the transmitted particle has no extra information and therefore
cannot infer from it anything.

24since the possible states are orthogonal, Bob can make a measurement which distinguishes between all four.

For example he can measure the operator

O=1-|W )W [+2- W )W [+3: @ )@ | +4- 9 ) (" |.
If the result we measure is 1, we know the particles were in $iaté if we measure 2 we know the particles
were in statéy™), and so on.






CHAPTER 2

Basics of quantum information

2.1. Basics of quantum mechanics

Every physical theory is defined by the following:

e The method of describing a system.
e The dynamics of a system.
e The method of measuring a system.

In quantum mechanics observable quantities are described by Hermitian opedterd).
Such operators have the following traits:

e All eigenvalues are real:
Aa€R (Ola) =Ajla)).
e Eigenvectors oflifferenteigenvalues are orthogonal:
Aa# Ay = (ad) =0.
e Every Hermitian operator may be written irspectral decompositioform
0= Zhaﬂa,

wherelly is the projection onto the subspace of eigenvectors with eigenvalues
N2 =",
Mally = 5adna>

z I-Ia == I]..
a
In general, projections are Hermitian operators (i.e. they are observables) suclitimt if
a projection then
nZ=n (@t=n.
From the spectral decomposition trait, every state may be written as

W)=Y Malw).

Using this decomposition we can define the effect of measurement in quantum me-
chanics as follows: A measurement of the quariifpr a statg) results in a collapse of
the state into one of the eigenvalue subspaces pbé.

measureéd rla"-l—')

W) :
VA(UIAIW)
The probability of the collapse to the subspads given by
prob(Ma = 1) = prob(A = a) = (Y[Ma|Y).

CoNcLUSION. If two states are not orthogonalfs |W2) # 0), then one cannot dis-
tinguish between them with certainty. In other words, there exists no projdatisuch
that

prob(M = 1) = (Y1[M[Y1) =1

17
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and
prob(M = 0) = (Y2|M|y2) = 0.
PROOF Letus assume that there exists such a projection({fgj2) # 0). We define
by a Grahm-Schmidt process a new statg orthonormal tays):

B2) = [W2) — (Wa|w2) 1),

|¢2> _ ‘¢1> )
V (02]62)

Since|w;) and|yy) are not orthogonal whilap;) and|¢,) arel then there existr, 3 # 0
such that

|W2) = al1) +Blb2).

If we now substitute this new form &d),) into the assumptiof,|M|W2) = 0, we get
0 = (a™(Wi+PB*(¢2)) M (aws) +Bl92))
= [a* (W2 wa) + [BZ($2IM[02) + o B(Wa|M|2) +aB” ($2] ).

Now, since(s|M|Y1) = 1 and also{ys|ws) = 1, then we must havB |Y;) = |Y1) (and
(W1|M = (W1]).2 Thus if Y1) and|¢,) are orthogonal, then

_ _ (W1]92) =0,
Wnlnies) = @ainiun) =0 (= (it 0,
and sincd1 is hermitian, then

(Y1N|w1) >0 and (d2|M|d2) > 0.

Therefore, together witha|?, |B]? > 0 and (Y1|M|Y;) = 1, the expression we just found
for (W2|M|Y2) = 0 becomes

0= |or|+ |B[*(w2lM2) > O,
which is a contradiction. Hence, there does exist a projectioril such that

prob(ln = 1) = (Y1|M Y1) =1
and
prob(M = 0) = (Y2|M|Y2) =0,
if (Wa|y2) #0 O

Before going on it should be mentioned that in quantum mechanics one can distinguish
between two types of systems. The first is that of a closed system: a system for which all
elements are known as well as their interactions with one another. The second type, is that
of an open system, where in addition to the elements we are interested in, there is also an
environment. This environment interacts with our system, however, in a way that we do
notknow exactly.

1and we assuméaps) # |ys).
2We may always write

MY1) = a|wy) +Blw.),
such thata|? + |B[? = 1, and(y; @, ) = 0. Thus
(Wa[M 1) = o{Wa W) + BlWa|W1) = a(Wa|a).

Since we also havap1|M|y1), then we must have = 1 andp = 0, which proves thafl |y1) = [P1).
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2.2. Spin and the Pauli matrices

Since spin% particles are used very often in quantum information it is worth while to
make a short review of (some of) their traits. The observables for measuriné gpthe
X, y, andz directions are the Pauli operatasg, oy, ando, respectively. These are also
denoted a1, 02, andos respectively. The operators obey the commutation relation of

angular momentum
[0i,0}] = i&jk Ok,
wheresg;ji is the antisymmetric tensor:
+1 foregpzand all cyclic permutations of j, k
&jk = § —1 forezpg and all cyclic permutations of j,k .
0 otherwise

In other words

[Gx, Gy] == io-z7
[Gz, Gx] = |0‘y7
[0y, 0] =iox,

with all other cases obvious from these.
The Pauli operators also have the following traits:

0i0j 4 0;0; = 20;j1,
0i0j = &1 +igjjk Ok,

Tr[oi] =0,
0 =0;=05=1,

cr;r =0; (Hermitian),

and

oiTcri =1 (unitarty).

Note, that the Pauli operators are both unitary and Hermitian.
The Pauli operators are usually represented by the standard Pauli matrices:

0 1
cjX:<1 o>’
0 —i
Y=\i o)
1 0

The eigenstates of the of the Pauli matrices are the “up” (eigenvaldi@nd “down”
(eigenvalue-1) states in the appropriate direction. The relations between these eigenstates

are as follows:

and

1) = 5 (1) +112)
L E®)
1) =512 +il12)
1) = 75 1) =il12)-

The effect of the Pauli operators on the “up” and “down” states inzthi@ection is as

follows:
cjX|T2> = |lz>a
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0X|l2> = |Tz>a
O'y|Tz> = i|lz>7
0y|lz> = _i|Tz>'

Thus we say that flips in thez direction, whileay not only flips in thez directions, but
also adds a phase (dependent on the original state).

2.3. Open systems, mixtures and the density matrix

So far we have only dealt with closed quantum systems, we shall now turn to treat
open systems. There are two general cases in which we encounter open systems:

(1) Lack of knowledge of the full system: We might not know some of the initial
conditions (the initial state of the system), or some of the parameters of the sys-
tem, or not know exactly the dynamics of the system.

(2) We are dealing with a system of two (or more) subsystems, which we fully know
how to describe, however, we are interested in making measurements only on
part of the full system.

In both these cases the treatment is different than that of closed systems. We shall see that
we have to use mixtures instead of regular states, where these mixtures will be described
by density matrices. Further more, probabilities will behave slightly different: Instead of
one state evolving in time, we shall have several, each with a different probability to occur.
This is different from a linear of combination of states (superposition), since here each
state is treated separately and there is no interference &ffect.

To see the difference between open and closed systems let us study an example. As-
sume two states; stapésa)

[Wa) = 30[0) +aa[1) (2ol + [au? = 1),
with probability p, to occur; and statgpg)
|Ws) = bol0) +b1[1)  (|of?+ [br? = 1),

with probability pp = 1 — pa to occur. What is the probability to measuy@s in this case?
i.e. what is
prob(Mp=1) =? (Mp=0)(0|).

If we make many measurements,pggof them the measurement will be of stéde,)
and inp, = 1— pa they will be of stateyy,). Therefore, the probability to measui@
will be p, times the probability to measut®) in case|Wa) plus p, times the probability
to measuré0) in case|Yg):

prob(Mo = 1) = pa(WalMo|Wa) + Po(Ws|Mo|Ws)
= Palaol?+ Py|bo|* = palacl?+ (1~ pa)[bol*.

If on the other hand, instead of having a probability for each stéig @nd|ysg)), we
make a superposition

Wag) = a|Wa) + Blwe) = (0@ + Bbo)|0) + (cay +Bba)[1)  (Ja*+ B> = 1),
then, in this case, we shall find

prob(Mo = 1) = |aag + Bbol*.

If we now compare the two results, we see that they are markedly different. In the mixture
(assumingag, by # 0), no matter the value gf, there will always be a finite probability
to measurd0). However, in the superposition case, we may chaosad 3 such that

the probability to measur®) will be zero. The difference, as mentioned above, is that in
the latter case we have interference: all the coefficients appear within one absolute value

3Reca||, that in a linear combination of states, the coefficients appearing are not the probabilities of each
state, but their amplitude. You must take the absolute value squared to find the probability.
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(squared). However in the mixture case, there is no interference and we have a sum with
two absolute values (squared).

2.3.1. the density matrix. The mathematical tool we use to describe mixtures is the
density matrix. Assume a sép;, |W;)} of possible stategl;) (not necessarily orthogonal,
but (y;|Wi) = 1), each with probabilityp; to occur. We define the density matrix/operator
pas

P=D pilwi)Wi| O<p<13p=1).
I 1
If we write it in an orthonormal basi®) ({(njm) = &ym), then

Pnm= (n|p|m)
and

Trp="3 (nlpln) = > pnn.

The density matrix has the following trait®) is an orthonormal basis):
(1) Itstraceis 1:
Trp=> (nlpln) = pn=1.
n

(2) The density matrix is Hermitian and the sum of its eigenvalues is 1
P=ptﬁgkw=1 (PIdK) = Akldk))-

(3) The density matrix is positive operatori.e. for every statéy) in the Hilbert
space, we have

(Wlplw) =0 (V[W)),

which is equivalent to having all its eigenvalues nonnegative
(Wlplw) > 0= A >0.
Note, that together with the previous trajt A« = 1), we must have
0<A <1

PROOF (1) To prove that Tp = 1 we shall use the definition of the density
matrix. The trace of an operator is independent of the (orthonormal) basis we
work in. If |n) is some orthonormal basis, then

S pm=Y (0 (z pi|wi><tui|> n
S Pl {Wiln) = 3 pr(wiln) ()

5l (3o ) 1) = 3 )
= Ypm=1

where we have used the trait of orthonormal bases
S In){n| =1.
n

(2) Proving thatp is Hermitian is very simple from its definition. Since tpgare
real (0< p; < 1), then

;
N=<ZQ¢M%0 =D Pilwi) (Wil =p.

Trp



22 2. BASICS OF QUANTUM INFORMATION

Sincep is Hermitian, then it may be diagonalized. The sum of its eigenvalues, is
its trace, and thus from the previous trait we must have

Z)\k:Trpzl.

(3) To show that the density matrixis a positive operator{(|p|y) > 0, Vi) we
shall calculate/|p|w) using the definition of the density matrix. For any state

b):

(Wiplw) (Y| (Z piIlIJi><llJi|> W)

= zpl Qg (Pi ) = zpl (Wlwi)|

Sincep; > 0 and|(y|w;)|? > 0, then we necessarily have

(Wplw) =0,

as required.

With this result we can now show that all eigenvaluespdadre non-negative.
To show this, we chooskp) = |¢x), where|di) is an eigenvector op with
eigenvalue\k (p|dx) = Ak|dk)). Using the last result we find

0 < (dklpldk) = (d|Ak|Pk) =
= A >0,
which is just what we wished to prove.
O

As we saw, the density matrix describes a mixture of states, however, it may also describe
a regular state. This latter case occurs when the mixture includes only a single state with
probability p= 1. We say that such a mixture igare statgotherwise it is called anixed

statg. In other words, a system is in a pure state if there exists a|gtatich that

= [W)(Y| (pure statp
The density matrix of a pure state has the special traitthatp. Note, that this trait holds
only for pure states, i.e.

p? = p < pure state

ProoF Clearly, if we have a pure-state density maipiXp = W) (W], (W|W) = 1),
then

P? = (W) (W) (W) (W) = (W) (WIw) (W] = W) (| =
which proves one direction (pure statep? = p).
As for the opposite direction, it is simple to show (see the end of this proof) that a
density matrixp obeysp? = p if and only if p has a single eigenvectidr;) with eigenvalue
A =1, while all other eigenvectors have an eigenvalge0. If this is indeed the case, then
by the spectral decomposition we may write

p="3 AiMy =1-M1+0-Mo = [p1)(d1],

“We showed above that{@|p|y) > 0 for any statéy), then necessarily all eigenvalues obgy> 0. To show
the opposite direction (assuming the operator can be diagonalized), simplyyyritethe basis of eigenvectors
|k

W) = Zak|¢k>~
Now (Y|p|w) will give

(Wlplw) = zaqu O PI) = > Attt (Dic i) = Z)\k\ak\z%d = Z law Ak >0,
T s

which is the desired resu{tp|p|y) >
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or simply

P =d1)(dal.
We have thus proven the second direction, i.e. pat p implies thatp has the form of a
pure state.

To complete the proof, we still have to fill in one gap. We must show, as claimed
above, thap? = p corresponds tp having a single eigenvalue 1 with all others 0. To show
this, simply diagonalize to give pp. The diagonal elements @b are the eigenvalues
of p. Sincep is a density matrix, then these eigenvalues obey Xy < 1 andy Ax = 1.
Clearly, in such a case the diagonal ma;r;j;xobeys:pzD = pp if and only if a single element
on the diagonal is 1 and all others are 0 (i.ep ifias a single eigenvalue of 1 and all the
rest 0)° Further more, since the diagonalizationpa pp is just a base change, then

p*=p & pp =po.
Consequentlyp? = p if and only if p has a single eigenvalue 1, while all others are QL

The density matrix (pure or not) has one more important trait: For any projection
operatorfl, the probability of it measuring true (i.e. of the mixture collapsing, due to the
measurement, to the subspacé&ipfis

prob(M = 1) = Tr(pM) = Tr(Mp).

This trait may be further generalized as follows: the average @yuef an observabl®,
when measured, is

(O) =Tr(pO) =Tr(Op).

PrROOF We shall start by proving the simple form of the trait. By definition (recall
P =3 pilWi)(Wil)
prob(M = 1) =% pi(WilM|wi).
I

If we now use an orthonormal bagis, we know thaty , |n)(n| = 1, and we can therefore
write the last relation as

prob(In = 1)

S Pl (5 o) )
5 PITI (10) = 3 ) (1

oo ()

= Tr(pﬂ),

which proves the simpler trait.
We can now use the last result to prove the more general trait. By definition

zpl Wi |O|i).

Sif pp has more than one non-zero elements on its diagonal, then these elements must be different from 1
(duetoyAi =1, >0). Asa resulpzDWiII not give pp. For example

1 2 1 1

3 1 3
3 6
1

Hlo
IN
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SinceO is an observable we can always write it in a spectral decomposition

O= Zkk|¢k><¢k\ = Z}\knk-

Inserting this into the previous relation and using the trait gfbl 1) = Tr(pl) we get
= Z)\kz P (Wi M) = Z?\ka(p”k)-
|

Now, since Tr is a linear operator then

Z)\kTI‘ pI'Ik ( Z)\kﬂk> Tr pO)

To prove that T¢pl) = Tr(Mp) and T(pO) = Tr(Op), we can simply use the trait of the
trace that

Tr(AB) = Tr(BA).
On the other hand, in proving the simpler form, we could have started with

prob(r = 1) = 5 il (3 (o) i
instead of

prob(f = 1) = 3 p (61 (S oo
which would have led us to
prob(Nn = 1) = Tr(Op).
O

The traits we have found for the density matrix put constraints on its elemgnts
We might therefore ask how many independent (real) parameters deschbeMilensity
matrix. If we had no constraints, then there wouldNfecomplex elements in the matrix,
which would therefore give 122 independenteal parameters. However, we have three
constraints

p'=p,
Trp=1,
and
Ai >0 Vi,

where); are the eigenvalues of the density matrix. The first constraini(p) is actually
N2 equations since on the diagomdl= p gives

Pn=pPhn (N equations,
and off the diagonaln(# m) we have
Pnm= Py (N2 —N equations.
Note, that in the off-diagonal case, the number of equations takes into account that we
should have both doubled and halved the number of equations (relative ¥?theN
off-diagonal elements). The number of equations should have been doubled since each
equality gives two equations: one for the real part and a second for the imaginary part. On
the other hand, the number of equations should have been halved since it suffices to count
only the pairsn,m above the diagona%[(N2 —N) pairs], as those below will give us the
same equations again. We did not double the equations for the elements on the diagonal,
since these equations only tell us that the imaginary part is zero, but do not tell us anything
about the real part (it equals itself, which is trivial).
To the above constraints we must also add the one on the trace:

Trp=1 (1 equatiomn.
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This constraint is just a single equation, since we already know that the trace has no imagi-
nary component (the diagonal elements are all real, dpé4ep). Subtracting the number
of equations from the total number of parameters (in the case of ho constraints) we finally
gef

#of independent parametetsN? — 1.

Now that we know that density matrices ha¥é— 1 parameters, the question might
be, how do we parametrize these matrices, i.e. how do we write the matrices as a function
of N2 — 1 parameters. To do this we note that not only density matrices Mavel pa-
rameters, but that th8U(N) group of matriceSalso hasN? — 1 parameters . Since both
sets have the same number of parameters, we might try and relate the two somehow. In
general, it is impossible (at least in a simple way) to construct density matrices using a lin-
ear combination of unitary matrices froBtU(N). However, we may use their generatbrs.
We shall next see how this is done for the cashl ef 2.

For N = 2, one possible set of generators,3i§(2), is the Pauli matrices;.° For
convenience, we define a vector of matrices

6 = (0x,0y,07) = (01,02,03),
and an inner product of matricés
(A,B) = Tr(A'B).
Using this last definition we find that the Pauli matrices are orthogonal to one another
(0i,0j) = 28;j.
If we also add the unit matrix to the Pauli matrices, we now Hs%e= 4 matrices, and
these four (using complex coefficients) span the spacexd? tatrices. To see this, note

that if we define
Op=1,

6Note, that we have not used the constraint that all eigenvalues must be non-negative. This constraint does
not change the number of parameters, it just reduces the range of the parameters. It reduces the region of allowed
parameters in thBl2 — 1 dimensional space.

7TheSU(N) group SpecialUnitary group) is the group of aNl x N unitary matrices with determinantl:

U e SUN) < UTU = 1,deU) = +1.

(In general, unitary matrices have a determinardfwith 8 € R).

Itis easy to see th&U(N) hasN? — 1 independent (real) parameters, sibdé) = 1 givesN? equations, and
deU) = +1 is another equation. Thus we haNé-+ 1 equations for thel®? real parameters & (i.e. N> — 1
real independent parameters). Th¢?riginal real parameters are due to the fact thaanN matrix hasN?
elements, but each has two components: a real part and imaginary part. Note, that this logic does not work for
the number of equations U = 1 and detU) = +1. This is because TU mixes real and imaginary parts, and
thus we cannot split thid?2 complex equation intol#? equations (real and imaginary).

8The generators of a group, in this case, are a set of magicgh that any element in the group may be
written as
M %9 (or 289 ),
where thed;’s are real. For th&U(N) group there ar&N2 — 1 generators.
9Reminder: The Pauli matrices are

o) (1) (6 5)

10t can easily be checked that(A'B) obeys all the requirements of an inner produca(scalar):
(A+B,C) = (A,C)+(B,C),
(aA,B) =a*(A B),
(B,A)=(AB)",
(A,A) >0 where(A,/A)=0&A=0.
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then the above inner produg;, o) = 2§;; still holds, even when j run from 0 to 3. Since
the four matrices are orthogonal to each other, then they necessarily constitute a basis of
all the 2x 2 matrices (a four dimensional space).

Since the Pauli matrices, together with the unit matrix, constitute a basis, then any
density matrix may be written in the form

P = apll + a10x + 8202+ ag03 = apll +4&- 3.

To find the coefficients; we apply the constraints we had on the density matrix. First
we apply the constraint on the trace:pl= 1. Since Tio; = O for all three Pauli matrices
(i=1,2,3), then the condition T = 1 becomes (recall that hettds a 2x 2 matrix)

1=Trp=aTri1+0=2a,
a1
3072.

Now, the second requirement we had is thate Hermitian p* = p). Since the Pauli
matrices themselves (aridl are Hermitian, the requirement becomes

1 * * * 1
pl = (§1+310x+320y+a302) = (51 +a10yx+ a0y +a30;) =,

which means that

g=a =>ack.
For convenience we define

p= 25,

which allows us to write the density matrix as

1 .

p=51+p-8) (PR,

or in matrix form

o 3[(5 )2 8) (2 ) en(5 2]
1< 1+ps  pi—ipz )

2\ pi+ipz 1-ps

The final requirement of the density matrix, is that it be a positive operator. Since
we are dealing with a 2 2 matrix with a positive trace, then a necessary and sufficient
condition is that the determinant be non-negdfive

det(p) > 0.

From the matrix form we found fqp, this means that

| Y4ps o pi—ip2 |, 2, 2 2y . 2
detp)=| ; tip, 1-ps |~ (PLtP2tP3)=1-F =0

Therefore, we finally have the general form of the density matrix

p=31+p3) (FRIp <)

11since the Pauli matrices together with the unit matrix constitute a basis, then there is only a single choice of
coefficientsa; which gives a certain matrix (if there were more, the matrices would not be linearly independent,
and therefore not a basis). The above condition gives two sets of coeffif@htsnd{a;}. For these sets to be
the same we must haae=a;".

12Reca||, that the trace of a matrix equals the sum of its eigenvalues, and its determinant is the product of the
eigenvalues. Since we are dealing with & 2 matrix, it has two eigenvalues. The trace is 1, which is positive,
and therefore the product of the eigenvalues, i.e. the determinant, must be non-negative for both eigenvalues to
be non-negative.
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The vectorp is called thepolarization vector The name is used singegives the average
direction (polarization) of the spin:

(o) = Tr(po) = px,
<Gy> = Tr(poy) = py»
(07) =Tr(poz) = pz.

Note, that as promised, we have three parametéfs-(1 = 3, for N = 2) which
describe the density matrix. These parameters are the three real components of the vector
p.

To conclude, we see that we can represent all possible density matrices (of a two
dimensional Hilbert space) by the possible vecfirdhe possible vectorg (p < 1) form

a ball of radius 1. This ball is known as tiBoch spheré® We shall see that the case
|B| = 1 (points on the surface of the Bloch sphere) coincides with pure states.

CLAIM . A 2 x 2 density matrix describespure state if and only if the polarization
vectorp is a unit vector = f), i.e.

1 P
p=[W)(U] & p=5(1+A-3)

PROOF Let us start with the reverse direction, i.e. tlfiat A gives a pure state. We
know that if we havep? = p thenp describes a pure state, thus it will suffice to show that
p = A implies p?> = p. Let us therefore start by calculatipg for p = A. By definition
(whenp =A)

N | e
p°=|5(@+A-0)| =7[L+20-6+(R5)7,

and

(A-8)? (N101 + 202 + N303)?

= IzniZO'iz—i—; Z(ninjoioj +njni0j0i)
i)
= IZnizoinr % Z ninj (0io;j +0j0;).
i]
We know that for the Pauli matrices
of=1
and
0i0j = —0j0; (i #]).
Therefore, by the above relation f(ii- 6), we must have

(A-8)% = (zni2> 1=1.

|
Thusp? becomes
1 . 1 .
p2:1[2-11+2n-0] =5[+n-6l=p.

[
This result p2 = p when p = A) proves thap = %(11 +f-8) describes a pure state (and
can thus be written gs= ) (| for some|y)).2

13Yes, the Bloctsphereis actually aall. However, in some places the term Bloch sphere is indeed reserved
only for the boundary of the ball.

14¢ we definer’by the spherical anglesand¢
A = sinBcospX+ sinBsingy + cosbZ,
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To complete the proof, we must also prove the opposite directign=if) (Y|, then
there exists a unit vecteorsuch that

1 PO
P=3 (1+0-0).
However, we have actually proved that alreadyp K |)(@| then we have a pure state
andp? = p. If we replacenin the above proof wittp, we get
2 1
T4
This will give backp? = p = %[]l+ p-d] only if |p| = 1, thus completing the proof. O

p? = Z[(1+|pP)1+2p-5].

So far we have concentrated on qubits and the two dimensional Hilbert space. For an
N dimensional space we can use, instead of the Pauli matNZes,1 (linearly indepen-
dent) Hermitian matricel; with zero tracei(= 1,2,...,N?> — 1). These matrices are the
generators of th&U(N) group (recall that ifN dimensions the density matrix hag — 1
independent parameters). Using these generators the density matrix can be written as

N 2 1
where
ni = (hi) = Tr(pnhi).
The allowed combinations of thg’s define a region in al? — 1 dimensional space. If
we denote by\; the N2 — 1 eigenvalues opy;, then the regiov of allowedn;’s, is the
region for which all the eigenvalues are positive (and add up to 1, which is immediate
since Tp =1), i.e.
V={n, i=12... N~1YN=1A>0}
The points on the boundary of this region are those point where at least one eigenvalue is
zero (beyond this, some have to be negative which is not allowed for density matrices).

So far, all we have just said is true for ahl includingN = 2. However, there is
a big difference betweeN = 2 andN > 2. ForN = 2, the density matrix has only two

then the stat@y), for whichp = |@) (Y], is (up to a global phase)
W) = cosge*i%q’\O) +singe*i%¢\l>.
This is easily seen, since the state obeys
A-B1Y) = oal) = ).
and is therefore an eigenstatepivith eigenvalue 1. Sincg is a density matrix an¢lp) is an eigenvector with

eigenvalue 1, then necessanly= |) (Y.
155 simple choice for théy’s is the three types of matrices:

hkﬁk =1
K
hy = Pk =1 (k=1,2....N—1),
hij=0 otherwise
hk=| =1
k.|
hi(j'): hg=1 (k#1),
hi,j =0 otherwise
her =i
k| :
hi<j >: h|yk:7I (k7é|)-
hij=0 otherwise

Examples of each type, fof = 3, are

1 0 0 0 1 O 0 i
h=]1 0 -1 0 ;o h= 1 0 0 ; h= —-i 0
0 0 0 0O 0 O 0 O

NN
\_/
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eigenvalues. Since the sum of the two eigenvalues must be 1, then on the boundary, where
one of them is zero, the second must be 1, and we therefore have a pure state. However,
when we haveN > 2, we have more than two eigenvalues, and hence if one eigenvalue
becomes zero, it doa®t necessarily mean that one of the other eigenvalues becomes 1
while all the rest are zero. Rather, it just means that the sum of all the rest must be 1. Thus,
the systems described by the boundary o 2), are not pure states necessarily, although
all the pure states must be on the boundary (since only there some of the eigenvalues are
zero).

Note, that although the density matrix defines unambiguously the results of measure-
ments, several different physical systems may give rise to the same density matrix. This is
shown in the next subsection.

2.3.2. preparation of mixtures. As was mentioned before, there are two basic cases
in which we must use density matrices, when we lack information on the system, and
when studying only part of the system. We shall now elaborate on the first of these two
cases (lack of knowledge), while the second case (studying only part of the system) will be
discussed in the next subsecti@d.3. The lack of knowledge is represented here by the
use of probabilities. Since we do not know which state the system is in, we give a proper
probability for each possible state to occur.

Assume two sourced) andB, of particles. Sourc@ produces particles in random
stated® { pa, qJA},';'il, described by the density matiy (either pure or not), and sourée
produces particles in random stafes, ¢B}gil, described by the density matig (again,
either pure or not). Now, we want to create a new set of states. We do this by picking states
either out of sourcé with probabilityA, or else, out of sourcB (with probability 1— A).

As a result of picking states in the above manner, we can now describe the new col-
lection of states &$

{)\ - Pa, LIJA} U* {(17)\) : QB7¢B}7
which, by the definition of the density matrix, gives-tis

;)\ “ PalWa) (Wa| + gﬁ*)\) -Og|9s) (P8
A ; PA|WA) (WAl + (1—A) qu|¢B><¢B‘7

PAB

which is simply®
paB=A-pa+(1—A)-pB.
Let us now check that the new matgxg is indeed a density matrix. First, its trace is
indeed 1

Trpas=ATrpa+(1-MN)Trpg=A-1+(1-MN)-1=1

16Recall, that hergpa,ya}, stands for a set of statégia } (A an index), where each stapg has a probability
pa of occurring.

1 The symbolu* stands for aisjoint union A disjoint union, is a union which keeps track of the set an
element came from, and distinguishes between elements also on this basis. Thus, in our case here, even if we
have someé\ andB, such thai - pa = (1—A) - g anda = dg, our new joined set will include both (once from
Aand once fronB). In a regular union, the two identical occurrences would be reduced to a single occurrence.

18 the new collection of states there is a chancepa for states|@a) to occur and a probability
(1—A) - g for states|dpg) to occur. SINCEG AN - pa+5(1—A)-gg =1 (becausg apa=1, ygps =1 and
A+ (1—M) =1), then we can treat the new joined collection of states as a single set of th¢ feniw }, where
Pk € {A-pa} U* {(1-A) - pe} andyi € {Ya} U {$8}.

19 sum of the form

u=Avi+(1-A)v2 (0<A<1)

is called aconvex sunfof v; andvz). We say that a space iscanvex spacef all possible convex sums of all
possible pairs (of elements in the space), belong to this same space.
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It is clearly Hermitian } is real)

Pas = APA+ (1= N)pE = Apa+ (1—A)ps = Pas:
Finally, it is clearly positive, since it is a sum of positive matrices [And —A) > 0]

(WIpag|W) = MW[palw) + (1—-A)(Wlps|) > O.

We therefore see thahg is indeed a density matrix. Thus, we have been able to create a
new mixture out of two others. Specifically, we could also use two sources of pure states
(each), and create form them a new non-pure mixture, by the method above.
It is important to note, that twphysically differensources may give the same density
matrix. For example, assume that a soukcemits particles in statf) with probability
of 50% (pp = 0.5) and particles in statd) also with a probability of 50%. We would
therefore describe such a system by the density matrix
1 1 1
pa=510)(0] + 5I1)(1] = 51.
Now, assume that we also have a soBeehich emits particles in state-) = \%2(|O> +1]1))
with probability of 50% p., = 0.5) and particles in state-) = %(|O> —11)) also with a
probability of 50%. We would therefore describe such a system by the density matrix

o5 = Sl
1(1 1 1 1
= 5 | 50+ )00+ )+ (0 - 1) (0l - )
= 2[00l + 1)1
-

We see that although both sourcésgnd B) are physically different, we get the same
density matrix in botif® Finding the same density matrix in both cases means that we
cannot distinguish between the two sources (by performing measurements).

The above result is just a particular case of the following general rule: For reary
pure density matrix (of any dimension) there is an infinite number of physical systems
which give that same density matrix.

PrRoOF We shall first prove this for the Bloch spherex2 density matrices). As
we have already seen<22 density matrices may be represented by a polarization vgctor
according to

p(P) =
Now, if p can be written as
=M1+ (1-MNf, (0<AL1D),

(1+p-0) (Ipl<D).

NI =

thenp(pP) also obeys
P(PB) =Ap(f1) +(1-A)p(fz) (0<A<1),

wherep(fi)), just like p(P), is defined ap(fii) = 3 (1 +f; - 6). Note, that sincey "are unit
vectors (on the surface of the Bloch sphere), th@h) represent pure states. Therefore, if
indeedp = Af; 4+ (1— A)fAy, thenp(p) describes a physical system having the pure states
p(A1) andp(fp) occurring with probabilitied and 1— A respectively.

Now, the question is how many possible s, fip, A} exist such thap = Afi; 4+ (1—A)f,.
It is easy to show that fgif| < 1 (non-pure states) there is an infinite number of such sets.

200 fact every choice of two orthonormal states with equal probability to occur will give us the same density
matrixp = 31.
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Showing this will prove that there is indeed an infinite number of different physical systems
which give the same non-pure density matrix.

The casép| < 1 has an infinite number of sefé,fi;, A}, since everyns belongs to
such a set. To show this, simply pick an arbitrary unit veotorif'we now draw a straight
line passing through;"andp, the second point at which this line intersects the surface of
the Bloch sphere is ab” The point is on the surface of the Bloch sphere, so it must be a
unit vector, and sinc@ lies on the line betweem "andri, then there necessarily is some
A such thatg = AA; + (1 — A)fp. Since, for a giverp, we chose an arbitrany, ‘and found
a matchingny, then there must be an infinite number of pairs (one for each possipble ~

Note, that for|p| = 1, the above logic does not apply, since using the above method
will give usri, = .

One might claim that the above proof is missing the possibility of more than two unit
vectorsn; and the possibility of generatigusing vectorgs; with || < 1. This is indeed
so, however, all we wanted to prove was that there is an infinite number of physical systems
which give the same non-pure density matrix. We succeeded in this, even though there are
more possibilities than the ones covered in the proof.

Although the proof given so far has been for a two dimensional Hilbert space, it also
applies for any higher dimension Hilbert space. This is easily seen, since one may always
examine just a two-dimension subspace of the larger Hilbert space and use for it, the result
proved here. O

The fact that we have an infinite number of ways to create the same mixture in quantum
mechanics, is markedly different from the situation in the classical physics where there is
only one possible way.

2.3.3. combined systems, partial trace, and the reduced matriX\e have so far
seen that density matrices arise from (random) ensembles of initial states. We shall now
see that they can also arise when we study only part of a system which, as a whole, is in a
pure state. Before we do this, however, we must know how to describe a state of two (or
more) particles.

2.3.3.1. Tensor product (combining a number systems into oAssume two Hilbert
spacesHa and #Hg (not necessarily of the same dimension), each with its basmis of
states:

W eHn (i=1,2,...,Na),
%) e (j=1,2,...,Ng).

We define theensor produc{also known aglirect productor outer produc} of the two
spaces as

Haos = Ha® Ha = spar( W) @ [95)}.

If the original space#, and #z had Ny andNg dimensions respectively, then the new
spaceHasp hasNa - Ng dimensions: Any state in the new space is described by the quantum
number of Ha (Na different possibilitiesjand the quantum number afg (Ng different
possibilities for each choice of quantum number frof).

To complete the definition of the tensor product, we must give two more of its features:

e The tensor product is linear in the complex coefficients appearing in each space,
i.e.

oW @ [B195)] = apl|wf) ©[95)].
e The tensor product is distributive
[a1|W7) +a2(W2)] @ [B1|0F) +B2(03)] = auBa|W]) @ |9F) + a1f2|wl) @ [65)
+02B1|W2) ® |9F) + 022 W) ©[95).
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Note, that we shall usually drop thee symbol between states and simply write
W) 1eF),
or more often

[Wi)aldj)s,

instead of y?) |¢]B>. In some cases, we shall even drop the indigdsand use the order
of the kets to describe which state belongs to what space.
The tensor product can also be written in matrix form. If for example

W)a=(O)a+BlL)a = ( : )

|0)s =al0)s+b|1)g = < g ),

then
a oa
a a “\ b ab
|¢>A®|¢>B_<B>®(b)_ B a = Ba
b Bb
And for operators/matrices, we would have (as an example)
qf @ b B a b aca ob Ba pBb
A®B_a8®ab_ c d c d | ac oad fBc PBd
“\y o c d /) abéab | ya yb da db
Yicd c d v vd 3 &d

2.3.3.2. The partial trace and the reduced matriknagine that we have some state
|Wag) € Hp® Hg and an operatdDag of the form

Ons=A®1g,

whereA operates on the degrees of freedonvf andig (the identity in#g) operates
on the degrees of freedom 6f3. Let the density matrix describing the pure system (in
the Hp ® Hg space) bag = |Was) (Was|. The result of measurin@ag (according to the
usual rules of quantum mechanics and density matrices) is given by

(Aas = (Oas) = (Was|Oas|Was)
= Tr(OagpaB)
= TraTrg[OagpPas)
= Tra[ATrg(1gpas)]
= Tral[ATra(pas)],
where Ti and T mean performing the trace only i and only in#g respectively
(explained further below). Note, that after taking the trace @®¢he operator T(pas)

now operates solely ofifa, and we can therefore drop the tensor prodectlf we now
define

Pa = Tre(pas).
then we may rewrite the previous equation as

(A)aB = Tra[Apal.

This last result is of the standard for{®) = Tr[Op], however limited to the#x Hilbert
space (instead offp @ Hg.

We call the process of tracing over a subspace of our systepin(Tis case) partial
trace. The resulting density matriga = Trgpag is called theeduced density matrix
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To clarify what a partial trace and what a reduced density matrix are, let us repeat the
above calculation more explicitly. We shall work with the two orthonormal basgs of
Hp and|m)g of Hg, thus(A)ap is
Na Np
Tras[(A®1e)pasl = > > alne(m/[(A®1s)pas]M)s|M)a

n=1m=1

(A as

Na Ng
=3 A<n|A< > B<mpABm>B> IMa
n=1 m=1

Na

> A(nlA(Trepas) [N)a

n=1

= Tra[A(Trepas) = Tra[Aps].

Another way, equivalent to the last, of viewing this, is to dermm{gas having four indices
instead of just two:

pimin = Alils(ilpaglmaln)s.
In this casepa = Trg pap Simply becomes (note the double index

(pA)IJ— TerAb|J zplm]m

We have so far defined a partial trace and a reduced matrix, but what do they give
us? What we have seen is that they give us a method to find the expectation values for
a subsystem (here subsysténof AB). Note, that when we start with a pure state in
the Hilbert spaceta ® Hg, we will generally end up with @aon-puredensity matrixpa.

Thus, by studying only part of a system, an actually pure state will generally give rise to
a seemingly non-pure state (it is non-pure for all practical purposes for a person living in
the Hilbert spaceHy). It is the lack of knowledge about the rest of the syst&n which

gives rise to a mixed state with respect to our subsygteiMote, that although we found

a density matrixpa to describeA, the physical situation is not that of a random source in
systemA—unlike the case we had in the previous subsectton.

Of course, the whole discussion made here could have started with a mixed state in
Ha ® Hg, with hardly any change. However, the point here was to see how starting with a
purestate and performing a partial trace gives a hon-pure density matrix.

2.3.4. Effects of measurements on the reduced matrix (selective and non-selective
measurements).Let us now see how the reduced density mappxs effected when one
performs a measurement in the subsystign For convenience we shall introduce Alice
and Bob again: Alice has access to subsysteand Bob has access to subsyst&nThere
are two cases which will be considered here. The first is when Bob makekeetive
measuremerih subsystenB, i.e. Bob makes a measurement, but Alice may measure her
subsystem only if Bob got a desired result (we calcypatpist for a certain result of Bob’s
measurement). The second case is when Bob makasselectiveneasurement: he makes
a measurement (afg), and regardless of the result, Alice may perform measurements on
her subsysterh. As we shall see, in the first case (selective measurement) the resulting
density matrixpp may differ (from the case of no measurements done by Bob) only if we
start with an entangled state (defined later), while in the secondpzas&l not differ,
regardless of the system we start with.

To see that reduced density matrices may be influenced by measurements, let us start
with a simple example. Assume a system described by the state

|Wag) = % (10)al0)s + | 1)al D).

21However, as we shall see later, if a non-selective measurement is perfornfgl tmen the situation is
physically the same as a random source in systésee2.3.4.



34 2. BASICS OF QUANTUM INFORMATION

where|0) and|1) stand respectively for the eigenstates of spin up and spin down in the
z-direction (of a spin% particle). If no measurement is made, the reduced depsitg
simply

Pa = Trepas=-8(0lpas|0)s +B(1pas|1)B
1
= 5 (10)aa0] +]1)an(1))

where 1
Pre =75 (10)al0)8 + [1)a[1)8) (8(0[A(0] +B(LA(1]).

Now, let us assume that Bob measureszitcemponent of the spin in his subsystem. Let

us further assumes that he finds the spin in the up direction. In this case thptsgte

collapses to
) measured

0 0
Wag) |Waa) = [0)a/0)e.
The reduced density matrp&” of this new state is easily seen to be

PR’ = [0)anl0]
which is clearly different from the reduced matpx we found previously.

We have just seen that performing a measurement on one subsystem of the complete
systemAB may influence the reduced density matrix. As we shall prove, the new density

matrix p(Ab) (when the valué is measured in subsysteB) may differ from the original
pa (When no measurement was done) only if the origib&lg) may not be written in the
form

|WaB) = [W)ald)B
(with no sum on the righthand side). Whigkug) maynotbe written in this form, the state
is said to beentangled?® Otherwise (Whefi¥ag) = |P)a|$)g) it is said to benonentangled
Using this notation, the above claim may be restated as

Xw measuremeht# p(Ab measureﬁ:> |qJAB> entangled

Note, that the opposite direction does not hold.

PROOF. All we need to prove is that whel¥ag) equalsy)a|d)s, then regardless of
the measurement made, the reduced matrix is the same.

To see this, assume a stadlég) of the complete system which is nonentangled, i.e.
|Wag) = [W)al$)s. Now, let us further assume that Bob performs a measurement (in sub-
systemB) and finds a resulh. We know that in this case the original stéé\g) collapses
to

W) = [a(Ml0)e).

Ve(¢[Msld)e

wherelly, is a projection onto the subspace of theigenvalue. Thus the new density
matrix (of the complete system) is

w_ 1
Pag = mnb|¢>8|w>AA<¢|B<¢mb~

Performing the partial trace on this density matrix is very simple, we just choose an or-

thonormal basis affg which includes the state —L—— (M| ¢)g) as one of its elements.

VB(¢[Mb|0)B

b
P = [W)AalWl,

which is the same result we would have found if no measurement was made. In other

words we found

Thus we get

o =pa  (when|Wag) nonentangley

22Entanglement is further discussed?ir.
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This completes our proof: only iWag) is entangled |¥as) # |W)a|$)s) do we have a
chance of finding)f) # PA. O

We have seen above that if Bob makes selective measurements on his part of the sys-
tem, then this may effect Alice’s measurements. We now want to see what would happen
if Bob still performs his measurement, but no matter what he gets, he allows Alice to per-
form her measurements as well. In this case, no matter the|'$tate which we start with
(either entangled or not), Alice won't know the difference, and would find the same density
matrix as if Bob made no measurements, i.e.

(no measuremept (nonselective
A =Pa .

PrROOF The most general case of a (pure) std#ag) of the complete system is a

state of the form

(Was) = ilWi)aloi)s

where{|Wi)a} and{|$i)g} are two arbitrary sets of states (the states in each are not neces-
sarily orthogonal, and might even include repetitions). Let us first find the reduced density
matrix appropriate to this state when no measurement is made. Such a state gives the
density matrix (not reduced yet)

(Za Wit ) (za,A il .)

> aiaj|wialdi)es(djla(Wil,
1]

PAB

and therefore (when no measurement is made) Usimyss(n| = 1g, the reduced matrix
Pais

pa = Trepas=) B(N| (ZGiGTIUJi>A¢i>BB<¢iA<UJi> IN's
mn [N

Zcx.cx |Wi)A (ZB djInee(nidi)s ) (Wi
ZOHO!,-B ;10 )a| i) aalWjl.
1)

or simply
p(:o measurement_ z Giu]-‘B<¢j ‘¢i>BN—'i>AA<l|Jj |
]

Now, Let us turn to the case of a measurement. Assume that Bob makes a measurement
of operatorB and gets, with some probabilityg,, a resultb. In such a cas¢¥ag) will
collapse as follows:

[Was) = ailWi)aldi)e

collapse

za [U)A(Te/01)5).

(b measure}j

where, as beford]y, is a projection onto the subspace of theigenvalue, and Wher%:b
is a normalization factor (recall that is the probability to measuts). The reduced matrix

pgb) for the new stat¢LP5f’E);) is then
EXLT (Mol (e Mllrls ) nhas(ts| - (with probabilyp).
Which usingy |n>BB<n| = 1g, simplifies to

Py ‘HZ“'“ B(0;|Mb|0i)s) [Wi)aa(Wj|  (with probability py).
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Recall however, that we are interested in nonselective measurements. If Bob makes
a nonselective measurement, then by definftide density matrix describing the system
after the measurement is

p(Ané)nselectwi % Do ‘LPAB <qJAB|7

and the partial trace over this density matrix is simply

pXwnselectw& Trg (gp ‘LIJAB LpAB|> %ppr .

Replacingpyy with the previous result we found, the reduced density matfiX">*'*“™*
may be written as

piroE = 3P [:bz<aiafs<¢j|nb|¢i>s>womw;]

1]

= aiajs(d;l (%”b) |0i)B|Wi)aa(Wj]
y
= Y (ciajs(djl0i)e) [Wi)aa(Wjl-

1]

If we compare this result tpi"® ™™ \yhich we found earlier (when no measurement
was made), we see that we have found, as claimed

(nonselective p(no measuremeht
A .

Pa

Before going on one should notice that although we have

(nonselective __ (no measuremept
pA pA )

the two cases are physically different. When measurements are made nonselectively, the

physical situation is indeed that of statHéﬂ%} occurring with probabilitiegy,. However,
when no measurement is made there are no such states (with different probability). In this
latter case, the density matrix is simply the result of lack of knowledge about s{stem

2.3.5. The GHIJW*theoren?®. As we saw before, physically different systems may
give rise to the same density matpx We shall now see that all such systems (described
by the same, but having some complexity limit—see below) may all be derived from the
samepure state.

Let there be two sources of states, one emitting stekgsvith probability i ({pi, |Wi)} 4
and a second emitting statig) with probability g; ({qj7|¢j>}T2:l). We shall say that the

23Gijven the set of probabilities and stafgs,, |Wp) }, the density matrix is defined as
p= % Po|Wp) (Wol-

Here the probability of measuringis py and after measurinigthe state of the complete systerrj@fé). Thus,

an observer standing after the measurement apparatus see‘&%ﬁbesith probability pp.

24GHJIW stands for Gisin, Hughston, Jozsa and Wooters.

25This subsection was originally taught after “entanglement” and the “Schmidt decomposition” were taught.
It was moved here, because the material presented seemed to conceptually fit better right after the discussion of
density matrices and the partial trace. As a consequence, the use of the Schmidt decomposition is given without
proof. The proof and further material are given later when entanglement and the Schmidt decomposition are
discussed (subsecti@¥). Of course, the necessary traits (for this subsection) of the Schmidt decomposition are
described here.



2.3. OPEN SYSTEMS, MIXTURES AND THE DENSITY MATRIX 37

two sources/systems are two differezalizatiors (of the density matripa) if both sources
give thesamedensity matrixpa, i.e. if

Z Py ) (U] = jqj|¢;><¢j| = pa (two realizations op).
i= =

Note that the two set§y;) } and{|¢;) } are not necessarily sets of orthogonal states (within
the sets, or between sets), nor necessarily have the same number of elements.

Gisin, Hughston, Jozsa and Wooters have shown@tHéWw theoremthat all realiza-
tions of the same density matfps, consisting of up ta pure statesi( 1,...,n),%® may
be produced from a single pure sté#é ag € Ha ® Hg, where# g is at leasn dimensional.
The different realizations are produced by measuli#ig,s nonselectively, using (for each
realization) a suitable observable in thg space.

PROOF Assume two realizations of theamedensity matrixpa
n ks
(P W}z = Pa= Z i W) (Wil
1=

n
{0,100 }2, = pa= ZlOIi |60 (il
i=
We perform a so calleddurification” of the two by enlarging our Hilbert space fth ® g

purification

{pi, W)ty ——— [Was = Zlﬁl%)ABi)Bv

n, purification
> i=1

n2
{ai [0 |¢>AB=_Z\\/@|¢i>A|I3i>B,
i=
where in both cases we use the same orthonormal sfales 75

B(BilBj)e=3&; (i,j=212,...,n;n>maxny,ny)).

The outline of the proof form here on is as follows. The proof will consist of two steps,
the first acting as a motivation to the next. We shall start by proving that given a unitary
transformatiortJg such thatlg|¥)ag = |P) as, then by measuring!) ag nonselectively we

may reproduce (using the proper measurement) either of the two realizégions) ™,
and{qd;, |$i)}?,. Having shown that, we shall go on to prove in the next step that such a
transformation indeed always exists, thus completing the proof: $ibg; arose from

an arbitrary’ realization ofpa, and further more, a proper measurementiéfxg gave the
source/realization corresponding|t®) ag, then an appropriate measurement existafor
realization (of up tan possible states) qa.

LemMA (first step). If there exists a unitary operatorg {operating on#g), such that
Us|W)aB = |P)as,
then by a proper nonselective measuremeii#hhg one may reproduce the source corre-
sponding td®)ag (i-e. {qi, i) }2,).

PROOFR Assume an observabl (operating ornfg) whose eigenstates are the states
|Bi)s and whose eigenvalues arendegeneratéhere is an infinite choice of suddis—
just choose one). Clearly, performingnanselectiveneasurement (se&3.4 of the states
|W)as and|®P)ap using this operatoB will give results physically equivalent (for an ob-
server inA) to the two sources i, |Wi) } and{q;, |§;) } respectively) with which we started.

26This limit onn is the complexity limit mentioned above (at the start of the subsection).
27Arbitrary, apart for the restriction; < n.
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Now, by the assumption of the lemma, W& be a unitary state such that

Us|W)aB = |P)as,
or equivalently

|W)as = Ug | ®)ae.
Expanding the last equation usif;) } and{|y;)} this gives

(Whas =3 VPilWi)alBile =) Vail01)aUg 2 (B)),
I ]

or simply

Was =3 /Ajlo;)alvi)s,
]
where we have defined

We=UgllB) (i=1...,n>maxn,np)).
SinceUg is unitary and|Bi)g is an orthonormal set, then necessafjlys is also an or-
thonormal set, i.e.

B{YilYi)B = &ij.
Thus, the new expression we got f&f) ag is similar in form to the one we started with:

[W)as =Y V/PilWi)alBi)s is of the same form a#k)ag = 3 /Tj10;)alvi)s.
[ ]

It is therefore clear that if we measukg) og nonselectively, using an observable (operating
on #Hg) whose eigenstates are the stdtgs (instead ofiB;)g) and whose eigenvalues are
nondegenerate, then the result will be physically equivalent to the (second) realization
{dj.[¥j)}[L;. One observable which obeys the above requirements is

Ug *BUs,

whose eigenstates adtg|Bi)s = |vi)s (Since|Bi)s are eigenstates &), and has the same
eigenvalues aB (and therefore nondegenerate asBr

We have thus shown that if there exiblg such thatlg|W)ag = |P) g, then there ex-
ists an observable (e.glg *BUg) which will reduce|W)ag to the realizatio{q;, \¢j>}'j‘2:l
(while we already know tha will reduce|W) g to the realization{ pi, |Wi)} ™). O

Having proved the first step, we may now go on to prove the second.

LEMMA (second step)lf the partial trace (overg) of both
ng np
|LP>AB=.Z\x/ﬁ|UJi>A\Bi>B and |¢>AB:.Z\/@|¢'i>A|Bi>Ba
1= 1=

give the same density matpg, then there exists a unitary operator (acting only &)
such that

Ug|W)aB = |P)aB.

PROOF To prove this we use the Schmidt decomposition (see subsectiéor more
details). According to the Schmidt decompositifH) g and|P) ag may always be written
as

|W>AB:_§maq>A|bi>B7
and ;2
[@ha= 3 \/Nlalte

where the four set§|ai)a}, {|bi)s}, {|&)a} and{|bj)g} are all orthonormal sets:
al@lapa=3a;  s(bilbj)s=23aj,
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A(@l&)a=208;  g(b|bj)s=23j.
Further more, in this case, we must have
A =N,
and may choose a basis such that
&) = [a).
The reason for these requirements is that the partial trace of both states give tlitegpone
nal density matrix. The elements on the diagonal of this matrixgeg) (a;| for |W)ag and
N|&) (&| for |P)ag, but the diagonalization of the the density matrix is unique (up to the
order of the eigenvalues and eigenstates), so we mustNiava;, and|a) = |a;) (if Ai,A{
are degenerate, then we may h#jé # |a;)—not just because of different ordering— but
we may always choose a basis which does dbgy= |a;)) . Thus we may write

g mminn (3008 )

Oo=3 Vhlalulbe (NI ).

Now, since|b;)g and|b{)g are orthonormal bases (with the same number of elements) then
there must exist a unitary transformation between them, i.e.

[b)e =Uslb)s  (Us =) |bi)es(bil).

Using this unitary transformation we find
|®)ag = (1a®@Up)|W)aB,

Thus we see, that |f?) og and|P) ag give the same density matrpa, then there must exist
a unitary transformation such thialf) ag = Ug| D) aB. d

Recapping the proof, we started by purifying all possible realization (of ufstates)
of a given density matrix. We then showed that if there exist unitary transformations (act-
ing on #Hg alone) that transform between the purified states, then a single purified state may
be used to generate all possible realizations (by performing appropriate nonselective mea-
surements). Finally we showed that such unitary transformations exist, thus completing
the proof. O

2.4. Entanglement and the Schmidt decomposition

We have already, briefly, encountered entanglement and the Schmidt decomposition,
earlier. It is now time for a more methodic presentation of these two terms.

2.4.1. Entanglement.In Quantum information, entanglement is both an important
tool and a subject of active research in its own right. This section gives the definition of
entanglement. Much of the course will be on the uses and traits of entanglement.

A state|P)ap € Ha ® Hg is said to beentangled(betweenA andB) if it cannotbe
decomposed into a tensor product of two states, otféiand the second iftg (no matter
which basis we choose i#a and in#). Note, that we must state the spagésand Hsg,
since a different partition of the spaces (itfffg @ Hgy—instead ofHa ® Hg) might change
the state’s attribute of being entangled/nonentangled.

As an example let us examine the state

[W1)ae = 0|0)a|0)8 +B[1)A[O)e.
This state imotentangled since we can write it as a tensor product of thesfatg+ 3|1)a
in Ha and the staté)g in Hg:

|W1)aB = (GO)A+B|1>A) ®|0)g  (nonentangled
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On the other hand, the state

1
V2
is entangled. To see this let us first write the most germasakntangledtate of two spin

% particles. Such a state (since being nonentangled means that it is a tensor product of two
states) may be written as

(l00a+bi2)a) & (al0)s + Bite )
aa|0)a|0)g +aB|0)a|1)s + bat|1)A|0)g + bB[1)a|L)e.

From this expression we see that for a nonentangled state=# 0 andbp # 0, thenaf3
andba must also be non-zero. This condition, however, is not obeyed by our$taje;
(our state includef)a|0)g and|1)a|1)g but not|0)a|1)g and|1)a|0)g). As a consequence
|W2) A is NOt Nonentangled, i.e it is entangled:

1
V2

The Schmidt decomposition, shown below, gives a systematic way of determining
whether a state is entangled or not (2e€2.9.

|W2)a8 = —=(/0)a[0)s +[1)A|1)B)

W) aB

[Was) = —5(10)a|0)s +[1)a|1)s)  (entangled.

2.4.2. The Schmidt decompositionThe Schmidt decomposition is an often used
tool in the study of quantum information and entanglement. It is basically a standardized
and convenient form of writing (pure) states.

THEOREM (Schmidt decomposition)For any statgW) ag € %g@ Hg there is anor-

thonormalbasis|i)a (i = 1,...,Na) of #Ha and anorthonormabasis|i)g (i = 1,...,Ng) of
Hg such thafW) g may be written as

N<min(Na,Ng) 5
W) p = Z VAilali)s (A >0),
i=
(alilida=38; ; elilhe=3;).
The coefficientd; (A; > 0) in the above expression are called t8ehmidt coefficients
and the decomposition itself is called tBehmidt decomposition

Before giving the proof of the theorem, let us note some relevant points:

(1) The theorem does not claim that the decomposition is unique (it is unique if and
only if all the A;’s are different—se@.4.2.9. However, as will be showm, the
number of elements in the sum, is unique.

(2) Different states (e.g|w)as and|d)ap) require, in general, a different choice of
the orthonormal bases used.

(3) LetUa andUg be unitary operators operating 6f), and g respectively, and let
Uag be the unitary operator defined ldgg = Ua ® Ug. The Schmidt decompo-
sition of Uag|W)as has the same Schmidbefficientsas doesy) ag. However, it
uses different bases iy and# (|i)a — Uali)a and|i’s — Ug|i)g). To see this
simply applyUag onto the Schmidt decomposition {af) ag.

PrROOF To prove the theorem we need two auxiliary lemmas first.

LEmMMA. (Polar decomposition Every matrix A may be written as a product of a
unitary matrix U and apositive matrixH (a Hermitian matrix with only non-negative
eigenvalues):

A=UH (H=VATA).
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PrROOF We shall start by proving the lemma foonsingularmatrices [A| # 0). For
such matrices we may always (as explained next) véiss

_ 1 +
A—A\/m\/A A (JA] #0).

To see this we must note thatA is apositive(Hermitian) matrix. It is clearly Hermitian
since(ATA)T = ATA. Itis positive, since for a given stafgs) we may define

clo) = Alw),
where|d) is somenormalizedstate and is some complex numbeA(() isn't necessarily
normalized). Thus we have

(WIATA) W) = (WIAT) (AIW)) = [c*(d]¢) > O.
This is true for any statap) and thereforeA'A, by definition, is positive (all eigenvalues
are non-negative or equivalently|(ATA)|w) > 0 for all |@)).
Now, since we assume thatis nonsingular|@| # 0), then so isATA, and thus we also
know that the eigenvalues (8ff A) must bedefinitepositive, i.e.A; > 0 (if we had a zero
eigenvalue, the determinant would also be zero). Therefdkemay be written as

ATA= SN[l (A >0).

By definition (of functions of matrice$j we may write

VATA= 5 VAl

and indeed using this definition we have
2
2
(VATA) = (z mi><i|> = S Ailiy(i| =ATA
| I

Clearly (when\; > 0), the inverse of/ATA s

1 1
(\/ﬂ) EW:ZWML
which is easily checked:
1 1 . o
TR VATA= (mem) (;ﬁnm)—;uw—m

Therefore we can write, as we did,

A—A—L_VATA (|A] £ 0).

VATA
Now, let us define
o 1
~VATA
28f an operator/matridA is diagonalizable, i.e. if it may be written in the form
A= 3 Nl il,
T

thenf(A) is defined as
f(A) =% f)I -

This definition may be used evenAfis not Hermitian (whe; are not necessarily real).
If a Taylor expansion of (x) exists  (x) = ag +aix+axx?+ - -- ), then we may also defin{A) as the Taylor
expansion irA:
f(A) = aol + agA+apAZ+--- .
The two definitions are not always available for use (there may be no Taylor expansion areuhdr A may
not be diagonalizable). However, if the two are possible, then they coincide.
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and
H = VATA.

Clearly U is unitary JUT = 1) andH is Hermitian @' = H), so assuming thaA is
nonsingular, we have what we were looking for

A=UH (|A#£0).

To complete the proof we must now treat the singular case as well. Let us assume that
Ais anN x N matrix. If Ais indeed singular, then it must have eigenvectgrs=1,...,n
(n<N), with eigenvalue zero (sinp& = 0, the columns of are linearly dependent, and so
there must exist vectoxs such thadv; = 0). The vectors; define a subspace of dimension
n for which we can choose an orthonormal basjs = 1,...,n. Let us now complete the
orthonormal basis (of the subspace) to\adimensional orthonormal bass(i =1,...,N)
of the whole space (on which operates). Since thls} form an orthonormal basis and
since theg, fori =1,...,n, are eigenvectors with eigenvalue zero, then there exists some
unitary matrixV such that

viav = . (Vi=vh,

A

whereA is an(N — n) x (N — n) nonsingular matrix, and the number of zeros on the diag-
onalisn.
SinceA is nonsingular we can use the result we found above and write

0 1 0

o 1 0o

UH u H

whereU is a unitary matrix andfl is a positive Hermitian matrix (botfN —n) x (N —n)
matrices). From this we easily find that

1 0
A=V viv v
1 0
U H
Defining
1
u=v v,
1 ~
U
and
0
H=V o v = VATA,
H

we see that, as declared,
A=UH
whereH is a positive (Hermitian) matrix and is a unitary matrix. O
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LEMMA. (Singular value decompositipnEvery matrix A may be written as a product
of a unitary matrix U, a diagonal matrix D, and another unitary matrix V:

A=UDV
PROOF According to the previous lemma, we can always whtas
A=UH.
SinceH is Hermitian, then there is a unitary matfixwhich diagonalizes it
T'HT =D
= H=TDT"
Therefore, we can write
A=U;TDT".
We now define
U=UT
and
v=T"
These new matrices are clearly unitary, and we therefore have
A=UDV.

O

Having proved the above two lemmas, we may now prove the Schmidt decomposition.
By definition, a statéWag) can be written in general &5

(Wag) =  aijlai)alBj)s,
0]

where|a;) is an orthonormal basis offs and |B;j) is an orthonormal basis offs. The
coefficientsa;j define a matrixA

(Aij = aij-
By the second lemma there are matrite®,V such that (sinc® is diagonal)
A=UDV = gj =Aj = ZUikakaj-

Substituting this intd¥ag) gives then
|Wag) Zkuikakaj|ui>A‘Bj>B
i1,

ZDkk<IZUikGi>A> <§ij5]>8> :

Now, sincel andV are unitary matrices then they transform an orthonormal basis into a
new orthonormal basis. Thus, we may define two new orthonormal bases

K)a = Uilai)a

and

ke =Y ViilBj)e.
J

2gBy definition (yi)a and|¢;)g are arbitrary states)
Wa) = Bij|Wi)ald;)s.
N}

If we expand each of the stat@h;)a using the orthonormal basjs;)a and similarly for#g, we get the above
result.
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Using these definitions we now have

|Wag) = ZDkk|k>A\R>B,

which isalmostthe Schmidt decomposition. To have the Schmidt decomposition we must
haveDyy = \/)Tk and therefor®y, must be positive. In generBl can always be written
as+/A@%. If we push the phasé® into the definition of our orthonormal bases, then we
finally get the desired form.

O

As an example let us examine two cases. The first is

%<|0>A|0>B+|1>A\1>B>.

This state is already in a Schmidt decomposition sifideand|1) are orthonormal and
further more the same ket does not appear in two different elements.
However, if we examine

|Was) =

%ammaw LalTs),

this is not a Schmidt decomposition singe)g is not orthonormal td1,)s.

We may now ask how do we find the Schmidt decomposition appropriate for a given
state. When th@;’s arenondegeneratéhis is quite simple (shown next). Assuming the
Schmidt decomposition is of the form

Wae) = 5 V/Nili)ali)e,

|Wag) =

the reduced density matrices4ih and #g are

pa=Trg|Wag) (Was| = ZB J1(1Was) (Was))|]) B—Z?\ )il

pe = Tra|Wag)(Was| = ZA i1 (|Wag) (Wagl) | A—Z)\ Nea(l]

We see that the sanig’s appear in both density matrices (when they are diagonalized).
Further more); is the coefficient of bothi)aa(i| in pa and of [i)gg(i| in pg (the same
indexi in all). Thus, if we diagonalize each of the reduced density matrices we can match
eigenstates with identical eigenvalues and so deduce the Schmidt decomposition.

As an example of this method let us return to our previous example

%mzm»w LalT08)-

The reduced density matrpg for this state is

|Was) =

o5 = 5 (Tma(lal +[10ms(lx)

- 2+f|0>BB<0| 2

11)ea(1],
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where we have defined (by finding the eigenstatgzpt®

1

|0)g = \/TT\@ [(14— V2)|1)e+ |lz>B} )
1

11)g = TZ\@ [(1—\@)|Tz>8+ |lz>B} .

For pa we gef"

oa = |TZ>AA<TZ|+\}TZ>AA<12|+}|12>AA<TZ|+|12>AA<@|}

= 2+\[‘o>AA<OH‘2 f‘l>AA<1‘

where we have defined here (again after finding the eigenstates of the density matrix)

)a+1l2)8)

m:\%mz

1
A= 7 (IT2a=l2)8)-
Having found the (nondegenerate) eigenstates of the two partial density matrices, we can
now finally write down the Schmidt decomposition, as follows:

Wae) = 2V 2000000+ 2V 2 0l

Note, that if the Schmidt coefficientg are degenerate, then the eigenvalues of the
density matrices will also be degenerate and we won't be able to make the one-to-one
correspondence between the orthonormal statégaind #z. This means that we cannot
use the density matrices to find the Schmidt decomposition when there is a degeneracy.

30Using|1,) = %(HZ) +11,)), we can write (dropping the inde)
P8 = %(Hz><Tz‘+%[(|Tz>+‘lz>)(<Tz|+<lzm>

3 1 1 1
= Z‘Tz><Tz|+Z|lz><lz‘+Z‘Tz><lz|+z|lz><Tz‘

In thez basis, this is the same as the matrix

_1(3 1
PB=21 1)
whose eigenstates and eigenvalues are
1 ( 1442 ) 242
Ap = .
3+2V2
Thus, the (normalized) eigenstatespgfare

Vi =

4= (1 V2) ) +112)].

3lusing|1,) = L (I1,) +112), we may write

W) = [wz>mz>s+ %uznumwas)}

1 1 1
= 5| (1tn+ T5l10n ) 11e+ s 1nlie]
so that (dropping the indeX)

1 1 1 1
b = 1 (nz>+7uz>) (<m+ﬁ<u) + a0
= S+ Sl S+ S
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However, we can always find the decomposition using the method described in the proof
of the Schmidt decomposition.

2.4.2.1. Uniqueness of the Schmidt decompositive have claimed at the start that
the Schmidt decomposition is unique if and only if the Schmidt coefficients are nonde-
generate. Further more, it was claimed that even if the decomposition is not unique, the
numberof elements (in the decomposition) is unique. We shall now prove this.

Showing the uniqueness of the number of elements (in the decomposition) is simple.
Assuming the Schmidt decomposition to be given by

N
Was) :lzi\mUMIiN)Ba

it is easy to see that the density matrix describing the state is

N
PaB = ;7\i(“>A\i~>B)(B<i~IA<i|)-

In this form the density matrix is already diagonal, and it is clear that itNha®nzero
eigenvaluesN is also the number of elements in the Schmidt decomposition). Since the
density matrix is unique it is clear that themberof elements in the Schmidt decomposi-
tion must also be uniqu&.

We must now show that the decomposition is unique if and only if the Schmidt coef-
ficients are nondegenerate. Actually, we have already shown above thatifbegenerate
coefficients the decomposition is unique: We have shown that by diagonalizing each of the
reduced density matricgs andpg we can find the Schmidt coefficients and the unique
basedi)a and|f>B (see above). Therefore, to complete our proof we need only show that
for the degenerate case the decomposition cannot be unique.

If the coefficients are degenerate, then the Schmidt decomposition incltidksst
two elements with the same coefficient. Thus, the decomposition may be written (concen-
trating only on two of the degenerate elements) as

|Was) = - +Ali)all)g+ -+ A[j)al)B+--,
or, after renumbering the states, as
|Was) = A (10)al0)s + [1)alT)s) + - -

To prove that a different Schmidt decomposition exists, it suffices to show that there always
exist (nontrivial)orthonormalstatega)a, |b)a and|d)g, |b)g such that

10)al0)8+ |1)al1)8 = [2)al&)& + [b)a[D)e-

This is easily shown by defining

|a)a = cost|0)a + sina|1)a,

Ib)a = €° sina|0)s — €° cosa|1)a,

|&)g = cosa|0)g + sina|1)g,

and
Ib)g = e ®sina|0)g — e ® cosa|1)s.

With these definitions we have

|0)a = cosaa)a -+ €°sina|b)a

11)a = sinaja)a — €° cosa|b)a,
0)g = cosu|)g + e 'sina|b)g,

32Again, since many states can give the same density matrix, then this does not necessarily mean that the
Schmidt decomposition is unique.
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and 3 _ B
1) = sinad)g — e ' cosa|b)s.
A straight forward calculatiott then shows that
10)al0)8+|0)a[0)8 = [2)[&)& + b)a| D),

regardless of the angles 6 chosen. Thus, we see that there is an infinite choice of or-
thonormal bases which give a valid Schmidt decomposition (when there is a degeneracy in
the coefficients).

2.4.2.2. The Schmidt decomposition and entanglem&w. have seen above that the
number of elements in the Schmidt decomposition is unique. As you may recatitam
gled state is defined as a state whicdnnotbe written as a tensor product of two states.
On the other hand, a nonentangled state is one which can be written in this form (e.g.
|Wag) = [0)a|0)8). Thus we see that if the Schmidt decomposition has only a single ele-
ment (Wag) = |0)a|0)g) then the state is nonentangled. Otherwise, the state is entangled.

33The calculation is:
10)al0)g + |1)al T =
= (cosa\a)A+éesina\b)A) (cosu\ﬁ)B-ke*‘esina\B)B)
+ (sinu\a}Aféecosu\bM) (sina\é}Bfe*ie cosu|B)B)
= (cofa+sirta)la)ald)s + (sif o +coa)|b)a|b)s
+(e7® cosarsina —e~®
+(€®sina cosa — €® cosa sina)|b) a|&)e
= [2)al@)s+[b)albe-

sinacosa)|a>A|B>B
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CHAPTER 3

Creating entanglement experimentally

To be completed?
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CHAPTER 4

Hidden variables

4.1. The EPR Paradox
Assume a two particle wave function of the form
P~ 3(x1 —x2 —L)d(p1+ P2),
whered are not exactly delta functions but only arbitrarily good, normalizable approxima-
tions. The operators; — x and p; + p2 commute? so we can measure both simultane-

ously.
From the wave functions we know that

x1—X~ L (distance between particles

p1+p2~0 (total mommenturp

Clearly, if Alice measureg;, then she knows thag ~ x; — L, on the other hand, if she
measure$; then she knowg, = —p;. Let us now assume that the distarnces large
enough so that the during time it takes to make a measurement, light cannot travel between
the two particles. Thus we assume that particle 2 isn't effected by measurements on particle
1.

Following EPR (Einstein, Podolsky, Rosen) We define@ment of realitys a quan-
tity which may be predicted with certainty without disturbing the system at all. In our case
here bothx, and p, are elements of realifyjpbecause we may find them without disturbing
particle 1 (only particle 2). Since the measurements are done far away from particle 2, then
the particle is not effected by them axrg p, must be both elements of reality.

However, from the uncertainty principle, we cannot know betandp,, and thus we
find a contradiction with quantum mechanics, which tells us that the theory is incomplete.
Further more, since the result of the measurement of the system is unaffected by the mea-
surement on particle 1, one might think that the result of the measurements on 2, where
already “written” somewhere. This lead to the thought of hidden variables theory (HV).

We should also mention Bohm’s version of the EPR paradox, sometimes known as
EPRB. His version is discrete. He uses the entangled state

) = % (tela— laT2)

which has a total spin of zero. One can now measure the spin (rdinection) of particle
1 and deduce that of particle 2. From here on it is similar to the original EPR paradox.

4.2. Bell inequalities

The EPR paradox led to the thought that there might exist hidden variable theories
which give the same predictions as quantum mechanics. Bohm (1952) had found the pilot
wave interpretation which wasrenlocalhidden variable theory. The question remained,

1Einstein-PodoIsky-Rosen
2
[X1 —X2, P14 P2] = [X1, p1] — [X2, p2] = 0.

3we could similarly also choose, p; as the elements of reality, but then p; won't be????

53



54 4. HIDDEN VARIABLES

however, whether bbcal hidden variable theory might be possible. Finally, in 1964, Bell
had shown that for a Hilbert space above 2 dimensions, one cannot have a local hidden
variable theory (actually he showed an inequality which such a theory must obey, and
guantum mechanically does not obey it experimentally—see below)

4.2.1. A local hidden variables theory for spin%. Before going on to Bell’s in-
equality let us first show (following Bell) an example where a hidden variable theory
possible (a 2 dimensional Hilbert space).

Assume a spirizl system in a state

|Lllo> = |Tz>

In quantum mechanics the expectation valuepis*
(Of)yo = N-2= cosBy,

where

op=A- 6',
and wheref,, is the angle between dandZ (0 is the vector of Pauli matrices). We now
wish to find whether we can produce a hidden variable theory which will reproduce the
same results. A

To achieve this let us assume, as a parameter (the hidden variable), a unith\vector

with equal probability to point anywhere on the upper-half-(0) of a unit sphere (but
zero probability to point towards the lower half). \Wefinethe the result of measurina
as the valu&s, given by’

Vo, (5\) = sign(ﬁ . 5\) = sign(cosBpy,) -

Since we assume thatis (for some unknown reason) uniformly distributed on the upper

half of the unit sphere, then within an area of%?r'Z (of the upper hemisphere) we get

negative values fon “A while in the rest of the upper hemisphere (aream#ZTre—;}z) we

get a positive value fon A (note that the area of half a sphere}iésnrz, which forr =1
gives 21). As a result, the average value we get is
Onz 6nz
N = (-1)- (21T7) +(+1)- (211—2117) L 26hz
on 2n m’

where

cosBh,=A-2
Clearly, this result does not give us the desired quantum resulé{gosTo achieve that
we simply use a different ih the expression fov, (). Instead ofh'we shall useY"at an
angle®’ (with the z-axis) such that

20/
1-— =cosB,=A-2
T nz

The important point is that we can make a one-to-one a mapping beﬁvaqde’ and
therefore we can have a hidden variable theory, as desired. In this new théeosfill
4

(oa)yy = (1,]cosBoz+ sinBcospoy + sinBsingoy|1,)
c0S8(T7|02|Tz) + SINBCOSP(T,|0x| 1) + SINBSING(T,|Ty| T,)
= ¢c0s8+0+0

5The function sign) gives the sign of its operand, i.e.

+1 x>0

sign() = {1 x<0’
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uniformly distributed on the upper half of the sphere but the value of a measurement (of
oR) is given by (note tham appears only in the first term whité appears in the rest)

Vo, (A) = sign(ﬁ’ . 5\) = sign(cosByy ),

wherer’ obeys
i
2
(For example iin"= XsinBcosp + ysinBsing + zcosO then we can define
Y = Xsin®’ cosp + ysin®' sing + zcosd').

Note, that we could have also constructed our hidden variable theory differently. For
example, we could have constructed a model with a parametariformly distributed
between 0 and 1, such that

V- 2=cost = cos{g(l— cosenz)} = cos[ (1— ﬁ-i)} :

{ 1 0<)\<co§%
Op =

-1 co§%<)\<1 ’

This would give us

(0n) = COSBy,
where of course

fi-2=cosHy,.

Before going on to the general case, let us try and see if we can construct a hidden
variable theory for a system of more then one spin such as a system of two entangled
spins.

Assume a system of two spins with total angular momentum zero. For such a system,
if we measure spin number 1 in taelirection and get “up”, then measuring spin number
2, also in thez direction, must give “down”. We need a model to give us this behavior.
We cannot use the exact same model as before (for each spin separately), skae the
each spin would be independent and we won't get the desired result. Instead, let us try
a modified model. In our new model the two spins are in opposite directions, but the
direction of spin 1 is random, i.e. particle 1 has spin “up” in the random diregii@md
particle 2 has spin “up” in the directiojy = —J1. We shall use the random parametgrs
instead of the random parame?ein the previous model. Thus, we now have (with some
change of notation):

Vi(A) =sign(f- i)  (J2=—J1),
wherei is the index of the particle being measure ané the direction in which the
measurement is performed. We shall denota bydf)the directions in which we measure
particles 1 and 2 respectively.

We can easily see, that by our assumptiofidieing random, we get, as in QM

V1(@)), = (V2(b));, =0,

where(-);, denotes averaging qf.
Now let us calculatéVy (4)Va(b)). Clearly (sincej> = — 1), the casa = b gives the
regular QM result
M(@)V2(8));, = -1

To find the result for general directioasidb we draw two half-spheres on the unit sphere,
one centered arouradand the second arouriﬁjhese half-sphere represent, respectively,
the directionsj; and | for which V(&) andV,(b) are positive. Thus, whep either falls

in the intersection of the two hemispheres, or when it falls outsidmtfhemisphere, we
have

21— 20

Vi(8)Vo(b) = -1 (area of o

4m),
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while on the rest of the unit sphere we have
A 20
Vi(8)Vo(b) =+1 (area OfEr4 ).

If we denote by the angle betweea andb, then the first case occurs on a surface area of

2n— 20 ~
4 V1(&)Vo(b) = -1
54T (Va(@)Va(b) = ~1)
and the second on an area of
20 A
! V1(8)Vo(b) = +1).
SeAT (Va(@)Va(b) = +1)

(Itis easier to calculate the area of the second case first.). Taking the average over the areas
gives
A D 20
M(@Ve(0))f, = -1+,
while the result in quantum mechanic§ is
(040p) = — COSBgp.

Not surprisingly, as before, we got different results. The question, however, is whether we
can correct our model (as before) so that we get the correct answer. We shall see (in the
next two subsection) that the answer is no. The reason is that the parameter in the results
is the angle betweemandb. We cannot make a deterministic changeparatelyon each
functionVi(f), so that we will get a correct result when combined. (The change in each
function may not depend on the direction of measuring the other particle. Otherwise the
theory is nonlocal)

4.2.2. The CHSH inequality®. Let us assume thatlacal hidden variables theory
exists, where by local we mean that that every particle has its own set of hidden variables
which determine its behavior (regardless of what the others do). We shall now see that this
assumption requires a certain inequality to always hold. Since quantum mechanics does
not alwaysobey the inequality, then the only conclusion is that quantum mechanics is not
alocal hidden variable theory.

We shall again study the system of two séinparticles with total angular momentum
0. This time however, particle 1 can be measured either in direat@rin'd and patrticle

5The simplest way to see this is to note that for any direatiore have

L als) — 1)) = oz (11 ) — ([
ﬁ(”zlﬁ |lsz>)*\/§el (Hnln) |lnTn>)7

where¢n; is some global phase. This is because the state (up to a global phase) is uniquely definéatdly its
angular momentum and the momentum in #iréction. On both sides of the equations, these values are zero,
so the states must be physically the same.

Using this relation, we can write the state as

1 .

(W2 = ﬁe'q’ (ITala) — laTa)),

whered’is the direction in which we measure particle 1. Using this basis, we may write
Op = C0S0,04 +SiNBap0

wheref,p is the angle betweemandb, ando | is an operator measuring perpendiculaatdt is now easy to see
that

12(W[05) 0l W)y, =
1 ) . .
= 5 ({Talal— (lalahe ™ |05 (cosBaof? +5inBapo'?)| €% ([1ala) —lala))
= —CO0SByp.

Clauser Horne Shimony and Holt.
8Bell's original inequality is discussed in the next subsectibi.g.
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2 can be measured either in directioor in o' Although we cannot measure battarid
& simultaneously (noB andB’), the fact that we have hidden variables allows us to know
in advance what the result would be (should we make the measurements). We shall use
these “results” to develop the inequality. We shall denote the result of measyrimga
the result of measuringy by & and so on.
The possible results of any measurement)fare only+1, thus (as explained next)
we may write
(a+d)b+(a—a)b' = +2.

This is because either

ata =0=(a—a)=+2 (K==+1)
or

a-ad=0=(a+d)=+2 (b=+1).
Although we do not know the distribution (of occurrence) of the vali@sand—2 in our
hidden variables theory, we can conclude that we musthave

|((a+&)b+(a—a)b')| <2 (for hidden variablels
or equivalently

|(ab+ab+abf —ab')| <2 (for hidden variables
writing this in standard quantum mechanical form we can write

|(040p + 04 0p + 040y, — 040y )| <2 (for hidden variables
or
|(040;) + (04 0p) + (040 ) — (050 )| <2 (for hidden variables

Each one of the four averages (within the absolute value) can be measured in experiment
and then the inequality checked. This inequality is calleddH&SH inequality

Let us see if QM (always) obeys this inequality. As an example we shall take the case
where all direction are in the same plane such that (see figar#

A A ~ T - 3n
ald , blb | a-b:cosz1r anda’-b’:cosZ.

Since in QM(6%1)6<2)> = fi-Mmthen for the above choice we have

&

FIGURE 4.2.1. The geometry used for the example of the CHSH in-
equality violation. The spin of particle 1 is measured either inaloe ~
thed directions, while the spin of particle 2 is measured either intthe
or theb directions.

(0a03) = Ccos— =
b

T
(og0p) = cos, =

%If we have probabilityp, of +2 occurring and probabilitp_» = 1 — p; of —2 occurring, then the average
resultis
[((a+a)b+ (@ —a)b)| =[(+2)p2+ (~2)(1~ p2)| = [4p2— 2| < 2
(since 0< pp < 1).
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(0x50p) = cos” = Q,
4 2
2
(0a0p) = cosg—’T = —i,
4 2

and we get
’(0’305> + (05 0p) + (0x0p) — <0306’>| =2V2 £ 2.

Experiments confirm that QM indeed holds in this case, and therefore QM cannot be a
local hidden variables theory. Again, local here means that every particle has its own set
of hidden variables which determine its behavior, regardless of what the other particles do
(once the hidden variables are determined).

Note, that it can be shown, that for two spins the maximum violation is when the
absolute value equals,/2 as we got here.

4.2.3. Bell'sinequalities. Bell was the first to give a proof that QM contraditisal
hidden variables. Like CHSH (who came after Bell) he found an inequality which a local
hidden variables theory must obey. Since quantum mechanics does not necagsayity
obey the inequality it cannot belacal hidden variables theory. We shall now develop this
inequality .

Assume two spins emitted with opposite spins, as before. We measure spin 1, either
in directiond or in directionc’and we measure spin 2, either in directoar in directionc”
(the same as a for spin 1). We shall denote the results of such measurements as c;
respectively ¢ the result of measuring spinn directionc). Since the spins are in opposite
direction we shall use

C=cC1=—Cp.
Note, that we can measure either of the péid), (a,c) or (b,c), but not all three quan-
tities (@, b andc). However, since we assume hidden variables we can know the results of
all three quantities in advance (even if we measure only two of them). Since the spins are
in opposite direction (and the measurements take valueslpfve can write (explained
next)
ta(b—cy) = (1+ba).
This is true since ib = ¢, thenb = —c; and both sides give zero. On the other hand,
if b= —cp, then both sides give 2, up to a sign. Since the result haoa the left and
—1 < (ba) < 1 (and therefore % (bc;) > 0), then taking the average on all possible
hidden variables give$
|(ab) — (acz)| < 1+ (bcy),
orusingc=c; = —C
|(ab) + (ac)| < 1+ (bo),

The Bell states we already encountered are also catlaximally entangled They
are maximally entangled in the respect that they give the maximal violation of the Bell
inequalities

1

2

1
2
1
2

Y~ = —(10)al1)s—[1)a[0)8)

S

Pt (10)a|1)8 +|1)a0)8)

S

(0 (10)al0)g —[1)al1)B)

S

10When we average ovafb— c), we sometimes add positive values and sometimes negative values, and so
we have
[(a(b—c2))| < (la(b—c2)[) = (|1 +bey|) = (1+bey),
where the last equality is due to the fact that ic; > 0.
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_

NG (10)al0)g +[1)alL)B) s

(p-‘r

4.3. Contextuality'!

4.3.1. Definition of Non-Contextuality. Non-contextuality is a hidden variables “the-
ory”. Which assumes:

Non-contextuality: The result of a measurement is independent of whether other
compatible (i.e. commuting) measurements are madé, B = [A,C] = 0 then
measuringd; measuringA andB ; or measuringh andC would all give the same
result forA.

Functional consistency: If [A, B] = 0 and measuring, Bwould give (respectively)
a,B, then measuring (A,B) would give f(a,B). The resultf(a,B) may be
assumed to have been measured even if the measurement was never taken

NoTE. Non-contextuality cannot be tested experimentally since one cannot make the
different measurements on a state: once measure Arigd once bottA,B. Once a
measurement is made the state collapses other compatible tests, wilbil€the result
of measuringd) unchanged.

4.3.1.1. Mathematical formulationNon-contextuality means that one may define a
truth functiont(P), wheret(P) € {0,1} (i.e. a value of either O or 1), such that fevery
completeset of orthogonal projectiond }

SR=1 (RP =5;R,P =P),
|

the truth function obeys

St(R)=1 (t(P)€0,1).

|
The truth functiort tells us in each possible basis (depending on our measuring device)
which value we would measure. The difference between the non-contextuality and the
standard case, is that in the standard case the truth furtctioses the probability and
therefore may return any value between 0 and 11{R). € [0, 1].

4.3.2. Contradicting Non-Contextuality. Contradicting non-contextuality is achieved,
not by comparing it to experiments, but rather, by showing that it is logically inconsistent
(assuming a continuous Hilbert space of 3 dimensions or higher). Two theorems to prove
this are the Gleason theorem and the Kochen-Specker theorems (Bell also had one). For a
4-dimensional Hilbert space Mermin

4.3.2.1. The Gleason theorentsleason replaced the usual axioms of QM by a smaller
(more abstract) set of axioms:

(1) Elementary tests (yes-no questions) are represented are represented by projectors
in a complex vector space.

(2) Compatible tests (yes-no questions that can be answered simultaneously) corre-
spond to commuting projectors.

(3) If P, andPR, are orthogonal projectors, then the projed®dar= P, + R, has the
expectation value

(Puv) = (Pu) + (Ry)

This new set does not contradict the regular axioms, and therefore any result obtained from
it must also be true for the standard set.

llLargely based on the book of A. Pergls[
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THEOREM. The above axioms plus continuity of the vector space require that the
expectation value of any Projector P must be of the form

(Py=Tr(pP) = (A)=Tr(pA),

wherep is a non-negative operator with unit trace (i.e. a density matrix) which depends
only on the state of the system; not on the “quantity” measured.

If we now assume that a truth functidonndeed exists then it must obgl) = t(P).
However, contrary to the truth function (in non-contextuality) which returns discrete values
(0 or 1), itis clear that the functiofP) = Tr(pP) would return a continuous spectrum of
values (if the projectionP are continuous). This gives a contradiction and therefore non-
contextuality contradicts Gleason’s axioms and thus also the standard axioms of QM.

4.3.2.2. The Kochen-Specker theorem.

THEOREM. In a Hilbert space of 3-dimensions or higher, itimpossibleto define a
truth function t which associates a value of eitileor 1 with every possible projection P
such that if

YPR=1 and [R,P]=0,
|

then
Zt(P.) =1 where {(PR)e{0,1}
I
PrRoOF (Due to Peres)
We start by proving the theorem for the case of 3 dimensions. Instead of referring
to projections one may use the vectors defining themu i a vector, then it defines
the projectionP, = uu’. More precisely, it is sufficient to refer to rays, since the length
(including negative lengths) plays no role. A complete set of commuting projections may
therefore be defined by a complete set of orthogonal states/vectors/rays. the truth function
t associates with each such ray a value of either 0 or 1.
The proof of the theorem has the following general form:

e Choose several complete sets of orthogonal rays, some of them sharing the same
rays (but of course not sharing all of the rays). The same ray, in different sets,
must of course correspond to the same value of the truth-funigtiorall sets.

e Since some sets share rays, this creates constraints on the truth values allowed in
different sets. The proof shows, that these constraints cannot all be maintained
without a creating a contradiction (for all possible truth functions).

Since the 3-dimensional Hilbert space is isomorphi&ave may work inR3. We shall

study here only 33 different rays The possible values of the ray components treated will

be Q+1,++/2, where for simplicity of notation/2 will be denoted as 2; and1, —/2

will be denoted a4, 2 respectively. Note that the 33 rays are not all the possible rays one
can construct using the given components (for example the ray 111 won’t be used). One
important feature of the set of rays is that it has the rotation symmetry of a cube. The proof
is given in the following table. In each row a set of three orthogonal rays are given under
the “Orthogonal triad”; one of these must correspond to a truth value of 1 (referred to as
green) and the other two must correspond to a truth value of O (referred to as red). The
green (truth value 1) ray is written first in bold-face and then the other two (red — truth
value 0). If the red rays have already been mentioned in a previous row they are written in
italics. If needed later, more rays, orthogonal togheen (truth value 1) ray are also given
under the column “Other rays”. These extra rays must be red (truth value 0), since they are
orthogonal to to the green ray. The third column explains why the first ray was chosen as
green.

13This is a subset of all possible rays but it suffices to show a contradiction.
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| Orthogonal triad Other rays| The first ray isgreenbecause of]

001 100 010|110 10 | arbitrary choice of axis

101 101 010 arbitrary choice ok vs. —x

011 011 100| arbitrary choice of/ vs. —y

112 112 110|201 021| arbitrary choice ok vs.y

102 201 010] 211 orthogonality to 2nd and 3rd rays
211 011 211102 orthogonality to 2nd and 3rd rays
201 010 102|112 orthogonality to 2nd and 3rd rays
112 110 112|021 orthogonality to 2nd and 3rd rays
012 100 @1 121 orthogonality to 2nd and 3rd rays
121 101 121|012 orthogonality to 2nd and 3rd rays

From the table, the rays 100 (first row), 021 (fourth row), ad@ Qast row) are all red
(truth value 0). However these three rays are all orthogonal to one another. This cre-
ates a contradiction since this givg$(u) = 0 instead of§ t(u) = 1, as required by non-
contextuality for complete orthogonal rays/vectors/states.

The proof so far has been for 3 dimensions; for higher dimenglan8 one can use
the same prodf but addd — 3 rays which are orthogonal to all the 33 used above (after
adding to all the rays herd— 3 components of 0, in order to make thekdimensional).
The same d- 3 rays are added to the orthogonal sets of each row in the table (making
each a set ofl orthogonal rays). These nedw 3 rays are always red (truth value 0) due
to the first row. Since, fundamentally, the same table is used, then the same contradiction
appears. O

4.3.2.3. Mermin’s proof (4 dimensions)Mermin has given a simple proof contradict-
ing the premises of non-contextuality in 4 dimensions. He examined the following array
of operator®®
1®0; 0;01 0;80;
0x®1 1®0x Ox®O0x .
0x®0z 0z®0x OyX Oy
In this array all the operators have eigenvalues-of and the three operators in each row,
as well as in each column, commute with each other. Further more, the product of the first
two operators (from the left) in each row, and the first two (from the top) in each column,
give the third operator in the row/column. The only exception, is in the final column, where
the product gives-oy ® oy instead of-0y @ oy.
Now, if non-contextuality is possible, then by choosing the valueg) for the four
operators determines the values for the rest of the array [elg® &, would return 1 and
0;® 1 would return—1, theno; ® 0; = (1 ® 0;)(0,® 1) would return—1=1-(-1)].
However, since the product of the first two operators in the lower my&(ay) gives
minus the product of the first two operators in the third columoy® oy), then there is
no possible choice of valueisl which will notlead to a contradiction. Mathematically, if

14ror 4 dimensions there is also a different proof using only 24 rays.
15Reminder: The Pauli matrices are

(3 5) me (P9 ) (5 %)

and they obey the relations

Of=0s=02=1

0xOy =i0; ; OyOx=—i0; = [0x,0y] =2i0y,
0,0x =i0y ; 0x0;=—i0y = [07,0% = 2i0y,
Oy0; =i0x ; 0,0y=—i0x = [Oy,0;] = 2i0x,

which may be summarized by
0i0j = 5”‘ 1+ isijko_kv
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there exist a value functiovi which gives the value of the operator theduld have been
measured, then using the assumption of functional consistency premise on the last row
gives
V(oy®oy) = V(0x®07)V(0;00x) = [V(1®0)V(0x®1)][V(0;®@1)V(1® 0y)]
= V(1®0,)V(0x®1)V(0,®1)V(1® 0y).
On the other hand, using functional consistency on the last column gives
V(oy®oy) = —V(0:Q0,)V(0x®0x) = —[V(1®0z)V(0;®1)][V(0x®@1)V(1Q 0y)]
—V(1®0,)V(0x®1)V(0;@1)V (1 ®0x).
Thus we have found that(oy ® ay) = -V (0y ® ay) which is impossible since the eigen-
values of all our operators (and hence the allowed values to be measureel .afihis

contradiction means once again that the assumptions of non-contextuality are contradict
guantum mechanics.



CHAPTER 5

Uses of Entanglement

5.1. Encoding information

Recall the four Bell states (Which are maximally entangled)

Y~ = —(109al1)s—[1)al0)8),

;;
pr = 7(|0>A|1>B+I1>A\0> B)
¢ = 7(|0>A|0>B—|1>A|1> B);
¢ = 72 (10)al0) +[1)alL)B) -

These four states span the whole Hilbert space of two%miarticles.
We now define two operatoB andB;

By = 0AaB,
B, = A B
which commuté
[B1,By] =0.

Each of these two operators have two eigenvalueslof
| Bell state| eigenvalueB; | eigenvalueBs; |

s +1 -1
T -1 -1
[0 +1 +1
On -1 +1

We see that measuring a single operator, cannot distinguish between the four Bell
states, but measuring both operators (they commute) determines a single state (see which
eigenvalues are measured for each operator and compare to the above table). The only
problem is that the two operatdBs andB; are both non-local: they operate simultaneously
on both particleA and on particld (even when they are far away).

We saw that we can encode 2 bits of information (the eigenvalig ahd eigenvalue
of Bp) in the four Bell states. Now, let us assume that Charlie creates one of the four Bell
states and gives one particle (partiéleto Alice and one to Bob (particlB). We might
ask whether Alice and Bob can determine the given state usindardi/operationgLO)
and classical communicatiofCC) where local operations means that Alice can use any
operator which operates only on partide(and maybe other particles which belong to
Alice) and Bob can perform any operation which operates only on paRBi¢dad maybe

1They commute since we are dealing with two particles and not just one. dsmg= —0x0; = ioy, we
find that

[OAGE, OQGZB] = 0'6050?02 - oz Oy Gf\ox

= i%ajoy — (-i%)oyaf =0.

63
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other particles which belong to Bob)Classical communication means that Alice and Bob
may transmit classical bits between them, but not qubits (Alice can’t send péahktice
Bob, but she can pass a sheet of paper saying what was the result of her measwkement
or —1). The combination of both local operations and classical communication is often
denoted a&OCC.

Using only local operations, the best that Alice and Bob can do is extract a single bit
of information. They can either both measurgon their particles and compare results,
or both measurey, and compare results. In th® case, if both get a spin in the same
direction, they know that the Bell state is eithgr or @~. On the other hand if the get
results of opposite directions they know that the Bell state is eiptieor §—. If however,
they measure in they direction, then if their results are in the same direction, the Bell
state is eithetp™ or ¢. Otherwise the Bell state is eithgr or ¢~ .3 Slnce they are both
performing local operations, thery andao, do not commute (unlike?c? ando”c?) and
therefore they cannot do both types of measurements and find the specific Bell state.

We conclude therefore that using only local operations and classical communication
Alice and Bob can extract only a single bit of information.

5.2. Data hiding

Assume that Charlie has one bit of information which he wants to hide from Alice and
Bob, where Alice and Bob may only perform local operations and use classical communi-
cation. One method of doing tHiss if Charlie produces states, each selected randomly
(equal probability) from the four Bell states and gives Alice the first qubit of each pair and
Bob the second qubit of each pair. Charlie encodes histijtmaking sure thap~— appear
an odd number of times B = 0 and appear an even number of timels # 1.

It can be shown that by performing measurements, Alice and Bob have a chance of
()" to find with certaintythe bitb.

5.3. Cryptography

Lets assume that Alice and Bob want to communicate (send messages between them),
but that Eve wants eavesdrop to their messages. Alice and Bob of course want to prevent
this.

The solution to this problem is simple, and is the same classically and QM (we shall
see the difference later on). First, Alice and Bob agree (before hand) on a commiin key
which is a sequence afbits, e.g.

K =01100..1.

2 the Ha @ Hg Hilbert space, a local operation of Alice would be written as

Ua®1g,
and similarly for a local operation of Bob.
3Using
‘Tx>:%(mz>+|lz>) - H > %(‘ x>+ux>)
ux>:%(mz>*|lz>) Hz>:%(mx>*ux>)
one finds that 1
g 7 (H >A|TX>B_ |TX>AHX> )
v \ifm Jalhe — 1 LdalLoe)
¢ = 7 (lTx)Aux>B + HX>AHX> )
(\0+ = ﬁ (|TX>AHX>B+ Hx)AHx>B)-

4Terha|, DiVincenzo and Leung quan-ph/0011042.
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Now, in order to encrypt her messalfee.g.
M = 01010...,

Alice performs a xat operation on her message and key K and generates a new message
M, e.g.

01 01 0..

011 0 0...

0 011 0...

Since Eve doesn’t know the key she cannot decipher the message, however Bob which does
know the key may perform another xor on the sent messéligand retrieve the original
messagé/.

The only problem left for Alice and Bob is how to generate the key without Eve
learning it as well (they must transmit messages which Eve might intercept). We shall now
use quantum mechanics to generate such a key. The problem is knayuarstsm key
sharing

Let us assume that Charlie (not Eve) produces entangled stategjin fBell state

=5 (101~ (A1),
and each times sends one (qubit) of the pair to Alice and the second (qubit) to Bob. Alice
and Bob can measure their qubits in thdirection, the result will random but correlated

(if Alice gets “up” the Bob gets “down” and vice versa) and so they can create their key.
However Eve, since she knows the direction Alice and Bob measure in, can learn the key
with out Alice and Bob finding out about it. She Basically has to measure the spin in the
z-direction of Bob's (or Alice’s) particle and then let it pass on to Bob (or Alice). Bob will
measure the same result as Eve (due to the collapse) and this result will be correlated to
Alice’s result).

Let us assume however that making a measurement destroys the particle (but unitary
operators, do not), can Eve still measure the spin without Alice and Bob knowing about it?
Yes she can. Assume that Eve has her own %marticle in the “up” state. The total state
(Alice Bob and Eve) will now be

M =MaK =

a-

1
|Wo)aBE = 7 (IMalbe—11)alT)8) [TE.
We are now looking for a unitary operator such that
[Wo) nge 25> \2 [(AMalITe) s —(1Dall)E) [T)8]-

This transformation leaves partidieunaffected ifA is in the spin up state, and it flips the
spin of particleE if Ais in the down state. It can be written explicitly’as

Use = Ucnor = |1aall|@1e +|])aa(l| @ ok
1 1
= §(1A+c§)®ﬂe+é(ﬂA—0§‘)®oxE

5The xor operation is denoted layand is addition modulo 2 i.e.
0p0=0
0¢l=140=1
1el=0.

bRecall that
ol =z Oxll) =112)-
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or in matrix form

1 0
UCNOT:<1 0)®<1 O>+(O O)@(O 1): 0 1
00 0 1 0 1 10 0 1
0 10

This unitary operator is known ascantrolled-not(CNQOT). The particléA which does not
change (but determines hdavwill change) is called theontrol, while particleE which
may change is called titarget The CNOT is symbolized as

p—— control

|Wa)

e) —P— target _

Another way to write the CNOT is to uskonor = 5 (1a+02) @1 + 5 (1a—02) ®0E,
which can also be written as

1
Ucnor=1aA® 1E — E(HA—OQ)(HE —0y).

Now, sinceoé =1 then
(1-op)?=21-0p) = L—0op)"=2"Y1-0) (n#£0).

Therefore we can write _
Ucnot = e 14(1a—02)(1E~0%)

We now return to the key sharing problem. We saw that if Eve knows in which direction
Alice and Bob measure their spins, then she can find out the key, without them knowing
about it® This is true as long as Alice and Bob always measure inzthgis. If they
suddenly switch to measuring in thxeaxis (and Eve keeps using the same CNOT) then
they will now see that someone is interfering since they will now find that

{oxox) =0
if Eve is using the previous CNOT, where as if Eve is not listening then they would find
(oRaB) = —1.

What Alice and Bob can do therefore is to measure their spins in random direction
independent of the other: Alice chooses randomly on her side in which direction to mea-
sure,x or z, and Bob chooses randomly on his side if to measure irxthiez direction.

After performing all the measurements Alice and Bob Publish in the open the direction
and result of some of their measurements (but not all). From those measurements which
they both performed in the same direction they find the average of the product. H1t is

then with a good probability, Eve did not listen in, and if it is closer to 0 then Eve did listen

in (neglecting noise in the system). If they conclude that Eve did not listen in, they can

7Sincec§,0§ each commute with themselves and with each other, we may write
Ucnot = e’i ?e' ?G’Z"‘ei gc594 gGZAGE .
The operatorei%"é andei%"s, are local operations, a7 is just a phase. Therefore, up to local operations
and a phase we may write that

UcnoT = g 13000% (up to local operations and a phase

8We can take the partial trace over Eve’s particle and we’'ll get different reduced density matgdEEve
used the CNOT and if she hadn’t. However

Tr(pagos03) = —1

in both cases, so Alice and Bob cannot know that Eve has been listening (and if one gets “up” the second will
measure “down” so they cannot in fer from this any change).
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publish the rest of the directions they measured in (but this time without the results). From
the measurements which they both made in the same direction the can now produce the
keyK.

Alice and Bob can achieve the previous protocol even without having entangled states
between them. Alice can create spins in one of the four states

12,1420, 1155 [12)-

She then sends them to Bob who measures them randomly in eithedthextion orz
direction. From here on the protocol is the same as before (except that this time if Alice
and Bob measure/create in the same direction they will find the same result, both “up”
or both “down” unlike the previous protocol, in which if Alice measured “up” then Bob
measured “down” and vice versa).

5.4. teleportation

Assume that Alice and Bob have an entangled state,, between them
1
—= (10)a|0)p +|L)a|L)b) -
73 (10)al0)b+[1)al1)b)
Now, Alice has a third particld in state|)
[W)a =0a|0)a+B|1)a,

and she wants to pass the state itself (not the particle) t& Bole sate of the whole system
(all three particles) i8)a|@")an, however it can also be written'ds

[WaloT)ap = (a|0)a+Bl1)a) \% (10)a|0)b + |1)al L))

= 2 (a(0)a]0)al0)o +t|0)al2)al o + BIL)AI0)al0) + BILIaIal2)e)

V2
_ |(P+>Aa+|(IT>AaO(‘O>b+ |w+>Aa‘i2‘|qJ7>Aaa|1>b

2
N W s — o
+|l.|J >Aa2 |LIJ >AaB|0>b+MB|Db

= 2 107)na@l0)b +BlLb) + 210" )a0(0)s + Bl

|(p+>ab:

210 )nal)03@ 0+ BIL) + 510 )a0(@(O)b + BIL))

1 .
= 5 |[07)adW)n+ W) aaORIW)o + W )aa(—1)0yl W)+ |97 )aaTz W) -

We see now that if Alice makes a measurement in the basis of the Bell states of particles
a, A then particleB would collapse to one of the states of the fou{?w)b (i=0,123
whereay = 1).*! The result of Alice’s measurement is two bits (the two bits needed to
determine which of the four Bell states she found). Alice can send the two bits to Bob,

Swe may assume that particlash, A are of different types or of similar types - there is no restriction.

10Recall that 1

2
1

2

W™ )aa

N

(10)alt)a—[1)al0)a),

N

W )aa (10)a[)a+[1)al0)a),

1

2
1

2

S

97)Aa (10)al0)a = [1)alL)a),

N

9")aa (10)al0)a+[1)alL)a) -

Hok, fori = 2 the state iso2|y)p, notab|y)s.
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who can then perform on his partidiethe appropriate inverse operator (in this case the
sameao;). After this operation Bob will hold in his hand partidlein a state which was
previously associated with partickeheld by Alice.

the following things should be noted:

e The thing that was passed between Alice and Bob (besides the two bits of infor-
mation), was a state, not a particle. The state which once described pérticle
now describes particle.

e the no-cloning theorem still holds. After the process, the parfidieno longer
in its original state but in an entangled state wéth

e The two bits of information we use are completely random (since the collapse
is random to one of four possible states). So they are not the ones carrying the
information.

e Although Alice sent Bob two bits of information, Bob was able to extract two
continuous variablesa(and ). However, Bob never knows what these two
variables were. He only knows that they were passed correctly.

One consequence of teleportation is that allows one to do non-local operations (assume
you have an entangled state). Simply teleport one state to a particle in the vicinity of the
second particle, make the measurement there (locally) and then teleport back the new state
of the patrticle.

5.5. Ramsey spectroscopy
5.6. Remote operations

To our list of types of bits we now add the ebit which is simply an entangled state.
By changing the basis we choose for each particle (or equivalently performing a unitary
operation non each) we can always bring to the Bell stgite

. 1
ebit ﬁ(|0>|0> +[1)[1)).

Bennett wrote “equations” which describe the different process. The “equations” were
constructed from ebits, qubits and (classical) bits. For example for teleportation one needs
an entangled state and to pass two classical bits (the result of Alice’s measurement on her
two states). Since teleportation is actually the communication of one qubit (the state, not
the particle is passed from Alice to Bob), then it can be written as

1ebitys + 2bita_g = 1qbity 5.

One could also use teleportation to create an entangled state. Simply do a local operation
(say a CNOT) on two particles and entangle them. Then teleport the state of one of them
to a distant particle and you have two distant entangled particles. This would be written as

teleportation=- ebitag.

Dense coding may also be described in this manner. In dense coding we started with an
entangled state, Alice then performed a local operation on her particle (encoded two bits in
to it) and then sent the particle to Bob (equivalent to teleportation). In Bennett's language

this would be written as

teleportation_,g + ebitag = 2bita_.g.
In quantum computation we would like to create interactions between distant particles,
i.e. non-local (or remote) operations. However, the rules of the game are as follows:

Locality: Only local operations are allowed. This includes local unitary operators
and local measurements. Note that local operation alone cannot create entangle-
ment.
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Classical communication: Only classical communication is allowed between our
systems (only passing of classical bits). It is not allowed to exchange quantum
particles (i.e. not allowed to exchange qubits). Note that classical communica-
tion together with local operations, still cannot create entanglement.

Entanglement resources: There are pairs of particles in entangled states, ready to
be used. These pairs are given/prepared before the beginning of the calculation
and no more pairs may be added after the start of the calculation.

Given the rules of the game we would like to create protocols that will produce the effect of
non-local unitary operations. These protocols must give the desired operator regardless of
the state we perform the operation on. Such a process will require both the use of entangled
pairs (ebits) and the communication of classical bits (usually random ones).

One simple method of doing any non-local operation is with two teleportations. Sim-
ply teleport one state to the locality of the second perform a local operation on the two and
then teleport the state of one particle back (note that the resultant state will not be back
on the original state, but rather on a new one). Such a procedure (two teleportations) will
require from us to use 2 ebits and send 4 bits of classical information (1 ebit and 2 bits for
each teleportation - see above).

We would like to see if we can do this more efficiently. We shall study the CNOT
operation. We shall see that one teleportation and one classical bit suffice to create a
CNOT.

CLaiM . A CNOT is equivalent to a teleportation in the sense that
CNOT+ 1 bita_.g = teleporj_,g,
teleporh_g + 1 bita_g = CNOT.
PROOFE To prove the claim we assume an initial state
|W)al0)s = (a]0)a+B[1)a) [0)s.
If we perform a remote CNOT, withp)a as the control then we get

CNOT|Y)al0)s = a|0)al0)s+B|1)alL)s

- qa TX>A\—/’—§HX>A|O>B+ B|TX>A\_[2HX>A |1>B
- %mm\%—B|1>B>+%ux>A<a|1>B+m0>B>.

Now if Alice measurewy of particleA and sends the result (1 bit) to Bob, then Bob can
perform on his particle, if Alice measured “up” or perfornoy if Alice measured “down”.

By doing this particleB will now be in state) and we have teleportation, where we have
used a remote CNOT and a transfer of 1 classical bit of information (the result of Alice’s

measurement).
For how to do the opposite: create a CNOT using teleportation and a single bit see the
stator below (creating a stator). O

5.7. State-operators (stators")2

We define astate-operatoror for shortstator, as a “creature” which is a combination
of states in one Hilbert space and operators in another. Generally speaking it will be written
as

S= Y cili)a® 0P,

125ee also: quant-ph/0107143



70 5. USES OF ENTANGLEMENT

where theli)a are states in the Hilbert spagé, (of say, particled), andOB are operators
which operate on (states in) the Hilbert spag Thus, when the stator is applied to a
state inHg, the result is a state ifila @ Hg:

SY)g € Ha® Hg  (|W)s € Hp).
Here, we shall be interested in pairs of operators which bey
AS=BS
whereA operates orH andB operates orfg. Such pairs do not necessarily consist of two
Hermitian operators, but we shall be interested in the cases where they do. For example

for
S=|0)a®1g+|1)a® 07,

we have
okS=0cts
When a pair of operators, B does indeed obey the relation
AS=BS
then necessarily
A'S=RB"S

and therefore (using a Taylor expansion)
f(A)S= f(B)S
Specifically, forA andB which are also Hermitian, we have
eiGAS: eiGBS,
where€® ande®B are now unitary operators (sinéeB are Hermitian).

Now, let us assume that Alice has a (unitary) operblpe= e“’“’Q, and Bob wants to
use thesameparameten in applying €99 on his particle'® To do this we shall use our
previous stator

S=0)a®1g+|1)a® 05,
We start by Alice applying her operator on the st&oire. performing

UyS= dao%s,

For the specific stato® chosen here, we hawe{S = ¢5S = S, and therefore we can
write

OO S = Sduo?,
Thus we get (for anj)g)

UaSiW)e = S&7 |W)g = (|0)a® 1 + |1)a ® 0F) €79F | ).

14as we shall see, we are actually interested in
AS=SB

lSSinceA7 B operate on different regions (on different Hilbert spaces), then they necessarily commute. To be
more exact, we should writt® 1g andla ® B instead ofA andB. With this notation it is clear that

(A®1p) (1An®B) =A®B=(1o®B) (A®1s).
Now, if AS= BSand as we sa¥B = BA, then we have
A2S=A(AS = ABS=B(AS) = B’S

and by induction
A'S=B"S

16Note, that Bob does not know the valaevhich Alice is holding. However, he wants to use the sanfer
his own operation.
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To finish the process, Alice measures her spin and sends the result to Bob. The measure-
ment causes a collapse into one of the two states

(|0)a® 1) €99 |Y)g = |0)a @ €9% |y)g  (Alice measured )

or
(1) ®02) €997 |y) = | 1) 0B€9% )5 (Alice measured L

Now, if Alice measured 0 (and sent this to Bob), then Bob knows that hé‘l‘fgfpwg on

his side, which is just what he wanted. However, if Alice sent Bob a 1, then Bob knows

that he has:ZBei"“?NJ)B on his side. Bob must therefore fix his state (get rid of the extra

oS operator). He does this by performing anotti&ron it (sinceo? = 1,,>), ending again

with the desired resu{ao? |y)g.

We have thus seen that by using the st&otogether with Alice sending a single
classical bit (0 or 1 — which Bob used to perform the right corrections), Bob was able
to applyeio‘UZB on his side, wheret is any real number chosen by Alice (and unknown to
Bob).

The methods just used may be generalized to also achieve a remote CNOT (up to local
operations and a phase)

UrcnoTe = € 49208 (A CNOT up to local operations and a phase
To do this we generalize our stator to
S=[1xa®@1as+|lx)a® (U'ZAGE) )
which obeys
03S=oholsS=Sohal.
Therefore, if Alice appliee‘i%og, we get
e 140%S— S 11920}

Thus, as in the previous case

e HRg0)AlW)e = Se'T2%|¢)alw)s
= (IT0a®1as+|ly)a®0hod) e 1497 |9) alW)e.

Alice then measures the spin in tkeirection of particlea. If she finds “up”, then Alice
performsa’ on particleA and Bob performs® on his particleB. Otherwise they do

nothing. In both cases the final result is the operaﬂ'dﬁf"é\"XB on the remote (from each
other) particle andB.

5.7.1. Creating a stator. Assume a general, two-level system, unitary operdtor
We wish to construct a stator of the fotm

S=[0aA®1p+|1)a®UE.

We start with three particles, an ancilleand the two particle®, B. We start with the
configuration

%) = = (10)AI0b+ [DalL)o) e,

1770 create the more general stator
S=|0)a®Upo+|1)a®Up1
we simply need
S=SUgo = [|0)a® 15 +[1)a® (UsiUg) | Ueo.
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where particlesA, b are entangled in advance. Bob performs a local “CNOT” between
particlesB andb (particleB is the target) and we get

%<|0>A|0>b+ 1) a1 e T, \%(\0>A|0>b+ 11)A11)6U) [W)s.
We now write particléb in thex basis
Z5(100AI0)s + DAILAIBWe = 3(112n-+ | Lon)OIAla+ (1T~ 1o) DAUP W)

= 1o {00+ [DAU®) s + Lo (100a~ [1AU®) W)

Bob, now measures the spin of his ancBlan the x direction. Thus collapsing the system
into one of the states

%mb (10)a+ [1)AUB) (W) 02 ="up",

51400 (0~ [11aU%) [9)a ~ of = "down

Now, Bob sends the result of his measurement to Alice, who accordingly decides,
whether to perform @2 on her system (ib2 = "down") or if to do nothing ¢2 = "up").
We can now disregard the partiddeand since this process was done for any gerjexsl,
then we can say that we performed the st&or

The creation of a CNOT using a teleportation and a single bit is very similar. The only
difference is that instead of starting with an entangled pair, we create it using teleportation
(begin with two spins, locally entangle them and then teleport one to Alice/Bob).

5.8. POVM (Positive Operator Valued Measures)

When we perform regular measurements we cause the state of the system to collapse.
We would like to avoid this collapse. To do this we use an auxiliary particle, called an
ancilla, which we first interact with the system, and after words measure it - thus collapsing
the the ancilla and not the system.

We shall first review the standard Von Neumann measurements. In these measure-
ments, the operator describing the quantity measured is

A= Al

wherefll; is a projection on one of the orthogonal subspaces

Z M=1,
MM =19,
and wherg\; is the eigenvalue associated with the subspace whightojects on to. When

we make a measurement the result is one ohthand for such a result the stdtg) of the
system collapses t@;|y) times a normalization

measure I_|i |l-|J>
Y e
If we start with a mixture (a density matrix), then

measured [ 1iP[;
measurer, )
Tr(Mip)
We now turn to the new type of measurements. We start adding an auxiliary particle,
an ancilla, in &nownstate

|Wtot = [W)sys 0)a-
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We shall assume that the ancilidelongs to a Hilbert space of dimensig and therefore
in some orthonormal base (whid), belongs to)

Na

2

|
p=1
We now cause the ancilla and our system to interact for a short time. The effect of this

interaction may be described by a unitary operbkavhich operates on both|W)c:. This
can also be written as

UWit = 1aU|W)ot= (Z|U>aa<“|> U[0)a|W)sys
m
z (a(MU[0)a) [WalW)sys

)
If we now define th&Kraus operatoKraus

My = a(HU|0)a,
which operates on the Hilbert space of the system, then the last equation may be written as
UWior = z Myl a|P)sys
)

Waa(M = 1a.

If we now measurgi for the ancilla, then the state would collapse to a sipgle

measureql

U[Wot —— [WaMp[W)sys,
this would occur with a probability prgp)

prob(L) t0t<Lp|UT||-1>aa<U|U |W)tot
sys(WIMIM,( W) sys
Since the sum of probabilities (for gl) must be 1, then

1= Z prob(p) = sys(Y| (z MJMH> [W)sys:
u u
or (since this is true for anyp)sys) simply'
)

In analogy to the Von Neumann measurements, we may now write, for measurements
using an ancilla

measureql .
[W)sys ———— My|W)sys  (not normalizey),

measureql MupMJ
Tr(MupM{)’
Fu=M{M,a positive operator (3 F, = Tsys),
v

prob(k) = Tr(FuPsys),
where in the first equation we look (after the measurement) only at the system itself and dis-
regard the ancilla, and wheleIMu is a positive operator since we saw that b= Sy3<qJ|M;[Mu|qJ>syg

Probability is always non-negative, ajygsyscould be any state, and therefcl)fléMu must
be a positive operatoN(ﬁMp is clearly Hermitian, which is also a necessary condition).

197his could also be found directly from the definition of g
> MMy = > a(0U "W aa(U]0)a = a(0JUTU[0)a = Lsys
R R
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SinceF, = MﬁMp is a positive operator, then it is calledpasitive operator valued
measureor POVM for short.

We see that we got a very similar behavior to that of the Von Neumann measurements,
where the Kraus operatolé, replace the projectiorid;. The only difference is that, here,
the Kraus operators are not necessarily orthogonal, and as a consequence the number of
eigenvaluegt may exceed the number of dimensions of the Hilbert space of the system
itself (the dimensiom, of the space of the ancilla is arbitrary).

Note, that it may be shown that if there exists operaldgghat obey the above rules,
then there exists an appropriate ancilla for the system.

An important difference between regular (Von Neumann) measurements and the POVM
ones, is that in the latter case, the results are not eigenvalues of an operator and the system
alone, but rather of an operator and the system together with the ancilla. However, one can
find correlations between the measupeahd the state of the system.

5.8.1. Neumark’s theorem (without proof). We have just seen that by adding an
ancilla and thus enlarging our Hilbert space we could reach the POVM formalism. The
contrary is also true, given amdimensional Hilbert space with a POVM set Nfele-
ments &, 1= 1,...,N), then we can always realize it as standard measurementsNn an
dimensional Hilbert spac®. This theorem is known aseumark’s theorem

5.8.2. Distinguishing between non-orthogonal statesThis is especially good for
distinguishing between non-orthogonal states of the system, as is shown next.

Assume two non-orthogonal states of a system

: INEAIN)
|l|Jl> |Tx> ' |'~|J2> Hz> \ﬁ .

We know that they have the same probabigtyo occur (there are no other possibilities),
and we wish to know which one has occurred (in which state the particle we are holding
out of the ensemble is). If we measwrg then we may get two results. If we firgg = 1
(probability 3 + 2 - 3), we cannot deduce anything since bfitj) and|7,) have a non zero
part which is|1,). If however we measurey = —1 (probability% . %) then we know for
certain that the particle was in stgtg) (since only it has a non-zero component in the
“down” x direction). Thus we see, that by using a standard measurement we will know, for
certain, the state of the system only%jrof the case$! In other words we do not no the
answer for certain, ir% of the measurements.

Now, instead of making standard measurements, let us define

Fr= )\|lz><lz|a
F= )‘|lx><lx|a
F= ]1sys— FL—F.

Note that in these definitions; uses a state orthogonal|th,) andF, uses a state orthog-
onal to|ys). This time, if we measure = 1, then we know the system is in stdfg)
(since the probability of measuring= 1 for the case of) is (W2|F1|W2) = 0), and if we
measurgl = 2, then we know the system is in state). If however, we measurg = 3,

2Oe assume that the Hilbert space dimensionality smaller than numbeX of Fy's in our POVM. If we
have more dimensions (in the Hilbert space), we can always make a change of basis so tNatfahlym will
be relevant to the POVM while the rest will be independent and thus irrelevant to the problem. In Neumark’s
theorem, we then enlarge the number of relevant dimensions.

2lwe could do the same usimg instead. This time we would also know ﬁmf the cases which direction the
spin was, however this tome those cases will tell us that the particle was in the dingttion. Measuring in any
other direction (except2 or £X) will give us now information at all, since they all have non-zero projections on
bothXandZ



5.9. MEASURE OF ENTANGLEMENT (DISTILLATION) 75

then we cannot know the state of the system. We see that only in the cpse ®fwe
cannot tell the state of the particle. The probabilityief 3 occurring is simpl§?

1IN 1A A
prob(u=3)=1- (22+22) =i

which can also be found using the trace

prob(h=3) = Tr(pFs)
where
1 1
p= E‘TX><TX| + E|Tz> <Tz‘
We would like to findA such that the probability of not knowing for certain the original state
will be minimal (.i.e. prolfp= 3) = 1— % will be minimal)?® clearly by our definitions
F1 andF, are positive operators (if and onlyAf> 0). The condition we require is th&g
will also be positive (and we are looking for the maximatrwhich gives this). Since itis a

2 x 2 matrix it is enough to require that the trace and determinant both have the same sign.
The optimal\ is then

A=2-V2,
which gives us the minimum probability of not knowing for certain
1
rofp=3)= —.
prob(p=3) Nz
This result is indeed better than the one we had before, with standard measurements, which

gave us a chance of failure §f This is indeed an improvement although not a very large
one in this case.

5.9. Measure of entanglement (Distillation)
Let us assume that we have a system in a state
|W)ab = |0)a|0)p+BlL)a| )b (&l < [B]),

where we knowa, 3 and we assumpa| < |B|. Unless|al, |B| are both\%, the state is not

maximally entangled (does not maximally violate the Bell inequality). We now want to
distill this state, in order to get the maximally entangled state

1

NG (19)al0)b+[1)a|1)b) -

|(p+>ab:

227here is a probability% of state|y;) occurring and a probabilit)% of state|y),. The probability of
measuringl= 1 andp = 2 for |Y1) are

A
prob(u= 1)y, = (WalFulys) = 5 1 pro{u=2)y;) = (Y1|F2[p1) =0

and similarly for|yyz)

A
prob(p = 2)y,y = (W2|F2|W2) = 5 prob(u= 1) y,y = (W2|F1|P2) = 0.
Recalling that each state occurs wit probabigtythe probability of gettingn+ 1,2 (i.e. gettingu= 3) is
1IN 1A
prob(u— 3) =1- <§E + EE) .
23Actually to make sure we get the best results we should have used diffésdot positive measure
F1= )\1|lz> <lz|7

F= AZH«X><J»X"
However, after all the optimization, we get the same result.
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We want to do this using only local operations. To do this we shall us@therustean
method If we define the Kraus operafdr

Mo = ( £10)as(01+ [Das(t)
then whenever we measyue= 0, the state we will find is
=0 Mpo|W A
|qJ>ab u_) O| T>ab _ -
\/ab<qJ|MoM0|qJ>ab \/ab<W\MoMo|W>ab
where clearly (because of the normalization) we will find that
A 1

(WIMIMoW)ay V2

B(10)al0)b + [1)al1)b),

We see therefore, that if choosing such a Kraus operator, will distill our state to the Bell
state whenever we measyre- 0. This will occur probability proft = 0) given by

prob(i=0) ab(WIMIMo| W) ab = [ABI? (b(Lla(1| + b(0[a(0]) (|0)al0)p +|1)al L)b)
= 2B

Clearly, to increase the probability of the desired distillation, we would [leto be as
large as possiblef}(is given). However we cannot raise it arbitrarily since we require
MSMO to be a positive operator. By our definition

o B 0
wivo= iz (& 9 ) ( 8 1)=|A2<

Since, however we must hatve

tha o (10
ZM“MH—JL—(O 1),

I

B
a

2
£ 0
0 1

and thel\/IJMp are all positive operators then necessarily, we must have
2

B
a

A2 D] <1

= A2 < [af®.
Using, this last result, we see that the maximum probability possible for distillation (recall
that|a < |B|) is?®
prob(p=0) < 2ja[* < 1.

My =U (1\/M3M0),

M2 =1 — Mz — Mo,
whereU is any arbitrary unitary operator.

2MNote, that althoughMo operates only on the Hilbert space of partielethe system we consider is both
particlesa andb. The ancilla used for the POVM measurement is a third particle.

25 could also define the “complementaiyii of Mg by
1 =M{Mo+M]M;

= My =U4/1—M{Mo.

Requiring that it be a positive operator, would give us the same resullt.
26The requirement tha#| < |B|, comes in the form, that if we had the opposite thee would be larger than
%, and we would get a probability of finding= 0 of 2AB|2 which is greater than 1.
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5.9.1. Distillation of n pairs. Assume that we now have two pairs of non-maximally
entangled states, where the two pairs are described by the same state which we know (we
know the parameters, 3)

|W)“2 = (a]0)al0)b + B|1)a1)b) (|0)x |0}y +BlL)ar|Ly) (I8 < IBI).

As before we would like to extract a maximally entangled state out of this pair. We can
write the above state also as

917 = (0)0)4101 Oy + 1)Ll y-+28

‘0>a|1>a’|0>b|1>b’ + |1>a|0>a’|1>bo>b’)
7 .
If now Alice measures the operatof = 02+ 02 on her two particles, &, then there are
three possible results
=2
|W)“% 2= |0)a/0)x|0)5|0)
=2
|W)%2 2= [1)a[Da| Lol L)y,

= % (19)al1)«[0)b 1)y +[1)al0)a|1)b[0)ry) ,

where the last case, which is of interest to us, has the probability

prob(u= 0) = 2|ap?,
to occur. If the original statg¥)®? indeed collapse to this last state, then we almost have a
purely entangled state. All that is needed is that both Alice and Bob perform local CNOT

operations on their two particles, where the primed partidgs() are the targets. As a
result we get

¥)

oT=0

)2 T (0l a [0/ + [Dal0alLbl0w)

cNoTae, 1
R ﬁ(|O>a‘1>a'|o>b|1>b’+‘1>a|1>a’|1>b|1>b’)
- %mmm<|0>a|0>b+\1>a|1>b>.

We now have two particleg b in an entangled state and two more in the same “up” state.
Now let us examine a more general case, wifhairs

WYEN = (a]0)4|0)p +B|L)a | L)p )"
a" i|:| |0>ai ‘O>bi + (xn—]-B JZ]_ <|1>a¢ |1>bi ,I;! |0>alj |O>bj> +oee,

that is we have a tensor productropairs numbered=1,...,n. In analogy to the previous
case we now define

of = 05
We can group the elements making up the product above, according to the coefficient
a™B"-™. Clearly (use the binomial expansion) the coefficehp" ™ appears}) = ern)'

When Alice measures? she will therefore get resuth— (n —m) = 2m— n with a proba-
bility of (;7) |a™B"-M|? (similar to the factor of &B|2 we had fom = 2 above)
probio? — 2m—n) = <:1> angin-m = o
If we now examinen — o the probability will be maximal, and approach a delta function
atm= |a|?n+0O(y/n).?” Thus for largen we may examine only the caserof= |a|?n. For
a givenmall the elements we add are all orthogonal to one another and are each symmetric

2MThis is true regardless of the valuescof3 (as long as none of them is zero).
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in Alice and Bob's particles, therefore we can make a change ofbaeehat that the
system have the form (not normalized) for a given

O0a-+ e+ (e

m

whereA is a new “particle” with(;?) states which replace all the particles { = 1,...,n)

which were originally held by Alice, and similarly f@ which replaces Bob’s;’'s. Now

that for a givenm all the A B pairs are symmetric, let us view the casekaflentical,

maximally entangled states. This situation will be described as (up to normalization)
(10)a |0}, + [ L)a] L)p)**.

Doing the product we will get'2elements which are all orthogonal to each other and with
the same coefficient (the caseowf 3 above). Therefore if we have abo@) orthogonal
elements each with the same coefficient, then we can deduce that this is equivaldnt to
entangled pairs, where we define the functibsuch that

()

We are interested in the most likely casemfwhich ism= |a|?n and we therefore have

nH(m = [a[?n) = |og2< " )

n!
0% (<|a2n>! (n_ a|2n>!)
n!
- '°92<<|a2n>!<|ﬁ|2n>!>’

where in the last equality we used the fact thati{+ |B|> = 1). Using the Stirling’s
formula

1
logn! ~ > log(2mm) + nlogn — nloge ~ nlogn,

we get here

Q

nlogn— n|a|?log,(nfaf?) — n|B|*log,(n[B?)
n ['092n— (|0‘|2+ |B|2) log,n— |O‘|2|092 |O‘|2 - |B|2|092 |B|2}
—n[|al?log, [af?+ |B|*log, [BI] .

nH(m= |a|?n)

If we define
p=af?
= (1-p)=BS,
Then we may write
H = —[plog, p+(1—p)log, p].

To conclude we saw that if we use the scheme of measwin¢the sum of spins
in the z direction of Alice’s particle), then on the average we will get out of initiaily
non-maximally entangled stata® maximally entangled states, where

nH —n[laf?log, |a|*+[B|*log; B[]
= —n[plog, p+(1—p)log, pl.

28tjs enough to make a change of names. We simply number all the permutatioreerhents out of and
then call thejth permutatiorjj)a. We do the same fdij)g, and we automatically get

Oni0 +[1alDs +--++1{ 3 )l )
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Or simply
n non-maxiamlly entangled> nH maxiamlly entangled
The ratio of maximally entangled pairs, out of the original number of pairs is
maxiamlly entangled pairs 2 2 2 2 1
E(W) non-maxiamlly entangled pairs H =~ [[al"log, o[+ |B[*log, B[] +O vn)’
Y =a|0)+pBJ1) (single non-maximally entangled partitle

We can therefore givE () the meaning ofneasure of entanglemeot a single pair of
particles (because on average we can extfiaet1 pairs of maximally entangled pairs).

The result we found here may be generalized furthelf |W)ag has theSchmidt
decomposition

n

Was= > vPlK)alKs,

K=1
then one gets thBhannon entropy

HW) =- % pklog, pk  (Shannon entropy

We then say that
EW) =HW)=- Z Pk 109, P«

is the entanglement associated wi ag. If two systems have no correlations between
them then we simply add their entanglement

E(W1®W2) = E(Y1) +E(W2).
This is true, since the Schmidt decomposition in such a case is

WeWs) =S VBlale, ¥ vailialide, = 3 vBiGlia e, i)ali)es:
[ ] 1]

where the last element is also in a Schmidt decomposition form. Using the formula for the
Shannon entropy we get

Hiow) = =3 pigjlogy(piaj) = - pigj (log, pi+log,q;)
[N] ]
= =Y P aglog,ai— Y pjy dilogpi = — djlog,q; —  gilog, p
! J ] I ] ]
= H(W1) +H(W2).

Since the Shannon entropy may be added then so can the entanglement.

Note, that the entanglement measure we defined is a good measure in the sense that it
does not depend on the base we chdosally. If we make a local unitary transformation
of the formUa ® Ug (unlike a unitary transformatiodag which may be non-local), then
the specific orthonormal basis vectors we use in the Schmidt decomposition will change,
but the Schmidt coefficients will not (a unitary transformation, transforms an orthonormal
basis to an orthonormal basis).

Note also that although we can use POVM’s to distinguish between non-orthogonal
states, with a better chance than regular measurements, we cannot use it to increase entan-
glement of the system (on average).

As we shall see, the quantity has the traits of classical entropy. It is called the
Shanon entropy

293¢ also Von Neumann entrofynd entanglement measure.






CHAPTER 6

Quantum information

6.1. Data compression (classical)

Assume that we have a velgng message of letters, written in an alphabet &f
letters. As in any language some letters appear more often then others. We can therefore
describe the language by the probability of each letter to appear (we assume that the prob-
ability of appearance is independent of the letter/letters before or after it). The set of letters
and probabilities we denote Xg

k
X = {aX7 px}!ﬁ:l ( Zl Px = 1)~

This is actually equivalent to a density matrix of states.

We would now like to compress our message before sending it, i.e. send less let-
ters/bits which will convey the same message. Since the message is long, thgpitah
message of length, theay will appearpyn times. The number of possible ways to order
the letters of dypical message are therefdre

n!

Mx(npJt
Using the definition of th&hannon entropy
= - pxlog, px
X
we can therefore write (using the Stirling approximatfon)
n!
#typical messsages ——— ~ 2",
Mx(Npo)!
Thus to encode the the differagpicalmessages, we can simply number the@ 1 ., 2"H
and then send this number instead. The number of bits we need in order to encode all these
number isnH. We therefore say that we can encode a messagketers using an alphabet
of k letters, using jushH bits

n letters compression
-

k letter alphabet nHbits (H=— Z Px10g Px).-

This of course holds only for the typical messages, whose weight in the overall ensemble
of messages increasesras» o.
Another way of reaching the same conclusion, is to examine a single message of length
n
message- (X1,X2, . -.,Xn)
where in thdth position the lettea,, appears. The probability of such a message occurring
is

prob(message= prob(Xy, X2, ..., %n) = Px; Px, - - Py
Iwe use here the same logic as was used above, in determining a measure for entanglement.

2Recall that
log(n!) = nlogn.

81
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or
log, [prob(xy, Xz, .., Xn)] = 10G5(Pxy P, * - Pxa) = 1085 Py
|

By the central limit theorem, fan — « we have

1
~100, [prob(x, %, -, Xn)] ~ ~(10g; p) = H.

where the average on the right is with respect to the probability distribution defined by
the pi’s. We thus see that the probability of a typical message to occur'id.2As we

saw the number of typical messages 1§ ,2and thus we see that the set of all the typical
messages occurs with a probability very close to one, so that the case of other messages
may be neglected.

More rigorously (without proof), we may write that for amyd > 0 there exists); 5
sufficiently large such that for any> n; 5 the following is true: There is a set of “typical”
messages (out of all possible sequences of lenpthith a total probability greater than
1— ¢ to occur, such that each “typical” message has a probabilityoccur® which obeys

2—n(H+6) <P< Zfﬂ(H 76)'

Since the total probability of all the typical messages to occur is greater then then
we can put a bound on the numbérs of “typical” messages

(1_ s)zn(H—é) < N8,5 < ZH(H 76).

Thus we see that in the limit af — o only 2" of the 2' possible messages will occur,
and therefore we can usél bits to encode these “typical” messages.

To conclude we see thét gives a measure of uncertainty of letters in the message.
If H =0 then only one letter appears in the message, and is therefore predetermined. If
however, H = log, n then all letters are equally likely to appear and we cannot compress
our message. We can also say tHas the information that each letter carries. If we again
look at the case dfi = 0 then all letters are identical and the addition of a new one does not
give us new information, if on the other hand we h&lie= log, n, then each added letter
gives us new information about the message which requires an exjnaldlg to encode
it.

6.2. Data compression (Quantum)

We would now like to do the equivalent of classical data compression in the quantum
case. In the quantum case the letters will be replace by pure quantum states, so the ensem-
ble describing the “language” is now replaced by a density matrix. The difference between
the classical case and the quantum case arises when the density matrix is constructed of
non-orthogonal statep & 3 pi|Pi) (Yi| where the|y;) are not necessarily orthogorfal)

In such a case the different states (which were the letters before) cannot be distinguished
between.

SEach typical message may have a slightly different probability to occur, but all these different probabilities
obey the inequality given.
“The bound comes from
NPRpax>1—¢

NPBnin <1

SWhen all letters are likely to appear then

n

1 1 1
H= leﬁlogzﬁ = flogzﬁ =log,n.

6w can of course diagonalize the density matrix and get orthonormal states. However, the real physics (for
some reason) is that our source emits non-orthogonal states with different probabilities.
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The measure we shall use to determine how good our compression is, will be the
fidelity F. If our original message ifp;) and we send instead a message which after
decompression ig;) then the fidelity is defined by how close the two state vectors are

F = [(¢ilor)[*

For a random (original) state/message described by a density mpatoded agé) the
fidelity is defined as

F=(¢lpld) =Tr(|$){¢lp),
which for a pure state degenerates to the first definition. If both the original message
and the decompressed message have different probabilities of occurring then we take the
fidelity as the average (weighted by the probabilities).

Let us start with an example, assume a density matrix

1 1
p= é‘Tz)(Tzl + élTx><Tx‘7

we would like to find a statép) with a maximum fidelity for this density matrix. If we
diagonalize the matrix we get

s LT
p= 0032§|Tﬁ>(Tﬁ| +S'n2§\iﬁ><lﬁ

)

where R
X+ 2
V2

ﬁ:

and

Tt . Tt
1) = cosg|1z) +sing| L),

. TU I
[La) = sing| 1) —cosg| L,).
It can easily be shown that the maximum fidelity is reached when

19) = ITa)
which gives
F = (§lp|¢) = cos £ = 0.853....

Now let us assume that Alice has a message made of three particles emitted from a
source with the same density matmxas aboveg = 3|1,)(T,|+ 3|1,)(T«/). Alice wants
to send the message to Bob but wants may send only 2 of the particles (qubits) to him. We
might think that the best she could do is simply send

10) =pxp®|Ta)(Tal,
where the density matricgsstand for the original particles angl,) is the same state we
used above for maximum fidelity. Since the first two particles, which Alice sent, are the
original ones, then their fidelity will be 1, thus the fidelity will change only because of the
last particle and we’'ll get

F:1~1~c05218T:0.853‘...

However, Alice can increase the fidelity of her message. Since she is sending only two
gubits and determines the third then the Hilbert space described by her new state belongs to
a subspace of the original Hilbert space. We would like to project the original three qubits
onto a subspace which is more probable and thus gives us the maximum fidelity (see the
following). If we change our basis to the one in whiglis diagonal, then for any stag)
of the three particles (due to the symmetry of the density matrix with respé&thidl,))
we get

[(TaTalalW)[? = cos g — 062
[(TaTalalW)®=1(TalaTa

W) = [(lalalalw) 2 = cod Tsir? £ = 0107
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[(TalalalW) > =1({laTaln

W) = (lslalalw) = cod Tsin £ = 0018

[(lalalalw)[? = sin®t=0.003

The dimension of the Hilbert subspace we can encode with just 2 qubits is 4, thus we are
looking for a subspace spanned by 4 of the above combination which will occur in the
highest probability. This, condition will be fulfilled by taking the Hilbert subspate
spanned by the first 4 states

Hi = spad{|[TaTala), [LaTaTa), [Talala) [TaTala)} € H.

If we also define

Ho = spar{

LalaTa)s [LaTala)s ITalala)s [Lalala)} € #H,
then we havé
H = Hy & Hy.

The procedure we shall use is the following. Alice performs a unitary operdtion the
3-particle state emitted from her sources. The unitary operator is such that

U4 —|)])[0),
and

U5 — |)])[1).
Having done that Alice measures the last particle and projects it onto gftheith proba-
bility of p; =0.62+3-0.107= 0.94 or onto#£ with probability of p, = 0.003+3-0.018= 0.06.
If Alice measures 0 the she sends the first two qubits to Bob, Bob adds a third qubit in state
|0) and then performb) —* (the sameJ that Alice used) to decode the message. If how-
ever, Alice measured 0, then best she can do is to send the two qubits in a predetermined
state such that after Bob decodes (by the same method as before) hig it , which

is the most probable single state. If we denotdhythe projection on subspack then
the messages Bob decodes are

|_|1|lIJ> . -
———— C H; (with probability p; = (| =0.94),
IR 1 (with p y P = (Y[M1]Y) )

[Talala) C #6  (with probability p, = (|Mz|w) = 0.06),

where the denominator in the first equation is merely for normalization purposes. The
fidelity of Alice’s message can now finally be found, by comparing the message Bob de-
coded and the original one. Since, however, Alice may send different messages, depending
on the result of her measurement, then we regard the average fidelity

Ma|y) ’
(WM 1]y)

We see, that by ruining the states of all three particles instead of just one, we got a higher
fidelity.

F =0.94|(y| +0.06/(W|14TaTa) |2 = 0.94> +0.06-0.62 = 0.92

"Note that we use additiory) of spaces, and not a tensor product. This is because we are dealing with
subspaces.

8Again note, that due to the special symmetry between the two possible states of the original| system
[1x), we do not treat here the cases differently, however for a general case we would have to.
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6.3. Schumacher’s noiseless encoding

Having solved the above example let us now generalize it. We would like to have
an analogy of Shannon’s theorem for the quantum case. Clearly, if our source emits states
which are mutually orthogonal, then we can distinguish between them and we can therefore
use Shannon’s classical theorem for compressing the information. The problem arises
when the emitted states are not all mutually orthogonal.

Assume a source of statig) (not necessarily all orthogonal to each otier1, ..., N)
described by the density matrix

N
P="> pilwi)(Wil.
o
A message off (uncorrelated) letters will therefore be described by the density narix

ph=p@p - @p=p
N———
n
Similarly to the subset of “typical” messages we had in the classical case, we shall see that
here we have a probable/likely subspace of the Hilbert space (for large enpufhsee
this we diagonalize our density matiix

N
p= kz MK (K| ((KIK') = o).
=1

Once we do this, we are back to the the classical theorem of Shannon (since the states
|k) are all mutually orthonormal and therefore distinguishable). We now have an “alpha-
bet” of N letters each with probability, of appearing. Using Shannon theorem we can
compress a message miuch letters to a messagermfl (H = 3 Alog, Ax) bits or nH
qubits. We now define théon Neumann entropy &

S(p) = —Tr(plog, p),

which is most easily calculated (and actually thus defined) vghisrdiagonal. In this case
we get

N
S=-— Z )\k|ng)\k7
k=1

which is just the Shannon entropy for the diagonalized form of the density matrix (but not
of the original form, for which we would have used thgs). Thus we can say that the
dimension of the “likely” or “probable” Hilbert subspace is

dlm %rob == ZHSP) .

As a consequence Alice can compress her messagpanticles/states intoSqubits.
Bob receiving the message can then decompress it and find the ongtate message.
Note, however, that unless the possible states are all mutually orthogonal then Bob cannot
know for certain what message he has (although he knows, that it is the same as Alice
sent). By Holevo’s theorem (see earlier), he can extract only 1 (classical) bit out of every
qubit.

Before continuing, it is worth to note the difference between the Von Neumann entropy
Sand the Shannon entropi. Given the density matrix above

p=2 pilWi){Wil,

the Shannon entropy treats the different staigsas distinguishable even though they are
not necessarily mutually orthogonal, and thus

N
H(p) = —.lei log, pi.
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On the other hand the Von Neumann entropy is found by first diagonalizing the density
matrix which gives

N
S=-— Z )\k|092)\k.
k=1

The two definitions coincide when the staigs) are mutually orthogonal, but do not
coincide otherwise. further more the Shannon entropy depends on the way the density
matrix was constructed (which states are actually emitted by the sources) and not only on
the density matrix itself.

6.3.0.1. Measure of entanglemenfs we saw before the Shannon entrdpgave us
measure for the entanglemédnfif we haven non-maximally entangled pairs, then we can
can distill from thermE maximally entangled pairs). We found that after writing the state
in the Schmidt decomposition form

|W)ag = Z\/mkqu)g (Schmidt decomposition

the measure of entanglement was
E(W)=H(WY)=— Z Pk 09, P

Using the Schmidt decomposition we can write the density matrix of the two particles as

Pag = Z P[K)alK) BB (Kla(k].

We see, that in this case the entanglement is simply the traglwgfp. Thus we can say
that the entanglement of two particles/regions is

E = S(pas),

where again we use the Von Neumann entropy since it doesn’t depend on the basis we use,
while the Shannon entropy does. Further more if we take a partial trgmgs @fver A or B
we get

n
Pa=Trepag= ) Pxlk)aa(kl,
&

n
P = Trapas = Z Px|K) BB (K|.
s}

We see that the coefficienpx have not changed from the originghg and thus we can
also write that

E =S(pas) = S(pa) = S(ps) (measure of entanglement

6.3.1. dilution. We have so far discussed only the problem distillation: turningn-
maximally entangled states ismaximally entangled states. The revedigjtion, is also
possible: turninqiSmaximally entangled states tonon-maximally entangled states. The
protocol is very simple. Alice starts witllocal pairs in the non-maximal entangled state.
To create the non-maximal entangled pairs between her and Bob she must now teleport
particles to him. However, Alice and Bob have oni$EPR pairs between them. To over
come this, Alice compresses theairs tonSpairs and then teleports (using th8 EPR
pairs) one particle from each pair to Bob. Bob and Alice then decompress their particles
and finally get then non-maximally entangled states they wanted.

Note that this protocol, holds only for very largesince only then the compression
will have the efficiencynS
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6.4. Communication with noise (classical)

Assume that Alice wants to send a message to Bob, using an alphabéx, px))':‘=l
(total of N letters and letteay, appears with probabilityy), while Bob uses an alphabet
Y= {y,qy}y:1 (note that the two alphabets have the same number of letters). The problem
is that there is noise in the communication channel between them, and thus a letter sent by
Alice may change with different probabilities to different letters which Bob receives. We
denote the probability that receives the lettérAlice sentx asp(y|X)

X p(yIx) y.

Now, assuming that Bob knows Alicef and knows the noise behavipfy|x), what
can he deduce from the message he receives?

We denote the probability that Alice secénd Bob receivegiasp(x,y). By the above
definitions we get

P(Y) = P(YIX) Px-
Similarly we also have (note the exchangexgfin the last probability)

P(X,y) = pyP(X]y).
We further assume that we know the Shannon entropyamidy

H(X) == pxlog, px = — (109, px) py

H(Y) == pylog, py = —(log, by)p,-
We Similarly define theotal entropy HX,Y) as
H(X,Y) = =3 p(x,y)log; p(xy) = —(log; P(X.Y)) pxy):
X7y
and theconditional entropy HX|Y) as
H(XIY) = = 5 p(x.y)l0g, p(xly) = —{lod, POXY) piey)-
Xy
By the definitionp(x,y) = pyp(x|y), the last definition can also be written as

H(X[Y) = —(log; P(X,¥)) pixy) + (1092 P(Y)) pixy) = H(X,Y) —H(Y),
and similarly
H(Y|X) =H(X,Y) —H(X).
Note, that by definition we have
H(X|Y),H(Y|X) > 0.

The meaning of the conditional entropy is that it tells us how much information needs to be
sent to Bob in order to convey a message, iilveady knowshe sequence If Bob knows
that he got a lettey then the probability of it coming from a letteris p(x|y). Therefore,
as far as Bob is concerned, Alice does not use the alpHabpgt} but rather the alphabet
{x, p(x|y)}, and therefore in order to convey the message (using Shannon’s theorem) it
suffices to send hirtl (X]Y) bits per letter (instead dfl(X) bits, when he doesn’t know
they’s).?

We can now define thenutual information (X;Y)

[(X;Y) =H(X)—H(X]Y).
This quantity tells us how correlated tRie andy’s are. It tells us how many bits per letter

x | have save from sending if | know If for examplex,y are completely on correlated,
then having learneddoesn’t help me at all and (X|Y) = H(X) which will give usl = 0.

9292 Note, that we are actually talking about an average, pipxty) is different for every different lettey
Bob has in his sequence. ???
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On the other hand if they are completely correlated (one-to-one) then having lgerned
need no more information. In this caldéX|Y) = 0 andl = H(X).
Note, that the mutual informatidnis symmetric:

I(X;Y) = HX)—H(X]Y)=H(X)—H(X,Y)+H(Y)
= H(Y)-H(Y[X)
= 1(Y;X).

6.5. Accessible Information

We now turn to a quantum case. Assume that Alice has source of states which emits

particles in statéy;) with probability p;
p="> pilwi)(Wil.
Now, Bob wants to determine which state has been emitted. For this he may choose any
POVM set{F,}. The probability that Bob measuyeof the particle is in a given stafe,)
is given by
P(YX) = (Wx|Fy[Wx)-
We define the amount of information Bob can deduce fpoas theaccessible information
Acc(p)
Acc(p) T%Xl X;Y).

If the stategy;) are all mutually orthogonal then they are distinguishable (usjrg|Wy) (Py|)
and we are back to the classical case

Acc(p) =H(X).

If however, the states are not all mutually orthogonal, then there is no general formula but
it can be proven that

Acc(p) < S(p),
where an equality is reached only for very long messages o).

6.6. Decoherence and the measurement problem

We call a pure state, a coherent one. We shall see that once the state interacts with
an environment, then the reduced density of the state (without the environment) becomes
non-pure. This process is callddcoherencer dephasing

As an example of decoherence, assume a pure state

W) =0) +€9|1),
which is described by the density matrix

o (1 e
p=p"=( gia ;1 )-

We now add an environment to the system which is in an initial $&te
1 .
Wit = [W)[E) = — (|0) +€Y%[1)) |8).
|W)tot = [P)|E) ﬁ(l ) 1)) 18)
We further assume that the interaction of the system and the environment is very weak and
we get after some time of interaction
1 .
— (|0 +é%1 ,
75 (10)]e0) +-€°[1) ex)

where|ep), |e1) are some states of the environment, not necessarily orthogonal. The density
matrix of the system alone (the reduced matrix after tracing over the environment) is now

1 (elen)  €%eler) N _1( 1 &% (epler)
P 2( e '%(eller) (elen) ) B 2( e '*(e1|ep) 1 >

|W)tot —
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Except for very special cases thag) and |e;) differ only by a phase, the new density
matrix is no longer a pure one.

6.6.1. density matrices and entanglementLet us now examine how this effects
entanglement. This time we shall start with a system plus environment in a state

1
PR + A
75 (Dalts+1all)e) e
We now activate an interactidse between particle andE such that

%<|¢>A\T>B|T>E+|¢>A|¢>Bu>E>.

We can write this state as a density mapige = Uag|W)(W|U XE. Taking the partial trace
over the environmer we get

ons = 3 (IThanlT] @ [Tss(T] + 1Lyan(ll @ [ Les(Ll).

This looks like an entangled state, but is it? If we look at the entangled state

%(\T>A|T>B+|¢>Au>s>,

and write its density matrix, we will get a different result than the above (there will appear
mixed elements with both “up” and “down” states).

The criteria for entanglement in density matrices, is slightly different than the one for
pure states. Here we say that a density matrenitangledf we cannotwrite it as a sum
of product density states. That is

PaB# ) PiPA® pg = entangled

|Whtot =

Uae|W)tot =

6.6.2. The measurement problemWe saw that interaction with the environment
leads to decoherence, and the behavior of a system as if it were described by a density
matrix. This seems to explain collapse, but it does not, since first of all it does not explain
why the collapse is to a certain state, and it doesn’t solve the problem that macroscopically
large systems may be in superposition - the system plus the environment are still in a
superposition (Schrodinger’s cat, both alive and dead).

6.7. Error correction - Shor’s algorithm

Assume that we want to send a classical bit over a noisy channel. If we simply send
one bit (say 0) it might be corrupted by the noise and the bit received (say 1) will be
different than the one sent. When dealing with classical bits it is relatively simple to solve
the problem (when the noise is weak). We simply duplicate the bit two extra times and
send three identical instead of just one

0= 000,

i=111
Assuming the noise to be weak, at most one bit of the three will be corrupted, we can then
correct the error by using the majority rule method (if one bit differs from the other two it
is changed to agree with the two).

We now turn to the quantum case. The problem here is two fold. First, due to the no

cloning theorem, we cannot duplicate our qubits; second, if we make measurmentmeasure-
ment to determine what has changed we collapse our state and change it.

Before solving the problem, let us first see what type of errors might occur. We start
with a general qubit and an environment

W)tot = (a]0) +B[1)) [Env,).
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The most general unitary operator which couples the environment and the qubit but does
not entangle them may be written as

U = gBenfienSsys — 1 | g10, + £,0y + €307,

where theg; are some constants and the Pauli matrices on the right operate on the qubit.
We can write the effect of each element in the sum

0 : o
1) 11’
Itl’; o }é; (bit flip),
0 o i1
1) —ij0)
{% %, 7'?5 (phase flip.

We see that there are basically two errors we should treabjttfign and thephase flip(the
effect ofoy can be reproduced by their combination and an extra global phase).

Let us start by treating the bit flip. Although we cannot duplicate qubits, we can use a
CNOT (actually two) which will give a similar effect. We add to our qubit two more qubits
in a known “up” state, and perform a unitary operatigrwhich is actually a CNOT of the
original qubit with each of the two new ones

1

U %2 (@|0) +B[1))[0)[0) | = Wi (@|0)|0)|0) +BILILIL) -

Now, assume that a bit flip occurs in one of the three qubits

1 ot % (a|1)]0)[0) +Bl0)[1)[1))
ﬁ(0|0>\0>|0>+l3|1>|1>\1>) — or ?(GIO>I1>IO>+BI1>IO>I1>) :

7 (0]0)[0)|1) +B|1)|1)[0))
If we make a measurement we will cause a collapse of the wave function, unless the wave

function is already an eigenvector. The possible state are all eigenvalues of the operators
o102 ando203, but the values measured are different according to which bit has flipped:

| 0307 | o303 | flipped bit |

1 1 non
-1 1 1
1 -1 3
-1 -1 2

Let us now generalize the above procedure to take care of all possible errors. Shor
suggested the use of 9 qubits to protect a single one. He suggested to use a unitary operation
such that

1= T = S T+ LD AT+ L) T+ 1),

\[
L= T= 5o (T = WD =) (11 - 1L).
If we define
0= 5 (11+140).
19 = == (11— L),

N

2
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then the qubitp = % (aT+Bl) becomes

1 u 1
V=175 (aT+Bl) = 7 (a]0)|0)[0) + Bl 1)[1)]1)) -

We can protect each of tH8) and|1) against bit flip by the same method as above. For
protection against a single phase flip, we notice that under a phase flip (of a single qubit)
|0) becomeg1) and vice versal) becomeg0). Thus, if we treat0) and|1) as a single
two-level “particle”, the problem of a phase flip is the same as the problem of a bit flip we
had before.

Note, that although Shor’s algorithm, was the first quantum error-correction code, it is
not the most efficient. The most efficient code requires just 5 qubits (instead of the 9 here)
to protect a single one.
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