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Abstract

We study games with strategic complementarities, arbitrary numbers of

players and actions, and slightly noisy payoff signals. We prove limit unique-

ness: as the signal noise vanishes, the game has a unique strategy profile

that survives iterative dominance. This generalizes a result of Carlsson and

van Damme (1993) for two player, two action games. The surviving profile,

however, may depend on fine details of the structure of the noise. We provide

sufficient conditions on payoffs for there to be noise-independent selection.
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1 Introduction

In two player, two action games with common knowledge of payoffs, there often exist

two strict Nash equilibria. Carlsson and van Damme [5] showed a remarkable result:

if each player instead observes a noisy signal of the true payoffs, and if the ex ante

feasible payoffs include payoffs that make each action strictly dominant, then as the

noise becomes small, iterative strict dominance eliminates all equilibria but one. In

particular, if there are two Nash equilibria in the underlying complete information

game, then the risk dominant equilibrium (Harsanyi and Selten [14]) must be played

in the game with small noise. Carlsson and van Damme called the noisy game with

dominance regions a “global game.”

Carlsson and van Damme’s result can be reconstructed in two logically separate

parts. First, there is a limit uniqueness result: as the noise in the global game becomes

arbitrarily small, for almost any payoffs there is a unique action that survives iterative

elimination of dominated strategies. The second is a noise independent selection

result: as the noise goes to zero, the equilibrium played (for a given realization of the

payoffs) is independent of the distribution of the noise.

In this paper, we extend Carlsson and van Damme’s model to many player, many

action games.1 Our main assumption is that the actions can be ranked such that there

are strategic complementarities: an increase in one player’s action raises the incentive

for other players to raise their own actions. We show that the limit uniqueness result

generalizes. In contrast, the noise-independent selection result does not hold in

general. We present a counterexample (a two player, four action symmetric game)

in which the equilibrium selected in the limit as the noise goes to zero does depend

on the structure of the noise. We proceed to identify sufficient conditions for noise

independent selection to hold in games with a finite number of players.

1Our results also generalize the extensions of Carlsson and van Damme [6] and Kim [16], who

show limit uniqueness in games with finitely many identical players and two actions, under a uniform

prior assumption.
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We consider the following setting. An unknown state of the world θ ∈ R is drawn
according to some prior. Each player i observes the signal θ + νηi, where ν > 0 is a

scale factor and ηi is a random variable with density fi. Our main assumptions are

(1) strategic complementarities: for any state θ, each player’s best response is weakly

increasing in the actions of her opponents; (2) for any given opposing action profile,

a player’s best response is increasing in the state θ; and (3) dominance regions:

at sufficiently low (high) states θ, each player’s lowest (highest) action is strictly

dominant. Call this global game G (ν). Under these and some technical continuity

assumptions, we show that limit uniqueness holds: as the noise scale factor ν goes

to zero, there is an essentially unique2 strategy profile surviving iterated deletion of

dominated strategies in G(ν). In this unique surviving strategy profile, each player’s

action is a nondecreasing function of her signal. Moreover, for almost all states

θ, players play a Nash equilibrium of the complete information game with payoff

parameter θ.

We also show that there may not be noise-independent selection: the particular

Nash equilibrium played at a state θ may depend on the noise densities fi. This

implies that different equilibria of a given complete-information game g may be se-

lected, depending on the global game in which g is embedded. We proceed to

identify conditions on the payoffs of complete-information games g that guarantee

noise-independent selection. In particular, if g is a local potential game in which each

player’s payoffs are quasiconcave in her own action, then there is noise-independent

selection at g: a unique Nash equilibrium of g must be played in the limit as the

signal errors shrink, regardless of the global game in which g is embedded.

Local potential games include both the potential games of Monderer and Shapley

[21] and games with low p-dominant equilibria of Morris, Rob and Shin [22] and Kajii

and Morris [15]. In particular, local potential games include (1) all two player, two

action games; (2) all many player, two action games with symmetric payoffs; and (3)

2I.e., for almost all signals.
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all two player, three action games with symmetric payoffs. In each of these cases, we

characterize the selected equilibrium.3

Strategic complementarities are present in many settings, including macroeco-

nomic coordination failures, technology adoption, oligopoly, R&D competition, co-

ordination in teams, arms races, and pretrial bargaining.4 In a number of recent

applied papers, the global games approach has been used to select a unique equilib-

rium. Examples include models of currency crises (Morris and Shin [23]), bank runs

(Goldstein and Pauzner [11]) and debt pricing (Morris and Shin [24]).5 However,

the applications have generally been limited to situations with homogenous agents

and two actions. Our results make it possible to apply the global games approach

to a wider class of games. In particular, our model allows for arbitrary mixtures of

large and small (infinitesimal) players, who can choose their actions from arbitrary

compact sets.6 (For ease of exposition, we assume a finite number of players first

and later generalize the model to include continua of players.)

This paper also contributes to a large literature on games with strategy comple-

mentarities, also known as supermodular games. These games were first studied as a

class by Topkis [28] and are further analyzed by Vives [30] and Milgrom and Roberts

[19]. The connection between our findings and existing results on supermodular

games is discussed in the conclusion.

3In cases (1) and (2), there is own-action quasiconcavity since there are only two actions. In

case (3), noise-independent selection holds even without own-action quasiconcavity.

4See Milgrom and Roberts [19] for a survey of applications.

5Morris and Shin [25] survey such applications and describe sufficient conditions for limit unique-

ness in games with a continuum of identical players and two actions, under slightly weaker technical

assumptions than those assumed in this paper. Their results incorporate other applications of global

games such as Morris and Shin [23, 24].

6Note that any finite set of actions is compact. For recent applications of our more general

results, see, e.g., Goldstein [10] (four actions, continuum of players) and Goldstein and Pauzner [12]

(two actions, two continua of players).
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The remainder of this paper is organized as follows. The base model, with a finite

number of players, is presented in section 2. We prove limit uniqueness in section

3 and partially characterize the unique equilibrium in section 4. In section 5, we

show that CvD’s noise independence result does not generalize. Section 6 introduces

conditions on the payoffs of the game (own action quasiconcavity and the existence of

a local potential maximizer) that suffice for noise independent selection and discusses

classes of games that satisfy the conditions. In section 7, we show that the limit

uniqueness and partial characterization results generalize to models with large and

small players. Section 8 concludes. All proofs are relegated to the appendix.

2 The Game

The global game G(ν) is defined as follows. The set of players is {1, ..., I}.7 A state

θ ∈ R is drawn from the real line according to a continuous density φ with connected

support. Each player i observes a signal xi = θ + νηi, where ν > 0 is a scale factor

and each ηi is distributed according to an atomless density fi with support contained

in the interval
£−1

2
, 1
2

¤
. The signals are conditionally independent: ηi is independent

of ηj for all i 6= j.
The action set of player i, Ai ⊆ [0, 1], can be any closed, countable union of closed

intervals and points that contains 0 and 1.8 If player i chooses action ai ∈ Ai, her
payoff is ui (ai, a−i, θ); a−i = (aj)j 6=i denotes the action profile of i’s opponents.

Let ∆ui(ai, a
0
i, a−i, θ) be the difference in the utility of player i from playing ai

7As noted above, the case of a continuum of players is treated in section 7.

8That is, Ai is a closed union of disjoint closed intervals ∪Mm=1[bm, cm] where M ≥ 1 can be

infinity. (Isolated points are represented by setting bm = cm.) Requiring Ai to include 0 and 1

is not restrictive since a player’s highest and lowest actions can always be normalized to 0 and 1,

respectively, by rescaling the payoff functions.
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versus a0i against the action profile a−i when the payoff parameter is θ.
9 Let us write

a−i ≥ a0−i if actions are weakly higher under a−i than under a0−i: if aj ≥ a0j for each
j 6= i. We make the following assumptions on payoff functions.

A1 (Strategic Complementarities) A player’s incentive to raise her action is weakly

increasing in her opponents’ actions: if ai ≥ a0i and a−i ≥ a0−i then for all θ,
∆ui (ai, a

0
i, a−i, θ) ≥ ∆ui

¡
ai, a

0
i, a

0
−i, θ

¢
.

A2 (Dominance Regions) For extreme values of the payoff parameter θ, the ex-

treme actions are strictly dominant: there exist thresholds θ < θ, where£
θ − ν, θ + ν

¤
is contained in the interior of the support of φ, such that, for

all i and for all opposing action profiles a−i, ∆ui (0, ai, a−i, θ) > 0 if ai 6= 0 and
θ ≤ θ, and ∆ui (1, ai, a−i, θ) > 0 if ai 6= 1 and θ ≥ θ.

If each player’s action space is finite, we can replaceA2 by the weaker assumption:

A20 (Unique Equilibrium Regions) For extreme values of the payoff parameter,

the equilibrium is unique: there exist thresholds θ < θ in the interior of the

support of θ such that for all θ < θ, the complete information game in which the

payoff function of each player i is ui (·, θ) has a unique equilibrium (a1, ..., aI);

for all θ > θ, the complete information game with payoffs ui (·, θ) has a unique
equilibrium (a1, ..., aI). By Theorem 6 in Milgrom and Roberts [19], ai ≤ ai
for all i. We assume that ai < ai for at least one player i.

Note that under assumption A1, A20 is equivalent to requiring that there is a

unique action profile surviving iterated deletion of strictly dominated strategies if

θ /∈ [θ, θ] (Milgrom and Roberts [19]).

A3 (State Monotonicity) Higher states make higher actions more appealing. There

is aK0 > 0 such that for all ai ≥ a0i and θ, θ0 ∈ [θ, θ], θ ≥ θ0, ∆ui (ai, a0i, a−i, θ)−
∆ui (ai, a

0
i, a−i, θ

0) ≥ K0(ai − a0i)(θ − θ0).

9I.e., ∆ui(ai, a
0
i, a−i, θ) = ui(ai, a−i, θ)− ui(a0i, a−i, θ).
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A4 (Payoff Continuity) Each ui (ai, a−i, θ) is continuous in all arguments.

If player i’s action space is finite, continuity with respect to ai is vacuous. The

following assumption is also vacuous if action sets are finite.

A5 (Bounded Derivatives) A player’s utility is Lipschitz continuous in her own

action and her marginal utility of raising her action is Lipschitz continuous in

other players’ actions. More precisely, (a) for each θ and a−i, there exists a

constant K1 such that for all ai, a0i,

|∆ui (ai, a0i, a−i, θ)| ≤ K1 |ai − a0i|

(b) for each θ there exists a constant K2 such that for all ai, a0i, a−i, and a
0
−i,¯̄

∆ui (ai, a
0
i, a−i, θ)−∆ui

¡
ai, a

0
i, a

0
−i, θ

¢¯̄ ≤ K2 |ai − a0i|
X
j 6=i

¯̄
aj − a0j

¯̄
(1)

A pure strategy for player i is a function si : R→ Ai. A pure strategy profile is a

vector of pure strategies, s = (si)
I
i=1. The profile s is increasing if si (xi) is weakly

increasing in xi for all i; it is left (right) continuous if each si is left (right) continuous.

Profile s0 is higher than profile s (s0 ≥ s) if s0i (xi) ≥ si (xi) for all i and xi ∈ R. A

mixed strategy is a probability distribution over pure strategies, and a mixed strategy

profile is an assignment of mixed strategies to players.10 (Players are not restricted

to pure strategies.)

10More precisely, we follow Aumann [2] in modelling a mixed strategy for player i as a function

σi from [0, 1] (representing the possible outcomes of player i’s randomizing device) to the space ARi

(representing the space of pure strategies, which are functions from R to Ai). Thus, σi(y) is the pure

strategy played by i if her randomizing device yields the value y. Following Aumann, we restrict

players to mixed strategies σi for which the corresponding function h : [0, 1] × R→Ai defined by
h(y, xi) = σi(y)(xi) is measurable. This property ensures that a mixed strategy and a distribution

on the type space R induces a distribution of actions. With this assumption, players are able to

calculate their expected payoffs against any vector of opposing mixed strategies.
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3 Limit Uniqueness

Our solution concept is iterative strict dominance. First we eliminate pure strategies

that are strictly dominated, as rational players will never pick (i.e., put positive

weight on) such strategies. Then we eliminate a player’s pure strategies that are

strictly dominated if her opponents are known to mix only over the pure strategies

that survived the prior round of elimination; and so on. Theorem 1 shows that as

the signal errors shrink to zero, this process selects an essentially unique Bayesian

equilibrium of the game.

Theorem 1 G (ν) has an essentially unique strategy profile surviving iterative strict

dominance in the limit as ν → 0. It is an increasing pure strategy profile. More

precisely, there exists an increasing pure strategy profile s∗ such that if, for each

ν > 0, sν is a pure strategy profile that survives iterative strict dominance in G (ν),

then limν→0 sνi (xi) = s
∗
i (xi) for almost all xi ∈ R.

Intuition for Limit Uniqueness

To see the intuition, consider the case of a symmetric, two player game with a

continuum of actions (Ai = [0, 1]). Assume the two players have the same distribution

of signal errors and that their prior over θ is uniform over a large interval that includes£
θ − ν, θ + ν

¤
. (At the end of this section we explain how the argument works with a

nonuniform prior.) Further assume that a player’s payoff function is strictly concave in

her own action, so that her best response does not jump in response to small changes

in her posterior distribution over the state θ or her opponent’s action. Recall that

a pure strategy is a function from a player’s signal xi to an action ai ∈ [0, 1], and
players can choose mixtures over these pure strategies.

By the assumption of dominance regions (A2), we know that a player who observes

a signal above some threshold must choose ai = 1. This means that no player will

ever choose (i.e., put positive weight on) a pure strategy that lies below the curve in

Figure 1.
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ai=1

ai=0

1 dominant

xi

0 dominant

Figure 1:

Knowing this, a player will never choose a strategy below the best response to this

curve. This relies on strategic complementarities (A1): any pure strategy that lies

above the curve would have a best response that lies weakly above the best response

to the curve. So the best response to the curve is a new lower bound on the pure

strategies that can ever be played. We iterate this process ad infinitum, and denote

the limit by S (Figure 2). Note that S is a symmetric equilibrium of the game (and

thus survives iterative strict dominance) and that any strategy that survives iterative

strict dominance lies weakly above S, and so S is the smallest strategy surviving

iterative strict dominance.

ai=1

ai=0 xi

S

Figure 2:
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By a symmetric argument, there must exist a largest strategy surviving iterated

deletion of strictly dominated strategies, which we denote by S, which must lie above

S (see Figure 3). Now if we show that S must equal S, we will have established

the existence of a unique strategy profile surviving iterative strict dominance. This

strategy for proving the dominance solvability of a game was discussed in Milgrom

and Roberts [19].

ai=1

ai=0 xi

SS

Figure 3:

ai=1

ai=0 xi*x δ+*x

S~ S

••

S

 δ

Figure 4:

Our argument establishing that S and S must coincide exploits the monotonicity

properties A1 and A3. We will note where each property is used in the following

argument. Because of the dominance regions, the strategy S must prescribe playing

0 for low enough signals. Thus, there is a translation of S that lies entirely to the left

of S and touches S at at least one point (see Figure 4). Label this translated curve
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eS. Let the amount of the translation be δ. Let x∗ be the signal corresponding to the
point at which S and eS touch. Finally, write a∗ for the best response of a player who
has observed signal x∗ and believes that his opponent is following strategy eS.
Since both S and S are equilibria, we know that

S (x∗) = S (x∗ + δ) . (2)

But since eS is everywhere above S, we know by strategic complementarities (A1)
that

a∗ ≥ S (x∗) . (3)

We will now show that with a uniform prior over θ, a∗ must be strictly less than

S (x∗ + δ) unless eS and S coincide. Since this inequality would contradict (2) and

(3), the two curves must coincide. As S lies entirely between them, it must also

coincide with S; this will show that a unique equilibrium survives iterative strict

dominance.

With a uniform prior over θ, the posterior of a player with signal x∗ over the

error in her signal, x∗− θ, is exactly the same as the posterior of a player with signal

x∗ + δ over the error in her signal, x∗ + δ − θ. Since the signal error of the player’s

opponent is independent of θ, the player’s posterior over the difference between her

signal error and that of her opponent is also the same if her signal is x∗ as if her

signal is x∗ + δ. But the difference between the two players’ signal errors is just the

difference between their signals: (xi − θ) − (xj − θ) = xi − xj. Thus, a player’s

posterior over the difference between her signal and that of her opponent is the same

at x∗ as at x∗+ δ. Hence, since eS is an exact translation of S, a player who observes
x∗ and thinks that her opponent will play according to eS expects the same action
distribution as a player who observes x∗ + δ and thinks that the opponent will play

according to S. But assumption A3 implies that a player’s optimal action is strictly

increasing in her estimate of θ, controlling for her opponent’s action distribution.
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Hence, if δ > 0, then a∗ must be less than S (x∗ + δ). Since in fact a∗ is at least

S (x∗ + δ), δ must equal zero, and thus S and S coincide if the prior over θ is uniform.

The same property still holds with a general prior, in the limit as the signal errors

shrink to zero. When the signal errors are small, a player can be sure that the true

payoff parameter θ is very close to her signal. Consequently, her prior over θ is

approximately uniform for the small interval of values of θ that are still possible given

her signal. (Recall that the model assumes a continuous prior over θ and a finite,

very small support of the signal errors.) Thus, the above argument still holds in the

limit: δ must shrink to zero (and thus S and S must coincide) as the signal errors

become small.

4 A Partial Characterization

Theorem 2 partially characterizes the surviving equilibria of the global game when

the noise is small. It states that in the limit, for all but a vanishing set of payoff

parameters θ, players play arbitrarily close to some pure strategy Nash equilibrium

of the complete information game with payoffs ui(·, θ0) for some θ0 that is close to

θ. The intuition is that for small signal errors, players can precisely estimate both

the payoff parameter θ and, for most signals, what other players will do.11 Since

players are best-responding to beliefs that are arbitrarily precise, the result must be

very close to a Nash equilibrium of the underlying complete information game.

For any ε > 0 and ν > 0, let Q(ε, ν) be the set of parameters θ for which the

surviving strategy profiles inG(ν) do not all prescribe that players play ε-close to some

common pure strategy Nash equilibrium of some complete information game whose

11With small signal errors, there cannot be many signals at which players are very uncertain about

opponents’ possible actions. Otherwise, over a wide range of signals, opponents’ strategies would

have to rise considerably for small increases in their signals. (Recall that strategies must be weakly

increasing when the signal errors are small.) This is impossible since the action space is bounded.
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payoff parameter is ε-close to θ. More precisely, Q(ε, ν) is the set of parameters θ

for which there is no Nash equilibrium action profile a ∈ ×Ii=1Ai, of the complete
information game with payoffs (ui(·, θ0))Ii=1 for some θ0 ∈ [θ − ε, θ + ε], such that for

every strategy sν surviving iterative strict dominance in G(ν), |sνi (θ)− ai| ≤ ε for

all i. Theorem 2 shows that for any ε > 0, this set becomes arbitrarily small as ν

shrinks to zero.

Theorem 2 In G(ν) in the limit as ν → 0, for almost all payoff parameters θ,

players play arbitrarily close to some pure strategy Nash equilibrium of the complete

information game with payoffs ui(·, θ0) for some θ0 that is arbitrarily close to θ. More
precisely, for any ε > 0 there is a ν > 0 such that for any ν < ν, Q(ε, ν) is contained

in a finite union of closed intervals of R whose measure is less than ε.12

Theorem 2 has an interesting implication for symmetric games with a continuum

of actions. Suppose that the action played in a locally stable (unstable) equilibrium

of the underlying complete information game with payoff parameter θ monotonically

rises (falls) if θ rises.13 Then by Theorems 1 and 2, any strategy profile that survives

iterative dominance must almost always prescribe that players play a stable Nash

equilibria of the underlying complete information game. The strategy cannot coincide

with an unstable Nash equilibrium of the underlying game as θ rises since surviving

strategies are nondecreasing in players’ signals.

This implication is illustrated in Figure 5. The dashed line shows the set of

Nash equilibria of the underlying complete information games with payoff parameters

equal to xi. The upwards (downwards) sloping segments correspond to the locally

stable (unstable) Nash equilibria of these games. The bold curve illustrates how the

12For any ε, the number of intervals in the union is independent of ν. The number is finite for

any given ε but may grow without bound as ε shrinks to zero.

13“Locally stable” refers to the traditional notion in which the best response function intersects

the 45 degree line at an slope of less than 1.
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essentially unique surviving strategy profile in the global game G(ν) must look in the

limit as ν shrinks. It must coincide with a stable Nash equilibrium except at points

where it jumps from a lower stable equilibrium to a higher one.

 1=ia

xi
0=ia

Nash equilibria of
underlying complete
information game Strategy profile surviving

iterative dominance in
small-noise limit of
incomplete information game  

Figure 5:

5 Noise Independent Selection: A Counterexam-

ple

In showing limit uniqueness, we began with a given noise structure and scaled it

down by taking the scale factor ν to zero. Our result does not imply that the

selected equilibrium is independent of the structure of the noise (i.e., of the densities

fi).

Carlsson and van Damme’s result implies that noise-independent selection holds

in 2 × 2 games. Their proof method does not rely on properties of the game’s

payoffs. This method can be generalized to additional classes of games, but not

to all. To obtain some intuition, suppose the game has two players, each with the

same finite action set A and the same payoff function, and each player’s noise term

has the same symmetric distribution f . Assume that each player follows the same

increasing strategy, s : R → A. As ν → 0, what beliefs does each player have over

the action of her opponent at the critical point where she switches from one action
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to another? Recall that for small ν, each player’s posterior belief about the other’s

signal is computed approximately as if she had a uniform prior over θ.

Suppose first that there are two actions, 0 and 1. Consider a symmetric equilib-

rium given by a pure strategy profile s satisfying

s (x) =

 0, if x < c

1, if x ≥ c

A player observing signal c will assign probability 1
2
to her opponent’s choosing action

0 and probability 1
2
to her opponent’s choosing action 1. This is independent of the

choice of c and the distribution f . Thus as the noise goes to zero, c must converge

to the payoff parameter at which the player is indifferent between the two actions if

she has a 50/50 conjecture over her opponent’s action. This is simply the symmetric

version of Carlsson and van Damme’s [5] result.

Now suppose that there are three actions, 0, 1/2, and 1, so that

s (x) =


0, if x < c1
1
2
, if c1 ≤ x < c2
1, if c2 ≤ x

A player observing signal c1 will assign probability 1
2
to her opponent choosing action

0, some probability λ to her opponent choosing action 1
2
, and probability 1

2
−λ to her

opponent choosing action 1; a player observing signal c2 will assign probability 1
2 − λ

to her opponent choosing action 0, probability λ to her opponent choosing action 1
2

and probability 1
2
to her opponent choosing action 1. For any distribution f , we can

choose c1 and c2 so that λ takes any value in [0, 1/2]. In other words, the distribution

of noise does not affect the limiting conjectures that each player may end up having

over her opponent’s actions.

This implies noise independent selection: any profile (c1, c2) that is an equilibrium

as ν → 0 under a noise structure f must also be an equilibrium under any other noise

structure f 0. To see why, let us distinguish between two cases. In the first, c1−c2 does

15



not shrink to 0 as ν → 0. This means that λ converges to 1/2: for sufficiently small ν,

a player with signal c1 is indifferent between 0 and 1/2 and thinks that her opponent

will play 0 or 1/2 with equal probabilities; a player with signal c2 is indifferent between

1/2 and 1 and puts equal probabilities on her opponent’s playing 1/2 and 1. These

signals clearly must converge to particular payoff parameters, independent of the

structure of the signal errors (since the player’s beliefs are independent of f).

In the second case, limν→0 (c1 − c2) = 0. Here, λ need not converge to 1/2. But if
we replace the signal error structure f with some other structure f 0, we can construct

an equilibrium near the one given by f by simply adjusting the gap between c1 and

c2 so as to keep λ the same under f 0 as under f . Since the gap between c1 and

c2 asymptotically shrinks to zero, we can make this adjustment without changing

the limit to which both cutoffs converge. Thus, under f 0 there is a sequence of

equilibria of the global game that converges to the same limit as the sequence of

equilibria under f . This explains why there is noise-independent selection. In the

next section, we show that there is noise-independent selection for two player, three

action, symmetric-payoff games, even with general asymmetric noise distributions fi.

With four or more actions, the above property ceases to hold. The set of conjec-

tures a player can have over her opponent’s action can depend on the structure of the

noise. With three actions, each profile (c1, c2) gave rise to one unknown, λ, which

could be adjusted arbitrarily by changing the distance between c1 and c2. With four

actions, each profile (c1, c2, c3) gives rise to three unknowns. This is illustrated in

Figure 6. The density centered at each threshold ci represents the posterior distri-

bution over the signal of the opponent of a player whose signal is ci. The area under

the segment marked b (respectively, c) of the posterior of a player with signal c3 is

the probability she assigns to her opponent’s having seen a signal between c1 and c2

(respectively, between c2 and c3).14

14Likewise, the area under the segment marked c (respectively, b) of the posterior of an agent

with signal c3 is the probability she assigns to her opponent’s having seen a signal between c2 and
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a a

b a+c-b

cc

c3c2c1

Figure 6:

The three probabilities a, b, and c are a minimal set of probabilities that suffice

to determine the action distributions expected by players at each of the thresholds.

However, by altering the profile we have only two degrees of freedom: we can change

c3 − c2 and c2 − c1. This means that if we change the noise structure f , we will not
necessarily be able to adjust the profile in order to preserve the action distribution

seen by players at each of the thresholds c1, c2, and c3. Thus, if f changes, we

may not be able to keep the players indifferent between adjacent actions simply by

adjusting the distance between the thresholds. It may also be necessary to shift

the entire profile in order to change the payoff parameter that each player sees. In

other words, changing the noise structure may alter the signals at which the unique

surviving strategy profile jumps between any two actions. This is what it means for

the equilibrium to depend on the structure of the noise.

Theorem 3 There exists a two-person, four-action game satisfying A1-A5 in which

for different noise structures, different equilibria are selected in the limit as the signal

errors vanish.

c3 (respectively, between c1 and c2). By symmetry of the signal errors, the two areas marked a are

equal, as are the two areas marked c. Also by symmetry, the probability that an opponent of an

agent with signal c1 sees a signal between c2 and c3 must equal a+ c− b, as indicated.
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Theorem 3 is proved by constructing such a game. It is clear from the proof that

noise-independent selection would continue to fail if the payoffs of the game were

perturbed by a small amount.

6 A Sufficient Condition for Noise-Independent Se-

lection

The preceding counter example shows that for certain complete information games,

different ways of embedding them into global games (with different noise structures)

can lead to different predictions. That is, the payoffs of the complete information

game may not tell us which equilibrium will be selected. We now focus on the com-

plete information game corresponding to some parameter θ and identify conditions

on payoffs of that game that guarantee that a particular equilibrium will be selected

in the limit regardless of the noise structure. We will show that there is noise-

independent selection in that game if (a) its payoffs are own-action quasiconcave and

(b) it has a strategy profile that is a local potential maximizer.

A complete information game g = (g1, ..., gI) is a collection of payoff functions,

with each gi : A→ R. For any player i, let A−i be the set of all opposing action vectors

(aj)j 6=i. The complete information game g is own-action quasiconcave if for all i and

opposing action profiles a−i ∈ A−i and for all constants c, the set {ai : gi (ai, a−i) ≥ c}
is convex.15 It has local potential maximizer a∗ if there is a function v(a) (where

a = (ai)
I
i=1 is an action profile), called a local potential function, which is strictly

maximized by a∗, such that against any action profile a−i ∈ A−i, if moving i’s action
a bit closer to a∗i raises v, then this also raises i’s payoff. More formally:

15Unlike concavity, this does not imply that the slope of i’s payoff is decreasing in her action. It

only guarantees that there are no local maxima other than the global maxima (which could be a

single action or an interval).
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Definition 1 Action profile a∗ is a local potential maximizer (LP-maximizer) of the

complete information game g if there exists a local potential function v : A→ R such

that v (a∗) > v (a) for all a 6= a∗ and, for each i, a function µi : ai → R+ such that

for all ai ∈ Ai and a−i ∈ A−i,

1. if ai > a∗i then there is an a
0
i ∈ Ai that is strictly less than ai, such that for all

a00i ∈ Ai lying in [a0i, ai],

v (a00i , a−i)− v (ai, a−i) ≤ µi (ai) [gi (a00i , a−i)− gi (ai, a−i)] (4)

2. if ai < a∗i then there is an a
0
i ∈ Ai that is strictly greater than ai, such that for

all a00i ∈ Ai lying in [ai, a0i], (4) holds.

The local potential function generalizes the notion of a potential function in Mon-

derer and Shapley [21]. A potential function is a common payoff function v on action

profiles such that the change in a player’s payoff from switching from one action to

another is always the same as the change in the potential function. For local poten-

tial function, we make the weaker requirement that the payoff change from switching

away from a∗ is always less (after multiplying by a constant) than the change in the

potential function.

Importantly, the LP-maximizer property guarantees that a profile is a strict Nash

equilibrium if payoffs are own-action quasiconcave:

Lemma 1 If a∗ is an LP-maximizer of the own-action quasiconcave complete infor-

mation game g, then a∗ is a strict Nash equilibrium.

The main result of this section (stated formally at the end) is that in the global

game, if the payoffs at θ are own-action concave and have an LP-maximizing action

profile a∗, then in the limit as the signal errors vanish, any strategy profile that

survives iterative strict dominance must assign to each player i the action a∗i at the

signal θ. Thus, there is noise-independent selection at θ: the profile a∗ depends only

on the payoffs at θ and not on the shape of the signal errors.
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An intuition is as follows. For concreteness, let us regard v as God’s utility

function. God is pleased when people take steps that are in their self-interest: “God

helps those who help themselves” (Benjamin Franklin, Poor Richard’s Almanack,

1732). More precisely, a change in a player’s action pleases God (i.e., raises v) if

and only if it raises the player’s own payoff. Not all games have a local potential

function; in those that don’t, God does not have a preference ordering over strategy

profiles. For example, in matching pennies, God must want player A to play B’s

action but must also want B to play the opposite of A’s action, since both are best

responses. There is no preference ordering with this property.

Suppose for simplicity that the game is symmetric and has a finite set of actions

and that a player’s utility depends directly on her signal, rather than on θ (which

is approximately true anyway when the signal errors are small). Suppose also that

for the complete information game corresponding to each signal x, there is a local

potential function vx(), which is maximized when all players take some action a∗x. vx()

represents God’s preferences over action profiles when the payoff parameter equals x.

Assume that a∗x is nondecreasing in x. Figure 7 depicts a
∗
x as a function of x.

ai=1

ai=0 x

Figure 7:

We can interpret the function depicted in Figure 7 as a strategy profile: if player

i’s signal is xi, the profile instructs her to play a∗xi . This profile is very pleasing to God,

since each player plays according to the action profile that maximizes God’s utility if
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the payoff parameter equals her signal (which it approximately does for small signal

errors). However, God may not be entirely pleased near the points of discontinuity

of the strategy profile, since there might be miscoordination: some players will get

signals above the threshold and others below, so a potential-maximizing strategy

profile will not generally be played. But God is pleased as punch if the payoff

parameter θ is at least ν away from any point of discontinuity since then players

coordinate on the potential-maximizing action.

Starting with this profile, let us imagine what happens if we let players take turns

in best-responding.16 Critically, God likes it when people best-respond, since she

wants them to do what is in their best interests. Thus, seeing a player best-respond

can only increase God’s pleasure. But since the original profile depicted in Figure 7 is

already very pleasing to God, iterative best response cannot lead us to stray far from

this profile. In particular, at a distance of more than ν from any discontinuity of

the original strategy profile, the profile cannot change, since for signals received here

players are already playing the profile that is most pleasing to God. Moreover, the

limit of the iterations must be an equilibrium, since the best response to the limit is

the limit itself.17 However, any equilibrium must survive iterative strict dominance.

By limit uniqueness, for small ν, all strategies surviving iterative strict dominance

must be close to this limiting equilibrium, which itself must be close to the original

profile depicted in Figure 7. This implies that for small ν, players must play close to

the potential-maximizing action in any strategy profile that survives iterative strict

dominance, regardless of the noise structure.

Theorem 4 Let s∗ be either the left- or the right-continuous version of the unique

strategy profile surviving iterative strict dominance in G(ν) in the limit as ν → 0. If

16That is, player 1 switches to her best response, then 2 best responds to the resulting profile, and

so on, repeatedly cycling through the players.

17In this intuition we assume such a limit exists.
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the complete information game at some payoff parameter θ is own-action quasiconcave

and has an LP-maximizer a∗, then s∗ (θ) = a∗, regardless of the noise structure.

The LP-maximizer conditions of Definition 1 are rather complex. In Sections 6.1

and 6.2, we describe simpler conditions that are sufficient for an action profile to be

an LP-maximizer. In Sections 6.3 to 6.5, we apply those results to give a complete

characterization of the LP-maximizer in certain special classes of games.

6.1 Weighted Potential Maximizers

One sufficient condition for a∗ to be a local potential maximizer is that a∗ is a weighted

potential maximizer. This is a slight generalization of Monderer and Shapley [21]’s

notion of an action profile that maximizes a potential function for a game.

Definition Action profile a∗ is a weighted potential maximizer (WP-maximizer) of

g if there exists a vector µ∈RI+ and a weighted potential function v : A → R

with v (a∗) > v (a) for all a 6= a∗, such that for all i, ai, a0i ∈ Ai and a−i ∈ A−i,

v (ai, a−i)− v (a0i, a−i) = µi [gi (ai, a−i)− gi (a0i, a−i)] .

6.2 p-Dominance Conditions

Let p = (pi)
I
i=1. The notion of p-dominance is a many player, many action game

generalization of risk dominance (see Kajii and Morris [15]). An action profile a∗ is

p-dominant if it is a best response for each player i if she puts weight at least pi on

her opponents’ playing according to a∗:

Definition 2 Action profile a∗ is p-dominant in g ifX
a−i

λi (a−i) gi (a∗i , a−i) ≥
X
a−i

λi (a−i) gi (ai, a−i) ,

for all i, ai ∈ Ai and λi ∈ ∆ (A−i) with λi
¡
a∗−i
¢ ≥ pi.
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For low enough p, p-dominance is a sufficient condition for an action profile to be

an LP-maximizer.

Lemma 2 (Morris and Ui [26]) If action profile a∗ is p-dominant for some p with
IP
i=1

pi < 1, then a∗ is an LP-maximizer.

6.3 Two Player, Two Action Games with Two Strict Nash

Equilibria

Let I = 2 and A1 = A2 = {0, 1}. Let g1 (0, 0) > g1 (1, 0), g1 (1, 1) > g1 (0, 1),

g2 (0, 0) > g2 (0, 1) and g2 (1, 1) > g2 (1, 0), so (0, 0) and (1, 1) are both strict Nash

equilibria. Now let

q∗1 =
g1 (0, 0)− g1 (1, 0)

g1 (0, 0)− g1 (1, 0) + g1 (1, 1)− g1 (0, 1)
q∗2 =

g2 (0, 0)− g2 (0, 1)
g2 (0, 0)− g2 (0, 1) + g2 (1, 1)− g2 (1, 0)

A weighted potential function v is given by the following matrix:

0 1

0 q∗1 + q
∗
2 q∗1

1 q∗2 1

(0, 0) is a LP-maximizer if q∗1 + q
∗
2 > 1 and (1, 1) is a WP-maximizer if q

∗
1 + q

∗
2 < 1.

Thus, generically, there is a WP-maximizer. The WP-maximizer is the risk dominant

equilibrium in the sense of Harsanyi and Selten [14].

6.4 Many Player, Two Action Games with Symmetric Pay-

offs

Let Ai = {0, 1} for each i and suppose gi (ai, a−i) = g (ai, a−i) depends only on ai and
the number of players j 6= i who play 1. Let ξ (n) be the relative payoff to playing

1 versus 0 when n other players play 1. (I.e., ξ (n) = g(1, a−i) − g(0, a−i) for any
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a−i in which n players play 1.) Assume strategic complementarities: i.e., ξ (n) is

increasing in n. Let the potential function be

v (a) =


m−1P
k=0

ξ (k) , if the number of players playing 1 in a is m > 0

0, if no players play 1 in a

Also set µi = 1 for all i. One can easily verify that 1 =(1, .., 1) is the WP-maximizer

if
I−1P
k=0

ξ (k) > 0 and that 0 is the WP-maximizer if
I−1P
k=0

ξ (k) < 0. Thus generically in

this class of games, there exists a WP-maximizer.

An equivalent characterization of the WP-maximizer is the following. Suppose

that a player believes that the number of her opponents playing action 1 is uniformly

distributed (between 0 and I − 1). If the action 1 is a best response to that conjec-
ture, then the action profile 1 is the WP-maximizer; if 0 is a best response to that

conjecture, then 0 is the WP-maximizer. These are equivalent since 1
I

PI−1
k=0 ξ (k)

is just the relative payoff to playing 1 if one has such beliefs. This case (2 actions,

many players) was first studied by Carlsson and van Damme [6] and Kim [16], who

obtained the same result using different techniques in more restrictive settings.

This characterization extends naturally to the case of a continuum of players (not

formally treated here). In such games, the formula becomes
R 1
0
ξ (n) dn, where ξ (n)

is the relative payoff to playing 1 versus 0 when a proportion n of the other players

play 1. Such 2-action, symmetric payoff games with continuum of players have been

the focus of the applied literature using global games discussed in the introduction.

6.5 Two Player, Three Action Games with Symmetric Pay-

offs

Let I = 2, A1 = A2 = {0, 1, 2}; g1 (a1, a2) = g2 (a2, a1) = wa1wa2, where wxx > wyx
for all y 6= x and wxy − wx0y > wxy0 − wx0y0 if x > x0 and y > y0. Write ∆xy

x0y0 for the

net expected gain of choosing action x rather than y against a 50/50 conjecture on
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whether the opponent will choose action x0 or y0. Thus

∆xy
x0y0 = wx0x + wx0y − wy0x − wy0y.

Note that ∆xy
x0y0 = ∆yx

x0y0 and ∆xy
x0y0 = −∆xy

y0x0 . Note that ∆
xy
xy > 0 implies that action

profile (x, x) pairwise risk dominates action profile (y, y). Now we have the following

complete (for generic games) characterization of the LP-maximizers.

• (0, 0) is the LP-maximizer if ∆01
01 > 0 and either (1) ∆12

12 > 0 or (2) ∆21
21 > 0

and∆
02
10

∆01
01
<

∆02
12

∆21
21
.

• (1, 1) is the LP-maximizer if ∆10
10 > 0 and ∆12

12 > 0.

• (2, 2) is the LP-maximizer if ∆21
21 > 0 and either (1) ∆

10
10 > 0 or (2) ∆

01
01 > 0 and

∆02
10

∆01
01
>

∆02
12

∆21
21
.

The following example illustrates these conditions:

(g1, g2) 0 1 2

0 4, 4 0, 0 −6,−3
1 0, 0 1, 1 0, 0

2 −3,−6 0, 0 2, 2

(0, 0) is the LP-maximizer, since ∆01
01 = 3, ∆21

21 = 1, ∆02
10 = 2 and ∆02

12 = 1. Note

that (2, 2) pairwise risk dominates both (1, 1) and (0, 0), but nonetheless is not the

LP-maximizer.

Proving the above claims (i.e., constructing the local potential functions) involves

tedious algebra. Here, we will just note two cases to illustrate the issues.

Case 1: ∆10
10 > 0 and ∆12

12 > 0. Consider the following local potential function:

v 0 1 2

0 −∆10
10 w01 − w11 −ε

1 w01 − w11 0 w21 − w11
2 −ε w21 − w11 −∆12

12
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for some small but strictly positive ε. Setting a∗ = (1, 1) and µ1 (0) = µ1 (2) =

µ2 (0) = µ2 (2) = 1, one can verify that the conditions of Definition 1 are satisfied.

Case 2: ∆01
01 > 0, ∆

21
21 > 0, ∆

02
10 > 0, ∆

02
12 > 0 and

∆02
10

∆01
01
<

∆02
12

∆21
21
. Consider the following

local potential function:

v 0 1 2

0 ε ε+ λ1 [w (1, 0)− w (0, 0)] λ1 [w02 − w12] + λ2 [w12 − w22]
1 ε+ λ1 [w10 − w00] −λ2∆21

21 λ2 [w12 − w22]
2 λ1 [w02 − w12] + λ2 [w12 − w22] λ2 [w12 − w22] 0

for some small but strictly positive ε and positive λ1 and λ2 such that

∆21
21

∆01
01

<
λ1
λ2
<

∆02
12

∆02
10

.

Setting a∗ = (0, 0), µ1 (1) = µ2 (1) = λ1, µ1 (2) = µ2 (2) = λ2, one can verify that the

conditions of Definition 1 are satisfied.

7 A Continuum Player Generalization

The results stated above are for a finite set of players. However, many applications

of global games assume a continuum (or several different continua) of players. We

now show that our limit uniqueness results (Theorems 1 and 2) extend to this case.

We make the following changes to the global game G(ν). The set of players,

denoted I, is partitioned into a finite set T of “types” (subsets) of players. Each type

contains either a single player or a continuum of identical players of finite measure.

This can capture, e.g., the presence of both large and small players. For each player

i ∈ I let τ (i) ∈ T be the type of i: the element of T to which i belongs. Each player
i observes a signal xi = θ+ νηi, where each ηi is distributed according to an atomless

density fτ(i) with support contained in the interval
£−1

2
, 1
2

¤
. Signals are conditionally
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independent.18

Let At denote the action set of players of type t. Let O(i) be the set of types

of player i’s opponents.19 If a type-t player i chooses action ai ∈ At, her payoff is
ut (ai, a−i, θ); a−i = (abt)bt∈O(i) denotes the action profile of i’s opponents, where abt
is the cumulative distribution function of actions chosen by type-bt players.20 This

implies that opponents of a given type are interchangeable: the c.d.f. of their actions

is all that player i cares about and all that the action profile a−i captures. We

assume players always play measurable action profiles (those that can be expressed

as a vector of c.d.f.’s). Note that all players of a given type have the same action

set, signal error distribution, and payoff function.21

Let ∆ut(ai,bai, a−i, θ) = ut(ai, a−i, θ) − ut(bai, a−i, θ). Let us write a−i ≥ ba−i
if actions are weakly higher under a−i than under ba−i: if abt(c) ≤ babt(c) for each
opposing type bt ∈ O(i) and for all c. For any t ∈ T , we define the distance |at − bat|
to be the largest difference in actions between players with the same rank in the two

distributions.22 We make the same assumptions A1 through A5 on payoff functions

as in the finite player, where a−i is now understood to be the collection of opponents’

cdfs defined above and we replace each ui with uτ(i) and each ∆ui with ∆uτ(i).23 Note

18If there is a continuum of players of type t, we assume that the realized distribution of the error

terms (ηi)i∈t in this type is given by ft with probability one.

19It is equal to T unless τ(i) is a singleton, in which case O(i) = T − τ(i).

20That is, abt(c) is the proportion of type-bt agents who play actions less than or equal to c. If bt is
a singleton {j}, then abt(c) equals one if j’s action is no greater than c and zero otherwise.
21Agents of different types can also be identical.

22That is,

¯̄
at − bat ¯̄ = sup©k : for all ai ∈ At, either at(ai + k) ≤ bat(ai) or bat(ai + k) ≤ at(ai)ª

23In A2, (a1, ..., aI) and (a1, ..., aI) become (ai)i∈I and (ai)i∈I , respectively. Condition (b) in
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that in this case, assumptionA5 now has bite even in finite action games, since in this

case there exist pairs of opponents’ action profiles that are different but arbitrarily

close.

The generalizations of Theorems 1 and 2 are as follows:

Theorem 5 G (ν) has an essentially unique strategy profile surviving iterative strict

dominance in the limit as ν → 0. In this profile, all players of a given type play

the same increasing, pure strategy. More precisely, there exists an increasing pure

strategy profile (s∗t )t∈T such that if, for each ν, sν is a strategy profile that survives

iterative strict dominance in G (ν), then limν→0 sνi (xi) = s
∗
τ(i) (xi) for almost all xi ∈

R.

For any ε > 0 and ν > 0, let Q(ε, ν) be the set of parameters θ for which the

surviving strategy profiles in G(ν) do not all prescribe that players play ε-close to

the same pure strategy Nash equilibrium of some complete information game whose

payoff parameter is ε-close to θ. More precisely, Q(ε, ν) is the set of parameters θ

for which there is no Nash equilibrium action profile a ∈ ×t∈TAt, of the complete
information game with payoffs (ut(·, θ0))t∈T for some θ0 ∈ [θ − ε, θ + ε], such that for

every strategy (sνi )i∈I surviving iterative strict dominance in G(ν),
¯̄
sνi (θ)− aτ(i)

¯̄ ≤ ε

for all i.

Theorem 6 In G(ν) in the limit as ν → 0, for almost all payoff parameters θ,

players play arbitrarily close to some pure strategy Nash equilibrium of the complete

information game with payoffs ut(·, θ0) for some θ0 that is arbitrarily close to θ. More
precisely, for any ε > 0 there is a ν > 0 such that for any ν < ν, Q(ε, ν) is contained

Assumption A5 becomes: for each θ there is a K2 such that for all ai, bai, ai, and bai,¯̄
∆uτ(i) (ai,bai, a−i, θ)−∆uτ(i) (ai,bai,ba−i, θ)¯̄ ≤ K2 |ai − bai| X

t∈O(i)

¯̄
at − bat¯̄
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in a finite union of closed intervals of R whose measure is less than ε.24

8 Concluding Remarks

8.1 Contagion Arguments

Our limit uniqueness argument generalizes the “infection” arguments of Carlsson and

van Damme [5] and Morris, Rob and Shin [22]. (A precursor to this literature

is Rubinstein [27].) However, providing a general argument for the case of many

actions requires a significant extension of that logic. The intuition is most closely

related to results in Burdzy, Frankel, and Pauzner [3] and its extension, Frankel

and Pauzner [9].25 These papers study dynamic models with complete information.

There is a continuum of players who switch between two actions. There are frictions,

so that players change actions asynchronously. Instantaneous payoffs depend on

a parameter that follows a Brownian motion. This payoff parameter can reach

“dominance regions” in which either action is strictly dominant.

These papers show that a unique equilibrium survives iterative dominance. While

the details are different,26 there is an analogy. In both cases, players play against

opponents in different but nearby “states”: the value of the Brownian motion at the

moment when the opponent picks her action in those papers and a player’s payoff

signal in our paper. This local interaction gives rise to a contagion effect that begins

in the dominance regions and spreads throughout the state space. The whole state

24As in Theorem 2, the number of intervals in the union is finite and independent of ν for any

fixed ε. This number may grow without bound as ε shrinks to zero.

25These papers are further extended in Frankel [8] and Levin [17].

26In particular, the vertical axis in Burdzy, Frankel, and Pauzner [3] captures not the opponent’s

action but the population action distribution; the horizontal axis captures the current value of the

Brownian motion rather than the payoff signal; and the curves in that paper slope downwards rather

than upwards.
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space is affected because the interaction structure is stationary: the probability of

playing against an agent who sees a state a given distance from one’s own state is

independent of one’s own state.27 Using this property, a translation argument as in

section 3 implies that the lowest and highest strategies surviving iterative dominance

must coincide.

8.2 Supermodular Games

Our global game belongs to the class of supermodular games, first studied by Topkis

[28] and further analyzed by Vives [30] and Milgrom and Roberts [19].28 Arguments

in that literature establish (1) the existence of a largest and smallest strategy profile

surviving iterated deletion of strictly dominated strategies; (2) that the largest and

smallest strategy profiles are themselves equilibria; and (3) that those largest and

smallest strategies are monotonic in players’ signals. In global games, an additional

property holds: the largest and smallest strategy profiles coincide in the limit as the

signal errors vanish. Thus, there is a unique, monotonic equilibrium in the limit.

In the light of this interpretation, it is natural to ask if there still exists exactly

one monotonic equilibrium when the supermodularity assumption (A1) is weakened

(see Athey [1]). The answer may be yes, if a player’s best response rises when her

opponents switch from one monotonic strategy to a higher monotonic strategy. This

might be proved using something like the translation argument of section 3. (We

have not checked this rigorously as it is beyond the scope of this paper). However,

27In our paper, a player’s signal asymptotically has no effect on her posterior belief that her

opponent’s signal differs from hers by a given amount. In Burdzy, Frankel, and Pauzner [3], the

stationarity of Brownian motion implies that the payoff parameter a player sees when choosing her

action has no effect on the probability that she will meet an opponent who will have chosen his

action when the payoff parameter will have shifted by a given amount.

28To be more precise, the uniform prior game is a supermodular game and our continuity arguments

establish that non-uniform prior games are close to the supermodular game when noise is small.
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without A1 we cannot show that iterative dominance yields a unique equilibrium; in

particular, we cannot rule out the existence of other, non-monotonic equilibria.29

8.3 Noise-Independent Selection and Robustness

Our example in which noise independent selection fails is for a two player, four action

symmetric payoff game. This example is minimal in the sense that noise independent

selection must hold with two players and symmetric payoffs if there are fewer than

four actions. However, noise independent selection can fail in games with three

players if payoffs are asymmetric, as shown by Carlsson [4]. One application is

Corsetti, Dasgupta, Morris and Shin [7], who study models of currency attacks in

which noise-independent selection can fail.

Our noise independent selection results are related to work on the robustness of

equilibria to incomplete information (Kajii and Morris [15]). A Nash equilibrium of

a complete information game is robust to incomplete information if every incomplete

information game in which payoffs are almost always given by that complete infor-

mation game has an equilibrium in which that Nash equilibrium is almost always

played. Kajii and Morris showed that risk dominant equilibria of two player, two

action games and, more generally, p-dominant equilibria of many player, many ac-

tion games with
IP
i=1

pi < 1 are robust to incomplete information. Ui [29] has shown

that potential maximizing action profiles are robust to incomplete information.30 The

29Morris and Shin [25] show that among binary action symmetric payoff continuum player games,

a single crossing property on payoffs and a monotone likelihood ratio property on signals implies

the existence of a unique monotonic equilibrium. However, there is no guarantee that there do not

exist non-monotonic equilibria. The bank run game of Goldstein and Pauzner [11] belongs to this

class. By assuming that noise is uniformly distributed, Goldstein and Pauzner [11] are able to show

the existence of a unique equilibrium, which is monotonic, but their argument does not show that

the game is dominance solvable.

30In the absence of strategic complementarities, the potential maximizing action profile actually

satisfies a slightly weaker notion of robustness to incomplete information.
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global games introduced by Carlsson and van Damme [5] and studied in this paper

represent a different way of adding an intuitively small amount of incomplete informa-

tion about payoffs. However, one can show that if a complete information game has

a robust equilibrium, then that equilibrium must be the noise independent selection.

The sufficient conditions for noise independent selection in this paper are in fact also

sufficient for robustness to incomplete information (see Morris and Ui [26]).
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Appendix

We first prove Theorems 5 and 6, for the continuum player extension of section 7.

Our main Theorems 1 and 2 follow as special cases of these results.

Proof of THEOREM 5. The proof has two parts. In the first (Lemma 3), we

consider a simplified game in which a player’s prior over θ is uniform over some very

large interval that includes
£
θ, θ
¤
, and her payoff depends directly on her signal rather

than on θ. Because of the prior, if a player’s signal is not in a dominance region,

then her posterior over the difference between her signal and those of other players

is independent of her signal, so we can show that a unique (up to discontinuities),

increasing strategy profile survives iterative strict dominance even without taking the

signal error scale factor ν to zero. The argument generalizes the translation argument

used in the intuition.

In the second part of the proof, we show that the original game “converges” to

the simplified one as the signal errors shrink. That is, a player’s posterior over

the differences between her signal and those of other players becomes approximately

independent of her own signal (Lemma 4). Moreover, in the limit it does not matter

whether a player’s payoffs depends on her signal or on θ since these become arbitrarily

close. As a result, the strategy profiles surviving iterative dominance in the original

and simplified games converge to each other (Lemma 5).

For each type t ∈ O(i), let zt be the realized c.d.f. of normalized differences
between signals of type-t players and the signal of i: zt(c) is the proportion of players

j ∈ t for whom xj−xi
ν
≤ c.31 Let Z−i be the set of all vectors of the form (zt)t∈O(i).

Let eπτ(i) (z |xi, ν ) be player i’s density over z ∈ Z−i in the game G(ν) given i’s signal
xi and the scale factor ν.

The simplified game is defined as follows. Let the state θ be drawn uniformly

31zt depends on the realizations of players’ signals and is thus a random variable. For example,

if if t is a singleton type {j}, then zt(c) equals one if xj−xiν ≤ c and zero else.
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from some large interval that includes [θ−ν, θ+ν] and let player i’s payoff depend on

her signal xi instead of the state. Thus uτ(i) (ai, a−i, xi) is player i’s payoff if action

profile (ai, a−i) is chosen and she observes signal xi. Note that with a uniform prior

on states, player i’s posterior eπτ(i) (z |xi, ν ) is independent of her signal xi and the
scale factor ν, so we can write it as πτ(i)(z).

Lemma 3 shows that each game G∗ (ν) has an essentially unique strategy profile

surviving iterative strict dominance. In this profile, all players of a given type play

essentially the same pure, increasing strategy.

Lemma 3 For each ν > 0 there exists a weakly increasing strategy profile s∗ν such

that any profile s that survives iterative strict dominance in G∗(ν) must (a) be weakly

increasing in xi for all i and (b) agree with s∗νi except perhaps at the (at most countably

many) signals xi at which s∗νi (xi) is discontinuous. Moreover, s
∗ν prescribes the same

strategy for all players of a given type.

Proof. For any player i of type t, let Z−t be the set of all possible vectors

z = (zt)t∈O(i) of normalized differences between i’s opponents signals and her own

signal. For any pure strategy profile s = (st)t∈T (which, as the notation indicates,

prescribes the same strategy st for all players of type t), let a−i(s, xi, z; ν) denote the

opposing action distribution that a player i faces if she sees the signal xi, others play

according to s, z is the vector of normalized signal differences, and ν is the scale

factor. More precisely, a−i(s, xi, z; ν) = (at)t∈O(i) where at(c) is the proportion of

players j ∈ t for whom the prescribed action st(xi + νzj) is no greater than c.

Let BRt(s, xi) be the set of optimal actions for a player i of type t who sees signal

xi and whose opponents play according to the pure strategy s = (sbt)bt∈T :
BRt(s, xi) = argmax

at∈At
Eπt [ut (ai, a−i(s, xi, z; ν), xi)]

where for any function h(z), Eπt [h(z)] =
R
z∈Z−i πt (z) h(z)dz. Note that by assump-

tion A4 and the theorem of the maximum, BRt must be upper hemicontinuous in xi,
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even if s is discontinuous. (Because of the noise in the signals, i’s posterior over the

distribution of opponents’ actions changes continuously in her signal).

We first do iterated dominance to establish a lower bound on the actions players

can choose for each signal. We define a sequence of strategy profiles sk ≡ ¡skt ¢t∈T for
k = 0, 1, . . . as follows. Let s0 be the constant profile in which all players play 0 for

any signal. Let sk+1 be the smallest best response to sk: sk+1t (xi) = minBRt(s
k, xi).

A1 andA3 imply that (i) skt (xi) is weakly increasing in xi for all (t, k) and (ii) s
k
t (xi)

is weakly increasing in k for all (t, xi). A2 implies skt (θ) = 0 and skt
¡
θ
¢
= 1 for all

types t and for k ≥ 1. Let s be defined by st (xi) = limk→∞ skt (xi). A player i seeing
signal xi must choose an action that is at least sτ(i) (xi). By induction, st is weakly

increasing. Since BRt is upper hemicontinuous and (by an induction argument)

minBRt(s, xi) is weakly increasing in xi, st (xi) must be left continuous.

We next construct an upper bound on players’ actions. For any λ ∈ R, let bs be
the right-continuous version of s (i.e., bst(xi) = limε↓0 st(xi + ε)) and let sλ = (sλt )t∈T

be the translation of bs to the left by λ: for all t and xi, sλt (xi) = bst(xi + λ). Let

λ0 be large enough that, for all t, s
λ0
t (θ) = 1; since s

λ0 is weakly increasing, a player

of type t with signal xi will never play an action that is greater than s
λ0
t (xi). Now

let λk be the smallest number such that no type-t player who expects others to play

according to sλk−1 will ever play above sλkt :

λk = inf{λ : sλt (xi) ≥ maxBRt(sλk−1, xi) ∀t, xi}

A1 and A3 imply that λk is weakly decreasing in k. Let λ∞ = limk→∞ λk, and

denote s = sλ∞. (Note that λ∞ ≥ 0 since the iterations cannot go beyond s.)
By construction, a type-t player who sees signal xi will never play an action that

exceeds st: st(xi) ≥ maxBRt(s, xi) for all xi. We will show by contradiction that

λ∞ = 0: s and s coincide. This means that the strategies in any profile that survives

iterative dominance in G∗(ν) must be weakly increasing functions that agree with s

at all points of continuity. This will prove the lemma since a monotonic function can

have at most a countable number of discontinuities.
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Claim 1 There is a player i and a signal x∗i such that si(x∗i −ε) < maxBRi(s, x∗i +ε)

for all ε > 0.

Proof Since s is the limit of the iterations from the left, for all ε > 0 there is a player

i and a signal xi such that si(xi − ε) < maxBRi(s, xi). (Otherwise let ε0 be such

that there is no i and xi for which si(xi− ε0) < maxBRi(s, xi); define λ0∞ = λ∞− ε0.

The limit of the iterations must be no greater than λ0∞, a contradiction.) Since the

number of players is finite and each si is weakly increasing, there must be a particular

player i such that for all ε > 0, si(xi(ε)−ε) < maxBRi(s, xi(ε)) for some xi(ε). Define
x0i(ε) = xi(2ε)− ε; we know that for all ε > 0, si(x0i(ε)− ε) < maxBRi(s, x

0
i(ε) + ε).

Since for all ε, x0i(ε) ∈ [θ, θ], there is a convergent subsequence of x0i(ε) as ε→ 0; let

x∗i be the limit. For all ε > 0, si(x
∗
i −ε) < maxBRi(s, x

∗
i +ε). (Why: we can take ε0

small enough that si(x0i(ε
0)− ε/2) < maxBRi(s, x

0
i(ε

0)+ ε/2) and |x0i(ε0)− x∗i | < ε/2;

hence, si(x0i(ε
0)−ε/2) ≥ si(x∗i−ε) andmaxBRi(s, x0i(ε0)+ε/2) ≤ maxBRi(s, x∗i+ε).)

Q.E.D.(Claim 1)

We claim that if λ∞ > 0, then for some ε > 0,

maxBRi(s, x
∗
i + ε) ≤ maxBRi(bs, x∗i + λ∞ − ε) ≤ bsi(x∗i + λ∞ − ε) = si(x

∗
i − ε)

Only the first inequality is nontrivial. In the two cases (i.e., i getting signal x∗i + ε

and expecting others to play s vs. i getting signal x∗i +λ∞−ε and expecting others to

play bs), the distributions of action profiles i expects to see become identical as ε→ 0.

Let

bai = maxBRi(bs, x∗i + λ∞ − ε)

ai = maxBRi(s, x
∗
i + ε)

We must show that ai ≤ bai. We know that bai is strictly better than any higher
action if i gets signal x∗i + λ∞ − ε and expects others to play bs: for all ai > bai,
Eπt(∆uτ(i)(ai,bai, a−i(bs, bxi, z; ν), bxi) < 0 where bxi = x∗i + λ∞ − ε. We claim that

Eπt(∆uτ(i)(ai,bai, a−i(s, xi, z; ν), xi)) < 0 where xi = xi+ε. (This will imply ai ≤ bai.)
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Since the action distributions played by i’s opponents in the two situations differ by

the order of ε while the payoff parameter differs by λ∞ − 2ε, assumptions A3 and
A5 imply:

Eπt(∆uτ(i)(ai,bai, a−i(s, xi, z; ν), xi))− Eπt(∆uτ(i)(ai,bai, a−i(bs, bxi, z; ν), bxi)
≤ −K0(ai − bai) (λ∞ − 2ε) +K2(ai − bai) |T | o(ε)
→
ε→0
−K0(ai − bai)λ∞

which is negative if λ∞ > 0. (|T | denotes the number of types in the game and o(ε)
denotes a term that is on the order of ε.) This establishes that λ∞ = 0.

When all action sets are finite, assumption A2 can be replaced by A20 by use of

the following claim.

Claim 2 Suppose all action sets are finite and assume A1, A20, A3, A4, and A5.

Let a = (at)t∈T and a = (at)t∈T be the unique Nash equilibrium strategy profiles of

the underlying complete information game for payoff parameters θ < θ and for θ > θ,

respectively.32 There is a constant K such that for any increasing pure equilibrium

strategy profile s of G∗(ν) that assigns the same strategy to all players of a given type,

a must be played for all signals below θ0 = θ−Kν and a must be played for all signals

above θ
0
= θ +Kν.

Proof. For any positive integer n, consider the signal vector given by xi = θ−nν
for all i. Since a is the unique Nash equilibrium when payoffs equal θ− nν, the only
way that s can prescribe something other than a at this signal vector is if some

32As implied by the notation, these unique equilibria must prescribe the same action for all

players of a given type. Else the players of a given type would be indifferent between two different

actions. But then if all switched to (say) the higher of these actions and we then performed iterative

best response in the complete information game, we would (by A1) converge to a different Nash

equilibrium in which all players’ actions were weakly higher and some were strictly higher. This

contradicts the assumption that there is a unique Nash equilibrium.
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player i is uncertain (expecting s to be played) about the action played by one of her

opposing types: if, for some t ∈ O(i), st(x) takes on more than one value for signals
x ∈ [θ − (n+ 1)ν, θ − (n− 1)ν].33 Since s is monotonic and each action set is finite,

this condition can hold for at most a finite set of positive integers n. In particular,

if x < θ0 = θ − ν
P

t∈T |At| then st (x) = at for all t. Likewise, a must be played for
signals above θ

0
= θ + ν

P
t∈T |At|. Q.E.D.(Claim 2)

We now iterate from above to obtain an upper bound on the set of equilibrium

strategies. For all t, let bs0t (xi) = 1 for all xi ∈ R and let sk+1t (xi) = maxBRt(s
k, xi).

Let bs be defined by bst (xi) = limk→∞ bskt (xi). A player i seeing signal xi must choose
an action that is at most bsτ(i) (xi). By induction, bst is weakly increasing and since bs
is a best response to itself, it is an equilibrium of G∗(ν). By Claim 2, under bs players
must play a for signals below θ0 and a for signals above θ

0
.

For any λ ∈ R, let sλ denote the translation of the right-continuous version of s to
the left by λ. Let λ0 be large enough that, for all t and signals xi, s

λ0
t (xi) ≥ bst (xi).

(λ0 = θ
0− θ0 will suffice.) Players cannot choose actions that lie above sλ0. The rest

of the proof proceeds as before: we iterate from the left using translations sλk until

we reach a limit, and prove (using identical arguments) that this limit must equal s.

Q.E.D.Lemma 3

Lemma 4 shows that as ν → 0, players’ posteriors over normalized signal differ-

ences G(ν), eπτ(i) (z |xi, ν ), converge to the posteriors in G∗(ν). For any probability

measure µ on Z−i, let Ψε (µ) be the set of probability measures that differ from µ by

no more than ε for any subset of Z−i:

Ψε (µ) ≡
(
µ0 : sup

S⊂Z−i
|µ (S)− µ0 (S)| ≤ ε

)
.

33Because of the bounded supports, player i knows that all other players’ signals will be within ν

of xi = θ − nν.
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Lemma 4 For any ε > 0 and compact interval B = [b0, b1] such that [b0 − ν, b1 + ν] is

contained in the interior of the support of φ, there exists ν > 0 such that eπτ(i) (· |xi, ν ) ∈
Ψε

¡
πτ(i) (·)

¢
for all xi ∈ B and all ν ≤ ν.

Proof. Denote

ρ (ν) = sup
xi∈B

max
θ0∈[− 1

2
, 1
2 ]
φ (xi + νθ0)

min
θ0∈[− 1

2
, 1
2 ]
φ (xi + νθ0)

.

Since the support of φ includes [b0 − ν, b1 + ν], φ has a strictly positive minimum

value over this interval. Since φ is also continuous, maxθ0∈[− 1
2
, 1
2 ]
φ (xi + νθ0) −

minθ0∈[− 1
2
, 1
2 ]
φ (xi + νθ0) converges to 0 as ν → 0 uniformly for xi ∈ [−b, b]. Hence,

ρ (ν) = sup
xi∈B

1 + max
θ0∈[− 1

2
, 1
2 ]
φ (xi + νθ0)− min

θ0∈[− 1
2
, 1
2 ]
φ (xi + νθ0)

min
θ0∈[− 1

2
, 1
2 ]
φ (xi + νθ0)

→ 1 as ν → 0.

Since the support of each fi is contained in the interval
£−1

2
, 1
2

¤
, for all xi ∈ B,

πi (z)

ρ (ν)
≤ eπi (z |xi, ν ) ≤ ρ (ν) πi (z) .

since

If t is a singleton type {j}, let Γt(zt, θ, xi; ν) = ft

³
xj−θ
ν

´
. If t is a continuum

type, let Γt(zt, θ, xi; ν) be the Dirac delta function [13, p. 276] that equals infinity if zt

is the c.d.f. of normalized signal differences between the signals of type-t players and

the signal xi if the distribution of type-t signal errors is ft and the true parameter is

θ. Since zt(c) is the proportion of players j ∈ t for whom xj−xi
ν
≤ c or, equivalently,

for whom j’s signal error xj−θ
ν

is no greater than c + xi−θ
ν
, Γt(zt, θ, xi; ν) = ∞ iff

z0t(c) = ft(c +
xi−θ
ν
) for all c and Γt(zt, θ, xi; ν) = 0 otherwise. Letting θ0 = −xi−θ

ν
,
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Γt(zt, θ, xi; ν) = Γt(zt, θ
0, 0; 1). By Bayes’s Rule,

eπτ(i) (z |xi, ν ) = Pr(z&xi)

Pr(xi)
=

∞R
θ=−∞

φ (θ) fi
¡
xi−θ
ν

¢ Q
t∈O(i)

Γt(zt, θ, xi; ν)dθ

∞R
θ=−∞

φ (θ) fi
¡
xi−θ
ν

¢
dθ

(5)

=

∞R
θ0=−∞

φ (xi + νθ0) fi (−θ0)
Q

t∈O(i)
Γt(zt, θ

0, 0; 1)dθ0

∞R
θ0=−∞

φ (xi + νθ0) fi (−θ0) dθ0
(6)

Thus, for any S ⊂ Z−i,¯̄̄̄
¯̄ Z
z∈S

eπi (z |xi, ν ) dz − Z
z∈S

πi (z) dz

¯̄̄̄
¯̄ ≤

Z
z∈S

πi (z) dz

maxµρ (ν)− 1, 1

ρ (ν)
− 1
¶

≤ max
µ
ρ (ν)− 1, 1

ρ (ν)
− 1
¶
.

Q.E.D.Lemma 4

Lemma 5 uses the above results to show that as the signal noise shrinks, players’

behavior in G(ν) converges to the unique outcome of G∗(ν). Write sν (sν) for the

left (right) continuous version of s∗ν, the essentially unique equilibrium of the game

G∗ (ν). By Lemma 3, sν and sν each prescribes the same strategy for all players of

a given type.

Lemma 5 For any ε > 0, there exists ν > 0 such that for all ν ≤ ν and any strategy

profile sν of G (ν) surviving iterated deletion of strictly dominated strategies,

sνi (xi + ε) ≥ sνi (xi) ≥ sνi (xi − ε)

Proof. We first reiterate some definitions from the proof of Lemma 3. For any

player i of type t, Z−t is the set of all possible vectors z = (zt)t∈O(i) of normalized

differences between i’s opponents signals and her own signal. For any pure strategy

profile s = (st)t∈T (which prescribes the same strategy st for all players of type
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t), a−i(s, xi, z; ν) is the opposing action distribution that player i faces if she sees

the signal xi, others play according to s, and z is the vector of normalized signal

differences.

We begin with a claim.

Claim 3 Let s = (st)t∈T be a weakly increasing strategy profile satisfying

Eπt [∆ut (st (xi) , ai, a−i(s, xi, z; ν), xi)] ≥ 0

for all i ∈ I, xi ∈ R and ai ≤ st (xi) (where t is the type of i).
Then, for any ε > 0 and for any compact interval B ⊂ R, there exists δ > 0, such
that

Eπ0t [∆ut (st (xi) , ai, a−i(s, xi, z; ν), xi + ε)] > 0

for all i ∈ I, π0t ∈ Ψδ (πt), xi ∈ B and ai < st (xi).

Proof. For all δ > 0 and π0i ∈ Ψδ (πi),

Eπ0t [∆ut (st (xi) , ai, a−i(s, xi, z; ν), xi + ε)]

≥
 (1− δ)Eπt [∆ut (st (xi) , ai, a−i(s, xi, z; ν), xi + ε)]

+δ∆ut (st (xi) , ai,0−i, xi + ε)



≥


(1− δ)Eπt

 ∆ut (st (xi) , ai, a−i(s, xi, z; ν), xi + ε)

−∆ut (st (xi) , ai, a−i(s, xi, z; ν), xi)

 dz
+(1− δ)Eπt [∆ut (st (xi) , ai, a−i(s, xi, z; ν), xi)]

+δ∆ut (st (xi) , ai,0−i, xi + ε)


By A3, we can find a constant K2 > 0 such that for all xi in the compact interval

B, the first term is at least (1− δ)K2ε (st (xi)− ai). The second term is at least 0, by
the premise of the lemma. ByA5 there is a constantK3 such that the third term is at

least −δK3 (st (xi)− ai). Thus the sum is at least ((1− δ)K2ε− δK3) (st (xi)− ai).
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This expression must be positive (for all ai < st (xi)) if we choose δ such that δ
1−δ <

K2ε
K3
. Q.E.D.Claim 3

By construction of s, we know that for all b ≥ ε, i = 1, ..., I and xi ∈ R

Eπt [∆ut (st (xi − b) , ai, a−i(s, xi − b, z; ν), xi − b)] ≥ 0

for all ai ≤ st (xi − b). This implies (by Lemma 4 and Claim 3) that there exists eν
such that for all ν ≤ eν, b ≥ ε and xi ∈ R,

Eeπt(·|xi,ν )
·
∆ut

µ
st (xi − b) , ai, a−i(s, xi − b, z; ν), xi −

b

2

¶¸
≥ 0

for all ai ≤ st (xi − b).34 This implies (changing notation only) thatZ
z∈Z−i

∞Z
θ=−∞

eφt (z, θ| xi, ν)∆utµst (xi − b) , ai, a−i(s, xi − b, z; ν), xi − b2
¶
dzdθ ≥ 0

for all ai ≤ st (xi − b), where

eφt (z, θ| xi, ν) =
φ (θ) fi

¡
xi−θ
ν

¢ Q
bt∈O(i)Γbt(zbt, θ, xi; ν)

∞R
θ=−∞

φ (θ) fi
¡
xi−θ
ν

¢
dθ

is the density of (z, θ) given xi. Now if ν < b
2
we have by assumption A3 thatZ

z∈Z−i

∞Z
θ=−∞

eφt (z, θ| xi, ν)∆ut (st (xi − b) , ai, a−i(s, xi − b, z; ν), θ) dzdθ ≥ 0 (7)

for all ai < st (xi − b). Set ν ≤ ν = min
©
ε
2
,eνª. Consider the strategy profile s0

where s0t (xi) = st (xi − b). By equation 7, we know that, in G (ν), each player’s best
response to s0 is always at least s0.

34Assuming A2, Claim 3 implies this for xi − b ∈ [θ, θ]. For xi − b not in this interval, the result
holds since st(xi−b) must be either 0 or 1, depending on which is dominant at the payoff parameter
xi − b. Assuming A20 instead of A2, Claim 3 implies this for xi − b ∈ [θ0 − eν, θ0 + eν], where θ0 and
θ
0
are defined near the end of the proof of Lemma 3. Below θ0, a must be played; above θ

0
, a must

be played. Thus, changing the distribution of z leaves the integral unchanged.
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Since this is true for any b ≥ ε, this ensures that iterated deletion of strictly

dominated strategies (using translations of s as in the proof of lemma 3), cannot lead

below sνt (xi − ε). A symmetric argument (using a symmetric version of Claim 3,

whose proof is analogous) gives the upper bound. Q.E.D.Lemma 5

Finally, we show that as the signal errors shrink, the essentially unique surviving

strategy profile in the simplified game G∗(ν) converges to a limit.

Lemma 6 There is a weakly increasing strategy profile s, which prescribes the same

strategy for all players of a given type, such that for any ε > 0 there is a ν > 0 such

that for all ν < ν and any strategy profile sν surviving iterative strict dominance in

G∗(ν), the maximum horizontal distance between sν and s is ε: i.e., sνi (xi + ε) >

si(xi) > s
ν
i (xi − ε) for all i and xi.

Proof. To prove this, we will show that the surviving profiles are a Cauchy

sequence. Fix ε > 0 and consider any ν 0, ν 00, such that ν > ν 0 > ν 00, where ν will

be specified later. Let sν
0
and sν

00
survive iterative strict dominance in G∗(ν 0) and

G∗(ν 00), respectively. (Note that these are equilibria of the corresponding games.)

We will show that the maximum horizontal distance between sν
0
and sν

00
is ε: i.e.,

sν
00
t (x+ ε) > sν

0
t (x) > s

ν00
t (x− ε) for all types t and signals x.

We will transform sν
0
into a strategy profile bs and then do iterative dominance in

G∗(ν 00) using translations of bs, and show that the limit (which bounds sν00) is within
ε of sν

0
.

We defined Q1(ν, ε0) above to be such that in any surviving profile in G∗(ν),

each player i who sees a signal that is not in Q1(ν, ε0) can bound the action of each

opponent j within an interval of length ε0. By Claim 5 below, there is a ν > 0 such

that if ν 0 < ν, Qν0
1 = Q1

³
ν 0, ε

2
K0
K2I

´
is contained in a finite union of closed intervals

of the form [2nν 0, 2(n + 1)ν 0] (each of length 2ν 0) for integer n; the measure of this

union is less than ε
2
.
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We transform sν
0
into bs as follows. For signals x outside of Qν0

1 , let bst(x) = sν0t (x).
For signals in any maximal interval35 [z − δ, z + δ] in Qν0

1 , we compress the segment

of sν
0
horizontally by the ratio of ν 00 and ν 0 and patch the remaining gaps with a

constant action profile. More precisely, for each signal x ∈ [z − δ, z + δ], let:

bst(x) =


sν
0
t (z − δ) if x ≤ z − δ ν

00
ν0

sν
0
t (z + (x− z) ν0

ν00 ) if x ∈
£
z − δ ν00

ν0 , z + δ ν00
ν0
¤

sν
0
t (z + δ) if x ≥ z + δ ν00

ν0

We now perform iterative dominance in G∗(ν 00) using translations of bs from the

left, yielding an bound from the left on the profiles surviving iterative dominance

in the game. Suppose the iterations stop at a horizontal distance λ to the left ofbs. Let this translation be sλ. We first assume that both that the action space

is [0, 1] and the strategies surviving iterative dominance are continuous functions of

players’ signals, and the best-response correspondence is always single-valued. Later

we consider the general case. Under these assumptions, there is a type t and a signal

x such that sλt (x) equals BR
ν00
t (s

λ, x), the best response to sλ in the game G∗(ν 00) for

a type-t player with signal x.

First suppose x+ λ /∈ Qν0
1 . This means that x corresponds to the part of s

λ that

was not altered in the construction of bs. In this case we show directly that the bound
sλ is within a horizontal distance of ε from sν

0
. Suppose i got the signal x+λ in the

game G∗(ν 0) and expected her opponents to play according to sν
0
. Then she could

place each opponent j’s action within an interval Ij of length ε
2
K0

K2I
. By construction,

if i gets signal x in G∗(ν 00) and expects others to play profile sλ, she can place each

opponent’s action within the same interval Ij. (By Claim 5 below, each interval in

Qν0
1 is of measure at least 2ν

0 and ν 00 < ν 0. Thus, by construction of sλ, the signals

at which an opponent j plays actions outside of Ij can also be ruled out if i sees

signal x.) This means that in the two cases (i.e., i getting signal x+λ in G∗(ν 0) and

35More precisely, [z − δ, z + δ] is a union of contiguous intervals in Qν0
1 that is not contiguous to

any other interval in Qν0
1 .
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expecting others to play sν
0
vs. i getting signal x in G∗(ν 00) and expecting others to

play sλ), i expects approximately the same opponents’ actions; more precisely, each

action differs by no more than ε
2
K0
K2I
, the length of Ij. By assumptions A3 and A5,

the change in ut following a unit change in any opposing type’s action is no more

than K2 while the change in ut following a unit change in θ (which in G∗ equals the

player’s signal) is at least K0. Thus, for sλt (x) to be a best response a player who

expects sλ, the difference λ in signals between the two cases must be less than ε.

Now suppose x + λ ∈ Qν0
1 . Denote the maximal interval in Qν0

1 in which this

signal lies by [z − δ, z + δ]. We can assume WLOG that x+ λ ∈ £z − δ ν00
ν0 , z + δ ν00

ν0
¤
;

otherwise, x must on a horizontal part of sλ, but the iterations cannot have been

blocked at such a point. We now consider the signal y = z + (x+ λ− z) ν0
ν00 . This

is the reverse-translation of x+ λ and has the property that sλt (x) = s
ν0
t (y). We will

argue that the action distribution seen in each case is almost the same. A player

seeing y and playing against sν
0
in G∗(ν 0) knows that her opponents’ signals will be

in the interval Y = [y − ν 0, y + ν 0]. We split Y into two parts. For opponents’

signals in the part of Y that lies in [z− δ, z+ δ], the actions prescribed by sν
0
are, by

construction, identical to the actions prescribed by sλ at the corresponding signals in

G∗(ν 00). For opponents’ signals lying outside, these signals lie in an interval of length

at most ν 0 that is contained in the complement of Qν0
1 . We know that for each type

t, the actions prescribed by sν
0
t for such signals all lie in an interval It of size at most

ε
2
K0

K2I
. By construction of sλ, for each player of type t, the actions prescribed by sλ

for the corresponding signals in G∗(ν 00) are also in It. Thus, the above argument

implies that |x− y| < ε: sν
00
cannot anywhere lie more than ε to the left of sν

0
. This

completes the proof for the continuous case.

We now explain how the proof changes in the general case. The construction and

iterations are as before. However, we let sν
0
be the right-continuous version of the

essentially unique surviving profile in G∗(ν 0). This ensures that its transformationbs is also right-continuous, so the limit sλ is an upper bound on strategies chosen in
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G∗(ν 00). We also can no longer assume that sλt (x) = BR
ν00
t (s

λ, x) for some t and x.

We can say only that (a) sλ lies above its highest best response: a type-t player who

sees signal x will never play an action that exceeds the right continuous version of

sλt ; and (b) s
λ cannot be translated to the right without falling below its highest best

response somewhere: more precisely, as in Claim 1, there must be a type t and a

signal x such that sλt (x− ε0) < maxBRν00
t (s

λ, x+ ε0) for all ε0 > 0.36

For ε0 ≈ 0, let x − ε0 in the game G∗(ν 00) with profile sλ correspond to y − ε0 in

G∗(ν 0) with profile sν
0
: players with these signals find themselves at corresponding

points on the two action profiles and thus are prescribed to take the same action. We

claim that if λ > ε, then for ε0 very small relative to λ,

maxBRν00
t (s

λ, x+ ε0) ≤ maxBRν0
t (s

ν0 , y − ε0) ≤ sν0t (y − ε0) = sλt (x− ε0)

Only the first inequality is nontrivial. Between the two cases (i.e., a player getting

signal x + ε0 in G∗(ν 00) and expecting others to play sλ vs. a player getting signal

y−ε0 inG∗(ν 0) and expecting others to play sν0), the possible actions of each opponent
differ by no more than ε

2
K0

K2I
+ o(ε0). Let

a0t = maxBR
ν0
t (s

ν0, y − ε0)

aλt = maxBR
ν00
t (s

λ, x+ ε0)

We must show that aλt ≤ a0t. By definition, a0t is strictly better than any higher

action if a type-t player i gets signal y − ε0 in G∗(ν 0) and expects others to play sν
0
:

for all at > a0t, Eπt(∆ut(at, a
0
t, a−i(s

ν0 , y − ε0, z; ν 0), y − ε0) < 0, where the expectation

is based on the signal distribution in G∗(ν 0). We claim that a0t is also strictly better

than any higher action if a type-t player i gets signal x + ε0 in G∗(ν 00) and expects

others to play sλ: for all at > a0t, Eπt(∆ut(at, a
0
t, a−i(s

λ, x + ε0, z; ν 00), x + ε0)) < 0.

Since the possible actions of each of i’s opponents differ by no more than ε
2
K0

K2I
+o(ε0)

in the two situations while the payoff parameter differs by at least λ − 2ε0 − ε/2,

36In the general case, the best response is a correspondence rather than a function.
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assumptions A3 and A5 imply:

Eπt(∆ut(at, a
0
t, a−i(s

λ, x+ ε0, z; ν 00), x+ ε0))

− Eπt(∆ut(at, a
0
t, a−i(s

ν0 , y − ε0, z; ν 0), y − ε0))

≤ −K0(at − a0t) (λ− 2ε0 − ε/2) +K2(at − a0t)I
µ
ε

2

K0

K2I
+ o(ε0)

¶
→
ε0→0

K0(at − a0t) (ε− λ)

which is negative if λ > ε. This proves the lemma. Q.E.D.(Lemma 6).

Theorem 5 follows immediately from this result and Lemmas 3, 5 and 6.Q.E.D.(Theorem 5)

The following three claims were used in the proofs of Lemma 6 and will be used

in the proof of Theorem 6.

For any ε > 0 and ν > 0, let Q0(ν, ε) be the set of parameters θ for there is some

strategy profile sν∗ = (sν∗t )t∈T that survives iterative strict dominance in G
∗(ν) and

some strategy profile sν = (sνi )i∈I that survives iterative strict dominance in G(ν) for

which |sν∗t (θ)− sνi (θ)| > ε for some i of type t. (Unlike sν∗, sν has not been shown

to assign the same strategy to all players of a given type.)

Claim 4 For any ε > 0 there is a ν > 0 such that for all ν < ν, Q0(ν, ε) is contained

in a union of at most 4 |T | /ε closed intervals of R; the total measure of the union is
less than ε.

Proof. Let sν∗ and sν be any strategies surviving iterative strict dominance in

G∗(ν) and G(ν), respectively. By Lemma 5, for any ε0 > 0, there exists ν > 0 such

that for all ν ≤ ν,

sνt (θ + ε0) ≥ sνi (θ) ≥ sνt (θ − ε0)

where t is i’s type and sν and sν are, respectively, the right-continuous and left-

continuous versions of the essentially unique surviving strategy profile of G∗(ν). In
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addition, by Lemma 3, any sν∗ that survives in G∗(ν) must be weakly increasing, so

sνt (θ + ε0) ≥ sν∗t (θ) ≥ sνt (θ − ε0)

Thus, the absolute difference between sνi (θ) and s
ν∗
t (θ) is bounded by s

ν
t (θ + ε0) −

sνt (θ − ε0). We now divide the real line into intervals In = [nε0, (n+ 1)ε0] for integral

n. Let M0 be the set of such intervals for which there is a θ ∈ In and a player i
of some type t for whom, for some sν∗ and sν surviving iterative strict dominance in

G∗(ν) and G(ν), |sνi (θ)− sν∗t (θ)| ≥ ε. Clearly, Q0(ν, ε) ⊆ M0. By the preceding

argument, sνt (θ + ε0) − sνt (θ − ε0) ≥ ε, so sνt ((n+ 2)ε
0) − sνt ((n− 1)ε0) ≥ ε. By

definition of sν and sν, sνt (z) ≥ sνt (z0) for any z > z0, so

sνt ((n+ 2)ε
0)− sνt ((n− 2)ε0) ≥ ε (8)

Since sνt is weakly increasing and in [0, 1] for each t, the set of integers n and types t

for which (8) holds is at most 4 |T | /ε. Thus, M0 is a finite set and the total measure

of M0 is at most 4 |T | ε0/ε. For this measure to be less than ε, it suffices to take

ε0 < ε2/4 |T |. Q.E.D.(Claim 4)

Claim 5 shows that when signal errors are small, for most signals players can

closely approximate what other players will do. For any ν > 0 and ε > 0, let Q1(ν, ε)

be the set of parameters θ such that after removing strategies that do not survive

iterative strict dominance in G∗(ν), there are types t 6= bt such that conditional on
a player of type t getting signal θ, the set of actions a type-bt player might take are
not contained in an interval of length ε. Each player j who sees a signal that is not

in Q1(ν, ε) can bound the action of each opponent i within an interval of length ε.

Claim 5 shows that Q1(ν, ε) is of measure less than ε for small enough ν. This claim

is also used in the proof of Lemma 6.

Claim 5 For any ε > 0 there is a ν > 0 such that for all ν < ν, Q1(ν, ε) is contained

in a union of at most 5 |T | /ε intervals of the form [2nν, (2n+2)ν] for integral n; the
total measure of the union is less than ε.
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Proof. Since each signal error is at most ν/2 and since sν and sν are upper

and lower bounds on the strategies that survive iterative strict dominance in G∗(ν), a

necessary condition for θ to be inQ1(ν, ε) is that for some type t, sνt (θ+ν)−sνt (θ−ν) >
ε. Divide the real line into intervals In = [2nν, (2n+ 2)ν] for integral n. Let M1

be the set of such intervals for which there is a θ ∈ In and a type t for which

sνt (θ + ν) − sνt (θ − ν) > ε. Clearly, Q1(ν, ε) ⊆ M1. By definition of sν and sν,

sνt (z) ≥ sνt (z0) for any z > z0, so

sνt ((2n+ 4)ν)− sνt ((2n− 1)ν) > ε (9)

Since sνt is weakly increasing and in [0, 1] for each t, the set of integers n and types t

for which (8) holds is at most 5 |T | /ε. Thus, M1 is a finite union of intervals whose

total measure is at most 5 |T | ν/ε. For this measure to be less than ε, it suffices to

take ν < ε2/5 |T |. Q.E.D.(Claim 5)

The next claim uses the prior one to show that for almost all payoff parameters

θ, strategies that survive iterative strict dominance in G∗(ν) must prescribe at θ that

players play close to some Nash equilibrium of some complete information game with

payoff parameter close to θ. More precisely, let Q2(ε, ν) be the set of parameters θ

for which there is no action profile a = (at)t∈T with the following two properties: (1)

for some θ0 ∈ [θ − ε, θ + ε], the complete information game with payoffs (ut(, θ
0))t∈T

has a Nash equilibrium in which all players of type t play at; (2) for every strategy

s∗ν surviving iterative strict dominance in G∗(ν), |s∗νt (θ)− at| ≤ ε for all types t.

Claim 6 For any ε > 0 there is a ν > 0 such that for all ν < ν, Q2(ν, ε) is contained

in a finite union of closed intervals of R whose measure is less than ε. The number

of intervals in the union can depend on ε but not on ν.

Proof.37 Fix ε > 0. Recall that Q1(ν, η) is the set of signals x such that, after

removing strategies that do not survive iterative strict dominance in G∗(ν), there are

37We thank Itzhak Gilboa for suggesting this proof.
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types t 6= bt such that conditional on a type-t player getting signal x, the set of actions
type-bt players choose are not contained in an interval of length η. By Claim 5, for

any η > 0 there is a νη > 0 such that for all ν < νη, Q1(ν, η) is contained in a finite

union of closed intervals whose measure is less than η. But for any η,

Q2(ν, ε) = [Q2(ν, ε) ∩Q1(ν, η)]
∪ £Q2(ν, ε) ∩QC1 (ν, η)¤ (10)

where QC1 (ν, η) is the complement of Q1(ν, η). Every signal x in Q2(ν, ε) ∩QC1 (ν, η)
has the property that on getting it, each player knows to within η what players of all

types will do in G∗(ν) (since x ∈ QC1 (ν, η)) yet there is no Nash equilibrium (at)t∈T of
the complete information game with payoff parameter θ ∈ [x− ε, x+ ε] such that each

at is ε-close to the action prescribed for type t in the essentially unique equilibrium

of G∗(ν) at the signal x.

We will show that for fixed ε > 0, there is an ηε such that for η ≤ ηε, the set

Q2(ν, ε)∩QC1 (ν, η) is empty for any ν. Thus, by setting η = min {ηε, ε} and ν = νη,

we ensure that (a) for all ν < ν, Q1(ν, η) (and thus Q2(ν, ε) ∩Q1(ν, η)) is contained
in a finite union of closed intervals whose measure is less than ε; and (b) since η ≤ ηε,

the set Q2(ν, ε) ∩QC1 (ν, η) is empty. By (10), this will prove Claim 6.

Suppose instead that the set Q2(ν, ε)∩QC1 (ν, η) is nonempty for arbitrarily small
η, where ν can depend on η. This means that there are arbitrarily small positive η’s

such that for some θ, even though in G∗(ν) each player i with signal θ has the utility

function uτ(i)(, θ) and best-responds to a belief that each opponent j’s action is in some

interval of length η that contains j’s true action (while follows from θ ∈ QC1 (ν, η)), the
action profile the players play in G∗(ν) is not ε-close to any Nash equilibrium of the

game with payoff parameter θ0 ∈ [θ − ε, θ + ε] (which is the meaning of θ ∈ Q2(ν, ε)).
Let η0 > η1 > ... be a sequence of such η’s that converges to zero. For each ηk take

some θk ∈ Q2(ν, ε)∩QC1 (ν, ηk) and consider the action profile
¡
akt
¢
t∈T = (s

∗ν
t (θk))t∈T .

By construction, each of these action profiles differs by at least ε from any Nash

equilibrium. Since each type’s action space is compact and each θk must lie in the
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compact region
£
θ, θ
¤
,38 there is a subsequence of the ηk’s such that the corresponding

sequence
¡
ak, θk

¢
converges to some limit (a∞, θ∞). By continuity of the payoff

functions (axiom A4), each action a∞t is a best response if a type-t player knows

her opponents are playing according to a∞ and the payoff parameter is θ∞. Thus,

a∞ is a Nash equilibrium of the underlying complete information game when the

payoff parameter is θ∞. But then for high enough k, ak is ε-close to the Nash

equilibrium a∞ of the complete information game with payoff parameter θ∞, which

itself must be ε-close to θk. Thus,
¡
ak, θk

¢
does not satisfy the condition assumed of

it. Q.E.D.(Claim 6)

Proof of THEOREM 6. Theorem 6 follows immediately from claims 4, 5 and 6,

since Q(ε, ν) ⊂ Q0(ε/2, ν) ∪Q2(ε/2, ν). Q.E.D.(Theorem 6)

Proof of THEOREM 3. Let the actions be 0, 1/3, 2/3, and 1, so that a strategy

profile takes the form

s (x) =



0, if x < c1
1
3
, if c1 ≤ x < c2
2
3
, if c2 ≤ x < c3
1, if c3 ≤ x

A player observing signal c1 will assign probability 1
2
to her opponent choosing action

0, some probabilities λ and µ to her opponent choosing actions 1
3
and 2

3
, respectively,

and probability 1
2 − λ − µ to her opponent choosing action 1. A player observing

signal c2 will assign probability 1
2
− λ to her opponent choosing action 0, probability

λ to her opponent choosing action 1
3
, some probability η to her opponent choosing

2
3
, and probability 1

2
− η to her opponent choosing action 1. A player seeing signal

38If the action spaces are finite, axiom A2 is replaced by the weaker A20 so θk may not lie in£
θ, θ
¤
. But by Claim 2, since any strategy profile surviving iterative strict dominance in G∗(ν) is an

equilibrium of G∗(ν), it must prescribe that agents play Nash equilibria of the underlying complete

information game for any θ /∈ [θ −Kν, θ +Kν]. Since each θk is in Q2(ν, ε), each θk must lie in a

compact interval (in [θ −Kν, θ+Kν]), which is all the proof requires.
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c3 will assign probability 1
2
to her opponent playing 1, η to her opponent choosing

2
3
, some probability ν to her opponent choosing 1

3
, and probability 1 − η − ν to her

opponent choosing 0. Hence, each profile gives rise to four unknowns, λ, µ, η, and

ν, as claimed.

We now present a specific counterexample with four actions, in which the equilib-

rium selected in the limit depends on the noise. Let I = 2, A1 = A2 =
©
0, 1

3
, 2
3
, 1
ª

and let G (ν) and bG (ν) be two games satisfying the assumptions of Section 2; these
two games are identical except that in G (ν), η1 and η2 are distributed according to

the density

f (η) = 1

on the interval
£−1

2
, 1
2

¤
; in bG (ν), η1 and η2 are distributed according to the density

bf (η) = 2− 4 |η|
on the interval

£−1
2
, 1
2

¤
. Note that under a uniform prior on θ, the resulting symmetric

distributions of z = η1 − η2 have support [−1, 1] and densities

π (z) = 1− |z|

bπ (z) =

2 (1 + z)2 , if − 1 ≤ z ≤ −1

2

1− 2z2, if − 1
2
≤ z ≤ 1

2

2 (1− z)2 , if 12 ≤ z ≤ 1

Assume that u (·, θ∗) = g∗ (·), where g∗ is given by the following symmetric matrix:

g∗ 0 1
3

2
3

1

0 2000, 2000 1936, 1656 1144, 1056 391, 254

1
3

1656, 1936 2000, 2000 1600, 1800 1245, 1000

2
3

1056, 1144 1800, 1600 2000, 2000 1660, 2160

1 254, 391 1000, 1245 2160, 1660 2000, 2000
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One may verify that this is a game of strategic complementarities, with payoffs qua-

siconcave in own actions, since g∗i
¡
ai +

1
3
, aj
¢− g∗i (ai, aj) is strictly decreasing in ai

and strictly increasing in aj.

Let strategy profile bs [k] be defined by:

bsi [k] (xi) =


0, if xi < k − 1
4

1
3
, if k − 1

4
≤ xi < k

2
3
, if k ≤ xi < k + 1

4

1, if k + 1
4
≤ xi

Lemma 7 Let the interaction structure be given by bπ. There exists bε > 0 and bδ > 0
such that if θ ∈

h
θ∗ − bδ, θ∗ + bδi and payoffs are always given by u (·, θ∗), the best

response to strategy profile bs [k] is less than or equal to bs [k + bε].
PROOF. If player 1 observes x1, she believes that x2−x1 is distributed according

to bπ. If she believes that her opponent is following strategy bs2 [k], her conjectures
over her opponents’ actions are the following:

Player 1’s Signal

a2 = 0 a2 =
1
3
a2 =

2
3
a2 = 1

k − 1
4

1
2

23
96

17
96

1
12

k 25
96

23
96

23
96

25
96

k + 1
4

1
12

17
96

23
96

1
2

One may verify that if player 1 observes signal k− 1
4
and has payoffs given byu (·, θ∗),

then she strictly prefers action 0 to action 1
3
(since 1

2
(−344) + 23

96
(64) + 17

96
(456) +

1
12
(854) = −19

4
< 0). Similarly, if player 1 observes signal k and has payoffs given

by u (·, θ∗), she strictly prefers action 1
3
to action 2

3
(since 25

96
(−600) + 23

96
(−200) +

23
96
(400) + 25

96
(415) = −25

96
< 0) and if player 1 observes signal k + 1

4
and has payoffs

given by u (·, θ∗), she strictly prefers action 2
3
to action 1. By continuity, these strict

preferences will be maintained for signals in a small neighborhoods of those cutoff

points and for payoffs in a small neighborhood of u (·, θ∗). ¥
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Now consider the game bGD (ν, θ∗), which is like bG∗ (ν), except that the payoff
functions are replaced by:

uDi (a, θ) =


ui (a, θ) , if θ ≤ θ

ui

³
a, θ∗ + bδ´ , if θ ≤ θ ≤ θ∗ + bδ

ui
¡
a, θ
¢
, if θ ≥ θ∗ + bδ

Corollary 1 In the game bGD (ν, θ∗), any strategy s satisfying iterated deletion of
strictly dominated strategies satisfies s ≤ bs hθ∗ + bδ − ν

i
; thus si (xi) = 0 for all xi ≤

θ∗ + bδ − 2ν.
PROOF. By induction, verify that if strategy profile s survives k + 1 rounds of

deletion of strictly dominated strategies, then s ≤ bs hmax³θ − ν + kbε, θ∗ + bδ − ν
´i
.

¥
Now we have:

Lemma 8 If sν is the essentially unique equilibrium of bG∗ (ν), then sνi (xi) = 0 for
all xi ≤ θ∗ + bδ − ν.

But now let strategy profile s [k] be defined by:

si [k] (xi) =



0, if xi < k − 7
25

1
3
, if k − 7

25
≤ xi < k

2
3
, if k ≤ xi < k + 7

25

1, if 7
25
≤ k + xi

Lemma 9 Let the interaction structure be given by π. There exists ε > 0 and δ > 0

such that if θ ∈ [θ∗ − δ, θ∗ + δ] and payoffs were always given by u (·, θ∗), the best
response to strategy profile s [k] is more than or equal to s [k − ε].

PROOF. If player 1 observes x1, she believes that x2−x1 is distributed according
to π. If she believes that her opponent is following strategy bs2 [k], her conjectures
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over her opponents’ actions are the following:

Player 1’s Signal

a2 = 0 a2 =
1
3
a2 =

2
3
a2 = 1

k − 7
25

1
2

301
1250

203
1250

121
1250

k 162
625

301
1250

301
1250

162
625

k + 7
25

121
1250

203
1250

301
1250

1
2

One may verify that if player 1 observes signal k − 7
25
and her payoffs are given by

u (·, θ∗), then she strictly prefers action 1
3
to action 0 (since 1

2
(−344) + 301

1250
(64) +

203
1250

(456) + 121
1250

(854) = 83
625

> 0). Similarly, if player 1 observes signal k and her

payoffs are given by u (·, θ∗), she strictly prefers action 2
3
to action 1

3
and if player 1

observes signal k+ 7
25
and her payoffs are given by u (·, θ∗), she strictly prefers action

1 to action 2
3
. By continuity, these strict preferences will be maintained for signals in

a small neighborhoods of those cutoff points and for payoffs in a small neighborhood

of u (·, θ∗).
But now mimicking the above argument, we have:

Lemma 10 If sν is the essentially unique equilibrium of G∗ (ν), then sνi (xi) = 1 for

all xi ≥ θ∗ − δ + ν.

Q.E.D.Theorem 3

Proof of LEMMA 1. Consider any player i. In the continuous action space case,

for any δ ∈ [0, ci],

0 > v
¡
a∗i + δ, a∗−i

¢− v ¡a∗i , a∗−i¢ ≥ µi(a∗i ) ¡gi ¡a∗i + δ, a∗−i
¢− gi ¡a∗i , a∗−i¢¢ ,

so gi
¡
a∗i + δ, a∗−i

¢
< gi

¡
a∗i , a

∗
−i
¢
. By own-action quasiconcavity, gi

¡
a∗i , a

∗
−i
¢
exceeds

gi
¡
ai, a

∗
−i
¢
for any ai > a∗i . An analogous argument shows the same for any ai < a

∗
i .

A similar proof applies in the case of finite actions. Q.E.D.Lemma 1

Proof of THEOREM 4. For each i ∈ I, let g
i
(ai, a−i) be a payoff function with

the property that action 0 is strictly dominant. Fix some θ∗ ∈ R and consider the
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global game G∗∗ (ν, θ∗) with uniform prior, some noise structure (fi)i∈I , and payoff

functions

ui (ai, a−i, xi) =

 ui (ai, a−i, θ∗) , if xi ≥ θ∗

g
i
(ai, a−i) , if xi < θ∗

Suppose that action profile a∗ = (a∗i )i∈I is an LP-maximizer of the complete informa-

tion game g= (ui (·, θ∗))i∈I and that this game is own-action quasiconcave.
For now, fix ν = 1. We will be interested in left-continuous, weakly increasing

strategy profiles in which no player i ever chooses an action above a∗i . (The same ar-

gument works for right-continuous strategies.) Any such strategy can be represented

by a function ζ i : [0, a
∗
i ]→ R where ζ i(ai) is the highest signal at which player i plays

an action less than or equal to ai.

We wish to define the unique left-continuous best response to strategy profile ζ

in the game G∗∗ (ν, θ∗) . Note that the assumption that a∗ is an LP-maximizer (and

thus, by lemma 1, a strict Nash equilibrium) and the strategic complementarities

assumption imply that the best response to ζ will itself involve each player i choosing

an action less than or equal to a∗i . We write β (ζ) = (βi (ζ))i∈I for this best response.

To give an explicit expression for βi (ζ), first write s
ζi
i for player i’s strategy

written in standard notation, i.e., sζii (xi) = min{ai : ζ i (ai) ≥ xi}. (It is correct to

take the min because of left continuity.) For any player i, let (xi, x−i) denote the

vector of signal realizations. Let X−i be the space of all signal vectors x−i. Write

s
ζ−i
−i (x−i) =

³
s
ζj
j (xj)

´
j 6=i
and sζ (x) =

³
s
ζj
j (xj)

´
j∈I
.

If player i observes xi < θ∗, action 0 is dominant. If she observes xi ≥ θ∗, her

payoff to choosing action ai, if she believes her opponents are following strategies ζ−i,

is Z
θ∈R

Z
x−i∈X−i

gi
³³
ai, s

ζ−i
−i (x−i)

´
, xi
´ÃY

j 6=i
fj(xj − θ)

!
dx−idθ.
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Thus an action less than or equal to ai is a best response if

min

argmaxa0i∈Ai

Z
θ∈R

Z
x−i∈X−i

gi
³³
a0i, s

ζ−i
−i (x−i)

´
, xi
´ÃY

j 6=i
fj(xj − θ)

!
dx−idθ

 ≤ ai.

Recall that ζ i (ai) is the largest value of xi at which an action less than or equal to

ai is played under i’s strategy. Thus βi (ζ) (ai) is the maximum of θ∗ and

max

xi : min
argmaxa0i∈Ai

Z
θ∈R

Z
x−i∈X−i

gi

³³
a0i, s

ζ−i
−i (x−i)

´
, xi

´ÃY
j 6=i
fj(xj − θ)

!
dx−idθ

 ≤ ai
 .

Now define:39

V (ζ) =

Z
θ

a∗1Z
a1=0

· · ·
a∗IZ

aI=0

(v(a)− v(a∗)) dFI(ζI(aI)− θ) · · · dF1(ζ1(a1)− θ)dθ

Intuitively, V (ζ) is the expected value of v (a) − v (a∗), conditional on θ ≥ θ∗ − 1
2
.

The expectation is taken with respect to an improper prior, so this expression will

only be well defined if each player plays a∗i for high enough signals; i.e., if ζ i (a
∗
i ) is

finite for all i. Otherwise V (ζ) will equal −∞, since v (a) < v (a∗) for all a 6= a∗.

39In order to accommodate action sets that can include both intervals and points, the integrals

are interpreted as follows. Let Ai = ∪Mm=1[bm, cm] where M ≥ 1 can be infinity and the intervals
are disjoint. (Isolated points are represented by setting bm = cm.) We define

R a∗i
ai=0

f(ai)dg(ai) to

equal

MX
m=1

Z cm

ai=bm

f(ai)dg(ai) +
M−1X
m=1

f(bm+1) [g(bm+1)− g(cm)]

One can verify that the standard integration by parts formula holds using this definition:Z a∗i

ai=0

f(ai)dg(ai) = f(a
∗
i )g(a

∗
i )− f(0)g(0)−

Z a∗i

ai=0

g(ai)df(ai)
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Now consider the sequence ζ0, ζ1, ..., where ζ0i (ai) = θ∗ for all i and ai ∈ [0, a∗i ],
and ζn = β

¡
ζn−1

¢
for all n > 0. An induction argument shows that this is an

increasing sequence: ζni (ai) ≥ ζn−1i (ai) for all n, i, and ai. Moreover, V (ζ
0) is finite

and negative. We will show that V (ζn) is increasing in n. Thus, V (limn→∞ ζn) 6=
−∞. This implies that in the limiting strategy profile limn→∞ ζn, each player i plays

a∗i if her signal is high enough.

Let ζ = ζn for any n ≥ 0. Define dF i(a−i|θ) to be

dFI(ζI(aI)− θ) · · · dFi+1(ζ i+1(ai+1)− θ)dFi−1(β(ζ)i−1(ai−1)− θ) · · · dF1(β(ζ)1(a1)− θ)

This is the probability of the action profile a−i at the state θ if players i − 1 and
under play according to β(ζ) while players i+ 1 and above play according to ζ. We

separate V (β(ζ))− V (ζ) into a telescopic sum and then integrate each summand by

parts:

V (β(ζ))− V (ζ) =
IX
i=1

Z
θ

Z
a−i


a∗iZ

ai=0

(v(ai, a−i)− v(a∗)) d
 Fi(β(ζ)i(ai)− θ)

−Fi(ζ i(ai)− θ)


 dF i(a−i|θ)dθ

=
IX
i=1

Z
θ

Z
a−i

(v(ai, a−i)− v(a∗))
 Fi(β(ζ)i(ai)− θ)

−Fi(ζ i(ai)− θ)


¯̄̄̄
¯̄
a∗i

ai=0

dF i(a−i|θ)dθ

−
IX
i=1

Z
θ

Z
a−i


a∗iZ

ai=0

 Fi(β(ζ)i(ai)− θ)

−Fi(ζ i(ai)− θ)

 (v(ai, a−i)− v(ai − dai, a−i))
 dF i(a−i|θ)dθ

Since no action above a∗i is played in either strategy profile, β(ζ)i(a
∗
i ) = ζ i(a

∗
i ) =∞,

so(v(ai, a−i)− v(a∗))
 Fi(β(ζ)i(ai)− θ)

−Fi(ζ i(ai)− θ)


¯̄̄̄
¯̄
a∗i

ai=0

= − (v(0, a−i)− v(a∗))
 Fi(β(ζ)i(ai)− θ)

−Fi(ζ i(ai)− θ)

 ≥ 0

58



since a∗ maximizes v and since β(ζ)i(0) ≥ ζ i(0). Thus,

V (β(ζ))− V (ζ) ≥ −
IX
i=1

Z
θ

Z
a−i


a∗iZ

ai=0

 Fi(β(ζ)i(ai)− θ)

−Fi(ζ i(ai)− θ)

 [v(ai, a−i)− v(ai − dai, a−i)]
 dF i(a−i|θ)dθ

But for any ai and θ, Fi(β(ζ)i(ai)− θ)− Fi(ζ i(ai)− θ) is just the probability that a

signal is observed between ζ i(ai) and β(ζ)i(ai) - the interval where under ζ player i

plays more than ai and her best response to ζ is to play something no greater than

ai. If instead players 1 through i− 1 play according to β(ζ), player i’s best response
in this interval is still no greater than ai by strategic complementarities. Therefore,

by own-action quasiconcavity, player i’s payoff, conditional on getting a signal in this

interval, must be weakly decreasing in her own action: for a0i ∈ Ai, a0i ≤ ai,Z
θ

Z
a−i

[gi(ai, a−i)− gi(a0i, a−i)]
 Fi(β(ζ)i(ai)− θ)

−Fi(ζ i(ai)− θ)

 dF i(a−i|θ)dθ ≤ 0
Since ai ≤ a∗i , v(ai, a−i) − v(ai − dai, a−i) ≤ gi(ai, a−i) − gi(ai − dai, a−i) by the
LP-maximizer condition. Thus:

V (β(ζ))− V (ζ)

≥ −
IX
i=1

Z
θ

Z
a−i

a∗iZ
ai=0

[v(ai, a−i)− v(ai − dai, a−i)]
 Fi(β(ζ)i(ai)− θ)

−Fi(ζ i(ai)− θ)

 dF i(a−i|θ)dθ
≥ −

IX
i=1

Z
θ

Z
a−i

a∗iZ
ai=0

µi(ai) [gi(ai, a−i)− gi(ai − dai, a−i)]
 Fi(β(ζ)i(ai)− θ)

−Fi(ζ i(ai)− θ)

 dF i(a−i|θ)dθ
≥ 0

as claimed.

This implies that for all i and ai ∈ [0, a∗i ], ζni (ai) converges to some finite upper
bound ζ∞i (ai) as n grows. Let bs1 be this upper bound written in standard notation
(i.e., bs1i (xi) = min{ai : ζ∞i (ai) ≥ xi}). This is the smallest strategy profile surviving

59



iterated deletion of strictly dominated strategies in G∗∗ (1, θ∗); moreover, there exists

a c > 0 such that bs1i (xi) = a∗i for all i and xi ≥ θ∗ + c.

Changing ν is equivalent to relabeling the game G∗∗ (ν, θ∗). Thus if we write bsν for
the unique strategy profile surviving iterated deletion of strictly dominated strategies

in G∗∗ (ν, θ∗), we have bsν (xi) = bs1 ¡xi−θ∗ν

¢
. This in turn implies that bsνi (xi) = a∗i for

all xi ≥ θ∗ + νc.

But now if sν is the essentially unique equilibrium of G∗ (ν), we have that sν ≥ bsν
(this is true because the game G∗ (ν) has everywhere higher best responses than the

game G∗∗ (ν, θ∗)). So we have:

Lemma 11 For all ε > 0, there exists ν such that for all ν ≤ ν, sνi (θ
∗ + ε) ≥ a∗i .

A symmetric construction gives:

Lemma 12 For all ε > 0, there exists ν such that for all ν ≤ ν, sνi (θ
∗ − ε) ≤ a∗i .

These two lemmas imply that if s∗ is the left continuous limit of sν as ν → 0, then

s∗i (θ) ≤ a∗i if θ < θ∗ and s∗i (θ) ≥ a∗i if θ > θ∗. By left continuity, s∗i (θ
∗) = a∗i . This

proves the theorem. Q.E.D.Theorem 4
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