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Abstract

When players have identical time preferences, the set of feasible repeated game payoffs coincides with the convex hull of the underlying stage-game payoffs. Moreover, all feasible and individually rational payoffs can be sustained by equilibria if the players are sufficiently patient. Neither of these facts generalizes to the case of different time preferences. First, players can mutually benefit from trading payoffs across time. Hence, the set of feasible repeated game payoffs is typically larger than the convex hull of the underlying stage-game payoffs. Second, it is not usually the case that every trade plan that guarantees individually rational payoffs can be sustained by an equilibrium, no matter how patient the players are. This paper provides a simple characterization of the sets of Nash and of subgame perfect equilibrium payoffs in two-player repeated games.

�
1. Introduction

	Repeated games in which all players have identical time preferences have been extensively studied. For such games, the set of feasible payoffs of the repeated game coincides with that of the stage-game. Moreover, folk theorems assert that, as players become very patient, the set of equilibrium payoffs of the repeated game approaches the set of its feasible and individually rational payoffs.� In contrast, when players have different discount factors both statements are typically false. First, the set of feasible payoffs of the repeated game is generally larger than that of the stage-game.� Second, even when players are very patient, not all the feasible and individually rational payoffs of the repeated game can be supported by equilibria.

	The first fact arises from the possibility of “trading” payoffs over time. Trade is made possible by differences in time preferences. An impatient player cares more than a patient one about payoffs received in early stages, while a patient player cares relatively more about later periods. Thus, both players may benefit from playing actions that the impatient player prefers in early stages and actions that the patient player prefers in later stages. The gains from this trade can push the players’ overall utility outside the feasible set of the stage-game. Therefore, the set of all feasible payoffs of the repeated game is typically larger than that of the stage-game.

	The second fact, that not every feasible payoff can be sustained by an equilibrium, is due to individual rationality considerations. Intertemporal trade requires trust. The patient player is willing to forego early payoffs only if she can trust the impatient player to reciprocate later on. And this requires that the impatient player’s individually rational payoff level be low enough that he can be punished should he deviate. In other words, the benefits of intertemporal trade can be reaped only if the impatient player is vulnerable enough to be trusted.

	In some cases, most notably zero-sum games, no mutually beneficial trade plan is enforceable. That is, all equilibrium payoffs belong to the feasible set of the stage-game. In other cases, every feasible and individually rational repeated-game payoff is sustainable in equilibrium. What characterizes the set of equilibrium payoffs? Which factors determine whether there are equilibrium payoffs outside the stage-gameís feasible set? When are there feasible and individually rational repeated-game payoffs that cannot be supported by equilibrium? These are the issues we address. Specifically, our main result is a characterization of the Nash and subgame perfect equilibrium payoffs in two-player games.

	Discounting of future payoffs reflects the playersí tastes. Since people often differ in their time preferences, it is natural to consider the case of different discount factors. However, in cases where payoffs are monetary, one may argue that differential time preferences do not matter. Is it not the case that players can smooth out their payoffs at a common interest rate determined by the market? Indeed, if they can, that interest rate is the relevant discount factor and the classical folk theorems apply. But in many situations intertemporal markets may not exist or may not be accessible to all agents. For example, consider the interaction between an employee and her employer. The employer may be able to borrow money at an interest rate lower than that accessible to the employee. Whereas wage negotiations are often thought of as zero-sum, intertemporal trade is one way in which workers and employers can devise Pareto-improving contracts.

	Differential time preferences have appeared in a number of applications. Rubinstein (1982) discusses the alternating offers model of bargaining between two players having different discount factors. Fudenberg and Levine (1989), Aoyagi (1993) and Celentani, Fudenberg, Levine, and Pesendorfer (1995) study repeated games in which a relatively patient player establishes her reputation in early stages of the game. While the bargaining and reputation models focus on how differences in patience affect the balance of power between the players, we focus instead on how this difference creates new cooperative possibilities, and on how such possibilities can be exploited in equilibrium.

	The remainder of the paper is organized as follows. In Section 2 we analyze a few motivating examples. Section 3 contains the formal model and a characterization of the set of feasible payoffs of the repeated game. Section 4 is devoted to our main result: a characterization of the set of equilibrium (Nash and subgame perfect) payoffs in the two-player case. Section 5 concludes with a discussion of related issues and directions for future research. In particular, we discuss some difficulties in extending the results to games with incomplete information and to the general case of more than two players.

2. Illustrative examples

	Consider the (two-player zero-sum) stage-game “matching pennies”:

1,-1�
-1,1�
�
-1,1�
1,-1�
�
At each stage � EMBED Equation.2  ���, players choose mixed actions. The impatient player receives the stage-payoff � EMBED Equation.2  ��� and the patient one receives � EMBED Equation.2  ���. By mixing evenly between the two actions, each player can guarantee her individually rational (henceforth, IR) level of 0. Assume that the players evaluate their infinite streams of stage-payoffs using discount factors � EMBED Equation.2  ��� (P and I stand for patient and impatient, respectively). The repeated-game payoffs are then,

	  � EMBED Equation.2  ���, 

 	  � EMBED Equation.2  ���.

	If the discount factors are identical, � EMBED Equation.2  ���. That is, the repeated game is also zero-sum. Since both IR levels are 0, the only feasible and IR payoff pair is � EMBED Equation.2  ���. This is, therefore, the only repeated-game equilibrium payoff.

	In the case where � EMBED Equation.2  ���, there exist feasible payoffs of the repeated game that are Pareto superior to (0,0). For example, the players may agree on receiving the payoff pair � EMBED Equation.2  ��� up to a certain period, and � EMBED Equation.2  ��� thereafter. In other words, the patient player lends payoffs to the impatient one, and is refunded afterwards. As a result, both receive a positive payoff. However, this plan is not an equilibrium of the repeated game, because the impatient player will refuse to repay the debt. We later show that (0,0) is, indeed, the unique equilibrium payoff.

	Consider now the following modification of the stage-game:
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�
The additional “threat” actions reduce the IR levels from 0 to -2, but do not affect the (zero-sum) Pareto-frontier. Now, if � EMBED Equation.2  ��� is close enough to 1, the borrowing plan suggested above is enforceable: if the impatient player defaults on his loan he may be punished, and his payoff may be driven down to his IR level. Thus, a strictly positive payoff for both players is sustainable at equilibrium.

	In the first example the set of equilibrium payoffs of the repeated game coincides with the set of feasible and individually rational payoffs of the stage-game. In contrast, in the second example a payoff outside the feasible set of the stage-game is supported by an equilibrium. In fact, all the feasible payoffs of this repeated game can be supported by an equilibrium if both players are patient enough. These examples illustrate a general phenomenon. For a fixed Pareto frontier of the stage-game, when the IR levels are reduced, the repeated-game equilibrium set is “pushed out.” That is, there may be new equilibrium payoffs that Pareto-dominate formerly efficient equilibrium points. More vulnerable players can trust each other more, and thereby achieve a higher degree of cooperation.

	An intermediate case, where the set of equilibrium payoffs contains points outside the stage-game feasible set, while some (repeated-game) feasible payoffs cannot be supported by equilibrium, is the repeated prisoners’ dilemma: 
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Assume, for simplicity, that while both players are very patient on an absolute scale, the “patient” player is much more patient than the “impatient” one.� Consequently, the impatient player cares almost exclusively about a (long) initial period, while the patient one cares primarily about the long run. By playing the point (7/3,4/3) at the early stages of the game and switching to the point (4/3,7/3) for the tail of the game,� the players receive a total payoff close to (7/3,7/3), which is not feasible in the stage-game. This plan can be implemented as an equilibrium: a deviation of the impatient player will provoke a punishment to his IR level, 1, which is lower than his tail payoff, 4/3. 

	An alternative plan could have generated even higher payoffs. Playing the point (3,0) first and switching to (0,3) later generates a total payoff close to (3,3). However, this plan cannot be supported by an equilibrium because the impatient player cannot be forced to accept a tail payoff of 0, which is lower than 1, his IR level.

3. The repeated game and its feasible set

3.1 The stage-game

	We consider a stage-game with two players, I (impatient) and P (patient), and finite pure action sets, � EMBED Equation.2  ��� and � EMBED Equation.2  ���. � EMBED Equation.2  ��� and � EMBED Equation.2  ��� are the players mixed action sets and � EMBED Equation.2  ��� is the set of correlated actions, i.e., probability distributions over � EMBED Equation.2  ���. The (expected) payoff functions are � EMBED Equation.2  ���. Let � EMBED Equation.2  ��� be the set of feasible stage-game payoffs,

	  � EMBED Equation.2  ���.

(I.e., V is the convex hull of the pure-action payoffs.) Let � EMBED Equation.2  ��� and � EMBED Equation.2  ��� denote the IR levels,

	  � EMBED Equation.2  ���.

� EMBED Equation.2  ��� and � EMBED Equation.2  ��� denote the half planes of individually rational payoffs,

	  � EMBED Equation.2  ���.

For a given � EMBED Equation.2  ���, � EMBED Equation.2  ��� and � EMBED Equation.2  ���  are the sets of  ì(-strong” individually rational payoffs,

	  � EMBED Equation.2  ���.

Finally,  let � EMBED Equation.2  ��� and � EMBED Equation.2  ��� be the intersections of the corresponding sets across players:

	  � EMBED Equation.2  ���,  � EMBED Equation.2  ���.

3.2 The repeated game

	The stage-game is repeated infinitely. We assume perfect monitoring: each player can condition her action at stage k on the past realized actions. We also permit public randomization: in each stage the players observe the realization of a continuous, exogenous random variable and can condition their action on its outcome. Accordingly, the players can play any correlated action in � EMBED Equation.2  ��� and receive any (expected) stage-payoffs pair � EMBED Equation.2  ��� in � EMBED Equation.2  ���.�

The players discount future payoffs according to discount factors � EMBED Equation.2  ���. These discount factors are the subjective present values of one payoff unit, received after a delay of one time unit. Suppose that the interval between two consecutive repetitions of the stage-game is D time units. Then, a unit of payoff received at the � EMBED Equation.2  ���-th stage is worth to the impatient (patient) player � EMBED Equation.2  ��� (� EMBED Equation.2  ���) units of payoff at the outset.� Properly normalized, the present values of the payoff streams are,

	  � EMBED Equation.2  ���,  � EMBED Equation.2  ���.

The stage-k continuation payoff is the present value of future payoffs, evaluated at stage k:

	  � EMBED Equation.2  ���, � EMBED Equation.2  ���.

	It is useful to consider the case where players receive (integrable) continuous-time payoff streams � EMBED Equation.2  ��� and � EMBED Equation.2  ���. The evaluations of these streams at time 0 are�

	  � EMBED Equation.2  ���, � EMBED Equation.2  ���.

	Let � EMBED Equation.2  ��� be the feasible set of the repeated game with stage length D, and let � EMBED Equation.2  ��� be its continuous time counterpart. I.e., � EMBED Equation.2  ��� and � EMBED Equation.2  ��� are the ranges of � EMBED Equation.2  ��� and � EMBED Equation.2  ���, respectively. When no confusion is likely to arise, we will omit V and denote � EMBED Equation.2  ��� and � EMBED Equation.2  ��� by � EMBED Equation.2  ��� and � EMBED Equation.2  ���. Clearly, � EMBED Equation.2  ��� and � EMBED Equation.2  ��� are supersets of V. Finally, note that � EMBED Equation.2  ��� and � EMBED Equation.2  ���are closed and convex sets.

3.3 The feasible set

	The examples in Section 2 show that � EMBED Equation.2  ��� may be a strict superset of V . We now turn to characterize the boundary of � EMBED Equation.2  ���. Since � EMBED Equation.2  ��� is convex, every point on its boundary is a maximizer of a certain weighted sum of the playersí payoffs. Therefore, one way to fully characterize � EMBED Equation.2  ��� is to consider all possible weight pairs � EMBED Equation.2  ��� (including negative ones), and, for each pair, to identify all points � EMBED Equation.2  ��� that solve,

(1)	  � EMBED Equation.2  ���.

	Let there be given, then, � EMBED Equation.2  ���. The explicit formulation of (1) is:

(2) 	  � EMBED Equation.2  ���.

We can decompose the problem of maximizing the discounted sum of stage-payoffs (2) into separately maximizing, for each stage � EMBED Equation.2  ���, the weighted sum of the players’ payoffs,�

(3)	  � EMBED Equation.2  ���.

For any integer � EMBED Equation.2  ���, let � EMBED Equation.2  ���. � EMBED Equation.2  ��� is a vector in � EMBED Equation.2  ���, representing a direction in the plane. (3) can be written as the linear program:

(4)	  � EMBED Equation.2  ���.�

	The feasible polygon V is the same for every � EMBED Equation.2  ���, while the ascent direction of the objective function, � EMBED Equation.2  ���, changes with � EMBED Equation.2  ���. The direction corresponding to � EMBED Equation.2  ��� is � EMBED Equation.2  ���. Then, for each successive � EMBED Equation.2  ���, the objective function is multiplied coordinate-wise by � EMBED Equation.2  ���. Thus, as � EMBED Equation.2  ��� increases, � EMBED Equation.2  ��� tilts gradually (clockwise or counterclockwise depending on � EMBED Equation.2  ���). Finally, for very large � EMBED Equation.2  ���, � EMBED Equation.2  ��� is almost vertical. This is so since the ratio � EMBED Equation.2  ��� tends to infinity as � EMBED Equation.2  ��� tends to infinity. 

	Consequently, the optimal solutions to (4) form a path of vertices that moves along the frontier of V . This path starts at a certain vertex corresponding to the direction � EMBED Equation.2  ���, and ends at the vertex where the patient player achieves her highest or lowest payoff (depending on the sign of � EMBED Equation.2  ���). Note that if D is small enough, the change in � EMBED Equation.2  ��� between consecutive stages is small. In this case, the optimal path goes through all the vertices between the first and last one. (No vertex is ever skipped.) 

	For generic values of � EMBED Equation.2  ���, the maximum of � EMBED Equation.2  ��� over the polygon V is attained at one vertex for any k. However, for some values of � EMBED Equation.2  ���, there are periods � EMBED Equation.2  ��� at which the maximum is attained over a whole facet of V . By choosing different points on this facet, payoff can be transferred between the two players at a fixed ratio, without violating optimality. In this case, � EMBED Equation.2  ��� itself contains an entire facet, perpendicular to the direction � EMBED Equation.2  ���.�

	To gain some intuition into the geometric structure of � EMBED Equation.2  ���, consider again the game “matching pennies.” We construct the Pareto frontier of � EMBED Equation.2  ��� as follows. The point on the Pareto frontier that corresponds to � EMBED Equation.2  ��� (north) is (-1,1). It is generated by the constant path, � EMBED Equation.2  ��� for every � EMBED Equation.2  ���. This is also the optimal path for directions � EMBED Equation.2  ��� close enough to (0,1). As � EMBED Equation.2  ��� tilts eastward, a direction, say, � EMBED Equation.2  ���, is reached where there are two pure action paths that maximize the problem in (2). The first consists of playing constantly (-1,1), and the second consists of playing (1,-1) in the first period and (-1,1) thereafter. The direction � EMBED Equation.2  ��� is perpendicular to the first facet of � EMBED Equation.2  ���. This facet corresponds to playing any mixture of (-1,1) and (1,-1) in the first period, and playing (-1,1) in all subsequent periods. Again, slightly shifting � EMBED Equation.2  ��� eastward from � EMBED Equation.2  ��� does not alter the optimal path (playing (1,-1) in the first period and (-1,1) thereafter). These values of � EMBED Equation.2  ��� correspond to the next vertex of the Pareto frontier. As � EMBED Equation.2  ��� shifts further, the next facet is reached, which is perpendicular to the direction � EMBED Equation.2  ���. This facet is generated by the paths consisting of (1,-1) in the first stage, any split in the second stage, and (-1,1) ever after. This facet is shorter than the first, since the weight of the second period in each player’s discounted payoffs’ sum is smaller than that of the first. Continuing to move clockwise along the Pareto frontier, we encounter an infinite sequence of facets, corresponding to longer prefixes of (1,-1) and shorter tails of (-1,1). The facets become unboundedly small, and converge to the east-most point of the Pareto frontier (1,-1).

	The feasible set of the continuous time case, � EMBED Equation.2  ���, is found in a similar way. Given a direction � EMBED Equation.2  ���, we solve a continuum of problems; for any � EMBED Equation.2  ���,

(5)	  � EMBED Equation.2  ���,

where � EMBED Equation.2  ���. The time axis divides into a finite number of intervals � EMBED Equation.2  ��� such that the solution to (5) is constant over each interval; a path of adjacent vertices of V is followed. While � EMBED Equation.2  ��� is a polygon with an infinite number of facets, � EMBED Equation.2  ��� has a smooth frontier. This is illustrated in Figure 1: The innermost polygon is the feasible set of the stage-game, V.  The intermediate polygon is the feasible set of the repeated game, � EMBED Equation.2  ��� (the parameters are � EMBED Equation.3  ���, � EMBED Equation.3  ��� and � EMBED Equation.3  ���). The outermost boundary is that of � EMBED Equation.2  ���.�

�

Figure 1: The feasible sets � EMBED Equation.2  ���and � EMBED Equation.2  ��� in the prisoner’s dilemma.

	� EMBED Equation.2  ��� may be viewed as an operator that transforms any given convex polygon B to a set � EMBED Equation.2  ���, of all feasible repeated-game payoffs where the set of stage payoffs is B. Proposition 1 states that �EMBED Equation.2��� converges uniformly, from inside, to �EMBED Equation.2��� as � EMBED Equation.2  ���. Moreover, it is increasing and uniformly continuous in B. 

Proposition 1:

Let B be a convex polygon of feasible stage-payoffs.

	a.	For any �EMBED Equation.2���, �EMBED Equation.2���; and

b.	for any �EMBED Equation.2��� there exists �EMBED Equation.2��� such that for any �EMBED Equation.2��� and any �EMBED Equation.2���, there 		exists �EMBED Equation.2��� satisfying �EMBED Equation.2���.

Moreover, given �EMBED Equation.2��� and convex polygons � EMBED Equation.2  ��� and � EMBED Equation.2  ���,

c.	for any �EMBED Equation.2���, there exists �EMBED Equation.2��� such that if � EMBED Equation.2  ���, then 	� EMBED Equation.2  ���; and

d.	if � EMBED Equation.2  ���, then � EMBED Equation.2  ���.	

Proof: See appendix.

	By Proposition 1, the feasible set of the limit, continuous-time “game”, � EMBED Equation.2  ���, is an upper bound, and (when D is small) a good approximation of � EMBED Equation.2  ���. In particular, the Pareto frontier of � EMBED Equation.2  ��� delineates the boundary of all possible cooperative outcomes. An explicit formula of this frontier is presented in Proposition 2. (This formula can easily be modified to the three other parts of the boundary of � EMBED Equation.2  ���.)

Proposition 2:

Let B be a convex polygon of feasible stage-payoffs and denote the vertices on the Pareto frontier of B as � EMBED Equation.2  ���,� EMBED Equation.2  ���,...,� EMBED Equation.2  ���, with � EMBED Equation.2  ��� (and thus � EMBED Equation.2  ���). The Pareto frontier of � EMBED Equation.2  ��� is the graph of the function � EMBED Equation.2  ���:

	  � EMBED Equation.2  ���  whenever � EMBED Equation.2  ��� , � EMBED Equation.2  ���,

where

(i)	  � EMBED Equation.2  ���

(ii)	  � EMBED Equation.2  ���

(iii)	  � EMBED Equation.2  ���, and � EMBED Equation.2  ���.�

Proof: See Lehrer and Pauzner (1997).

	To illustrate Proposition 2, we compute the Pareto frontier of the feasible set of the prisonersí dilemma game presented in Section 1. The vertices of the Pareto frontier of V are � EMBED Equation.2  ���, � EMBED Equation.2  ��� and � EMBED Equation.2  ���. Assume, for example, that � EMBED Equation.2  ��� and � EMBED Equation.2  ���. Hence, � EMBED Equation.2  ���, � EMBED Equation.2  ���, and � EMBED Equation.2  ���. Thus,

	  � EMBED Equation.2  ���

One implication of Proposition 2 is the following. For any fixed payoff of the impatient player, UI, the patient playerís payoff, UP, approaches her highest possible one, yl, as the patience ratio, r, increases.�  In the limit, the players can jointly attain their maximal payoffs, x0 and yl. In the repeated prisoners dilemma, for instance, they can attain payoffs close to (3,3).

4. The Sets of Equilibrium Payoffs

	In this section we characterize the sets of Nash and subgame-perfect equilibrium payoffs. These equilibrium sets are closed and convex�. Hence, they can be characterized using the technique developed in the previous section. To find the points on the boundary of the equilibrium set corresponding to a given direction � EMBED Equation.2  ���, we solve a maximization problem similar to that used in the characterization of the feasible set. However, additional constraints must be added. A play path can be sustained by an equilibrium only if, at any stage, each player's continuation payoff is individually rational. This condition is clearly necessary. We later show that it is also sufficient (for both Nash and subgame perfect equilibrium) if the time D between any two consecutive stages is small enough.

	The additional constraints imposed on all continuation payoffs might render the maximization problem too complicated. However, all play paths that solve the maximization problem share one property, which greatly simplifies our task: along an optimal path, each playerís stream of payoffs is monotone. For example, along a Pareto-optimal path (i.e., a path corresponding to � EMBED Equation.2  ���), the stage-payoffs of the patient player are increasing, while those of the impatient player are decreasing. Consequently, the large set of constraints reduces to much simpler restrictions.

	Along a Pareto-optimal path, the impatient player should never receive a stage-payoff below his IR level. This is so because his stage-payoffs are decreasing, and therefore, if one stage-payoff is below his IR level, so are all subsequent payoffs and, as a result, also the corresponding continuation payoff. This means that only stage-payoffs in � EMBED Equation.2  ��� can be used along a Pareto-optimal path. Thus, the equilibrium set cannot exceed the Pareto frontier of � EMBED Equation.2  ���.

	As for the patient player, all the constraints on her continuation payoffs reduce to one: that her overall repeated-game payoff be individually rational. Since her stage-payoffs are increasing along a Pareto-optimal path, her continuation payoffs are also increasing. Thus, if the initial one, � EMBED Equation.2  ���, is individually rational, so are all the other continuation payoffs. Geometrically, this means that the Pareto frontier of � EMBED Equation.2  ���, intersected with � EMBED Equation.2  ���, forms the Pareto frontier of the equilibrium payoffs set. 

	Figure 2 illustrates the construction of the Pareto frontier of the equilibrium set, for D close to 0, in three steps. By Proposition 1, when D is small enough � EMBED Equation.2  ��� can be replaced by its approximation, � EMBED Equation.2  ���. 
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Figure 2: Constructing the Pareto frontier of the equilibrium set (Nash or SP)

	The Pareto frontier of the equilibrium set corresponds to the directions � EMBED Equation.2  ��� (northeast). There are three other cases: � EMBED Equation.2  ��� (southeast), � EMBED Equation.2  ��� (northwest) and � EMBED Equation.2  ��� (southwest). In all cases, the payoff streams to each player are monotone. However, whether they are increasing or decreasing depends on the case. Consequently, the IR constraints have to be treated differently in each case. We first characterize the Pareto frontier of the equilibrium payoffs sets (Theorem 1). This is the most interesting part of the frontier from an economic point of view. Next, we explain the difference between this construction and those pertaining to the three other cases. We conclude with a full characterization (Theorem 2). We start with some notation.

	Given discount factors � EMBED Equation.2  ��� and the time D between any two consecutive repetitions of the stage-game, denote:

� EMBED Equation.2  ���: 	The set of Nash equilibrium payoffs of the repeated game.

� EMBED Equation.2  ���:	The set of subgame-perfect equilibrium payoffs of the repeated game.

Recall that � EMBED Equation.2  ��� is the operator producing the set of feasible payoffs in the repeated game when � EMBED Equation.2  ��� is a polygon of available stage-payoffs. Finally, for two sets in � EMBED Equation.2  ���, � EMBED Equation.2  ��� and � EMBED Equation.2  ���, we say that � EMBED Equation.2  ��� if for every � EMBED Equation.2  ��� there exists � EMBED Equation.2  ��� such that � EMBED Equation.2  ��� weakly Pareto-dominates � EMBED Equation.2  ��� or equals � EMBED Equation.2  ���.

Theorem 1.

For any � EMBED Equation.2  ���, there exists � EMBED Equation.2  ���, such that for any � EMBED Equation.2  ���,

� EMBED Equation.2  ���

	Theorem 1 says that the Pareto frontier of the equilibrium set � EMBED Equation.2  ���, as well as its subgame-perfect counterpart � EMBED Equation.2  ���, are bounded between the Pareto frontiers of two sets that are close to each other. By Proposition 1, an approximation to the Pareto frontier is obtained: as D becomes close to 0, the Pareto frontier of the equilibrium set uniformly approaches, from inside, that of � EMBED Equation.2  ���.� In particular, Theorem 1 implies that if some point on the Pareto frontier of � EMBED Equation.2  ��� is outside � EMBED Equation.2  ���, then the repeated game’s equilibrium set, � EMBED Equation.2  ���, does not converge to the set of feasible and individually rational payoffs of the repeated game, � EMBED Equation.2  ���.� That is, not any feasible and individually rational payoff of the repeated game can be sustained by an equilibrium. This is impossible when both players have the same time preferences.

Proof of Theorem 1:

	The key to the left-side inequality is Lemma 1, which states that the players’ payoffs along an optimal path are monotone.

Lemma 1:

Let B be a convex and compact set in � EMBED Equation.2  ��� and assume that � EMBED Equation.2  ��� maximizes:

� EMBED Equation.2  ���.

Then, � EMBED Equation.2  ��� is (weakly) increasing and � EMBED Equation.2  ��� is (weakly) decreasing.

Proof: See Appendix.

	Let � EMBED Equation.2  ��� be a Pareto-optimal point in � EMBED Equation.2  ���. The path generating � EMBED Equation.2  ��� solves a maximization problem as in Lemma 1, with � EMBED Equation.2  ��� and � EMBED Equation.2  ���. By the lemma, the patient player's payoffs are increasing along the path. Thus, for any stage k, each playerís continuation payoff is strongly individually rational: � EMBED Equation.2  ��� and� EMBED Equation.2  ���.

	For D small enough, this path can be easily extended to a Nash equilibrium (for example, punishing deviations using trigger strategies). The extension to a subgame perfect equilibrium is essentially the same as in the case of identical discount factors; this is proved in  Lemma 2.

Lemma 2:

For any � EMBED Equation.2  ���, there exists � EMBED Equation.2  ��� such that any payoff path, along which all continuation payoffs are in � EMBED Equation.2  ���, can be extended to a subgame perfect equilibrium when � EMBED Equation.2  ���.

Proof: See Lehrer and Pauzner (1997).

	By lemma 2, � EMBED Equation.2  ���. This proves the left-side inequality in the theorem. The middle inequality is trivial, since � EMBED Equation.2  ���. To show the right-side inequality, we have to take an equilibrium point � EMBED Equation.2  ��� and construct a point in � EMBED Equation.2  ��� that Pareto dominates it. Recall that, along an equilibrium path, all continuation payoffs are individually rational. For the patient player, this is a stronger constraint than that pertaining to paths supporting points in � EMBED Equation.2  ���, since the latter only requires that her stage-0 continuation payoff be individually rational. However, for the impatient player, the constraints associated with an equilibrium path are weaker than the requirement that all stage-payoffs be (impatient player) individually rational. Lemma 3 helps us overcome this obstacle.

Lemma 3:

Assume that � EMBED Equation.2  ��� maximizes � EMBED Equation.2  ��� subject to:

� EMBED Equation.2  ���. Suppose that � EMBED Equation.2  ���. Then � EMBED Equation.2  ���.

Proof: See Appendix.

	Now, let � EMBED Equation.2  ��� be a Pareto-optimal point in � EMBED Equation.2  ���. There exists a point � EMBED Equation.2  ��� that Pareto-dominates (or is equal to)� EMBED Equation.2  ���, such that the path � EMBED Equation.2  ��� generating it solves a maximization problem as in Lemma 3, with � EMBED Equation.2  ���. By the lemma, � EMBED Equation.2  ���. Thus, � EMBED Equation.2  ���. This concludes the proof of Theorem 1. (

	We now apply theorem 1, together with the formula given in Proposition 2, to find the Pareto frontier of the equilibrium set in the prisoner’s dilemma, presented earlier. The vertices on the Pareto frontier of � EMBED Equation.2  ��� are: � EMBED Equation.2  ���, � EMBED Equation.2  ��� and � EMBED Equation.2  ���. Let � EMBED Equation.2  ��� (as in Section 3). The Pareto frontiers of the equilibrium sets approach that of � EMBED Equation.2  ���, which is the graph of the function:

	  � EMBED Equation.2  ���

	The following figure illustrates the Pareto-frontiers of the feasible set and of the limit equilibrium set in the prisoner’s dilemma, for three different patience ratios:

	� EMBED Word.Picture.6  ���	    �	    �

	r=2	 r=4	r=50

Figure 3: Feasible sets and equilibrium sets (Nash or SP) in the ìprisoner’s dilemma.î

	We now extend Theorem 1 to the other three directions. Recall that, along a Pareto-optimal path corresponding to � EMBED Equation.2  ���, the payoffs of the patient player increase, whereas those of the impatient player decrease. This property was key to the characterization of the Pareto frontier. Similar regularities characterize the paths of payoffs that generate points on the other three frontiers, as summarized in the following table:

Direction�
� EMBED Equation.2  ����
� EMBED Equation.2  ����
Impatient Player’s Payoff�
Patient Player’s Payoff�
�
NE�
+�
+�
decreasing�
increasing�
�
NW�
(�
+�
increasing�
increasing�
�
SE�
+�
(�
decreasing�
decreasing�
�
SW�
(�
(�
increasing�
decreasing�
�
	The construction of the frontier for the other directions is generalized in the following way. First, we intersect � EMBED Equation.2  ��� with the IR half-planes of the players whose payoffs are decreasing along optimal paths in the given direction�. This is done because, for such players, if one stage-payoff is not individually rational, neither is the continuation payoff at that stage. Next, we apply the operator � EMBED Equation.2  ��� to construct the feasible frontier for the repeated game. Finally, we intersect the resulting set with the IR half-planes of the players whose payoffs are increasing. This can be done because, for such players, if the initial present value is individually rational, so are all continuation payoffs.

	Let � EMBED Equation.2  ��� denote the frontier of � EMBED Equation.2  ��� corresponding to the direction D. I.e., � EMBED Equation.2  ��� is the Pareto-frontier, � EMBED Equation.2  ��� is the northwest frontier, etc. The above argument implies that the frontiers of the equilibrium sets converge, as � EMBED Equation.2  ���, to the following curves: � EMBED Equation.2  ��� (Pareto frontier), � EMBED Equation.2  ��� (northwest frontier), � EMBED Equation.2  ��� (southeast frontier) and � EMBED Equation.2  ��� (southwest frontier)�.

	We denote the limit equilibrium sets, i.e., the sets of payoffs that can be sustained as equilibrium outcomes when the time between stages is short enough, by � EMBED Equation.2  ��� and � EMBED Equation.2  ���. Intuitively, these sets are the convex hulls of their four frontiers. More precisely, Theorem 2 states that the interiors of E and SPE coincide, and equal the interior of W, which is the convex hull of three sets: the northeast frontier, the northwest frontier, and the (convex) set � EMBED Equation.2  ��� which includes the other two frontiers�. The proof of Theorem 2 is tedious and has no further insight beyond that of Theorem 1. It is therefore omitted.

Theorem 2

� EMBED Equation.2  ���

where  � EMBED Equation.2  ���

Proof: See Lehrer and Pauzner (1997).

5. Concluding Remarks

5.1 Convergence of discount factors to 1

	In order to establish a folk theorem, one needs to have discount factors close to 1. There are many converging paths of the two dimensional vector of discount factors to the vector (1,1). Which path is the appropriate one?

	Our interest is in players with differential time preferences. Therefore, we need to retain the difference between the players while the discount factors converge to 1. To do so, we consider specific players, with fixed time preferences, and shorten the time between any two consecutive stages. The discount factors � EMBED Equation  ���, representing the present value of payoff delayed by 1 time unit, are fixed throughout. The stage discount factors, i.e., the factors that represent the difference in the valuation of payoff received at two consecutive stages, are � EMBED Equation.2  ���. When D approaches 0, both stage discount factors converge to 1.

	This approach is formally equivalent to taking a path of discount factors that converges to 1 while keeping the patience ratio, � EMBED Equation.2  ���, constant. This ratio measures the relative patience of the players: the impatient player values one dollar received after one time unit as much as the patient player values one dollar received after r time units. When the two players are very patient and have a patience ratio r, the feasible set of the game is close to the set � EMBED Equation.2  ��� corresponding to that r.

5.2 The stage length and the Pareto frontier

	Consider a game in which the highest payoff of the patient in V is not in IRI. Recall that, along a path generating a Pareto-optimal equilibrium payoff, the stage-payoffs of the impatient player are decreasing, whereas those of the patient player are increasing. Most importantly, at the tail of the path optimality dictates that the patient player receive her highest possible payoff, subject to the (binding) constraint that the payoff to the impatient player is at least ( above his IR level.

The minimal increment e is needed in order to make deviations nonprofitable for the impatient player. It depends on the stage length D, since D determines how much the player can gain from a one-stage deviation. Hence, D always imposes an active constraint on equilibrium payoffs; as D shrinks, more stage-payoffs can be used and, as a result, the whole Pareto frontier of the equilibrium set (Nash or SP) is pushed further out. Such a tension between efficiency and incentive compatibility does not exist in the case of identical discount factors, where, once D is below some threshold, the only equilibrium payoffs that are added when D is reduced further are those close to the IR levels. The reason is that, when players have identical discount factors, a given Pareto-optimal equilibrium payoff can be generated by playing that point at every stage. That is, there is no need to use payoffs that are close to the IR level. 

5.3 Games with incomplete information

	Our analysis is confined to games with complete information, where both players know the stage-game played. The case of incomplete information is significantly different. The following example shows that even when the stage-game is zero-sum, the repeated game may have equilibria in which the sum of payoffs is not zero.

	Nature chooses, with equal probabilities, one of the following games:

0,0�
0,0�
�
0,0�
1,-1�
�
1,-1�
0,0�
�
0,0�
0,0�
�






	The stage-game chosen is repeatedly played by two players, patient and impatient, with discount factors close to 1 and 0, respectively. The impatient player is informed about the game chosen, while the patient player knows only the probabilities. The following strategies form an equilibrium. At the first stage, the impatient player plays top or bottom according to the game played, and the patient player mixes between left and right with equal probabilities. The players receive expected stage-payoffs of .5 and -.5. At this point the impatient playerís information is revealed, and the patient player secures a continuation payoff of 0. Since the discount factors are nearly 0 and 1, this equilibrium generates repeated-game payoffs close to .5 and 0, the sum of which is not zero. 

	The reason why this phenomenon may occur is that when a player acts upon her information, this information is partially revealed and the remaining game is no longer the same as the original one. For more details, see Lehrer and Yariv (1995).

5.4 n-player games

	Section 4 provides a characterization of the equilibrium payoffs set only for two-player games. Our analysis relies on the fact that, for any given � EMBED Equation.2  ���, the path generating an extreme point follows a simple one-dimensional curve (e.g., the Pareto frontier of V). Along the path, the playersí payoff streams are monotone. In contrast, when there are more than two players, the sequence of extreme points of V corresponding to an � EMBED Equation.2  ���-optimal path (� EMBED Equation.2  ���) does not have any monotonicity property. Consider, for example, a three-player game with only two possible (pure) payoff combinations: a=(1,-1,1) and b=(-1,1,-1) (players are ordered by their degree of patience). Some Pareto-optimal paths consist of playing “a” during an initial period, switching to “b” for an intermediate time, and coordinating again on “a” for the rest of the game. This generates payoff streams that are not monotone. Therefore, our method fails in the n-player case. We leave open the problem of characterizing the equilibrium payoffs in the general case.�

�
Appendix: proofs

Proof of Proposition 1:

Part a: Since �EMBED Equation.2���, every payoff in �EMBED Equation.2��� can be achieved in (4) by setting �EMBED Equation.2��� to be constant over intervals of the form �EMBED Equation.2���: Let �EMBED Equation.2��� be the discrete path that generates some point in �EMBED Equation.2��� when evaluated by �EMBED Equation.2���. The path: �EMBED Equation.2��� whenever �EMBED Equation.2���, sustains the same point when evaluated by �EMBED Equation.2���.

Part b: Since �EMBED Equation.2��� is convex it is sufficient to show that the frontier of �EMBED Equation.2��� can be uniformly approximated by points in �EMBED Equation.2���. Thus, let f be a payoff vector on the frontier of �EMBED Equation.2���. As explained in Section 3.2, there is a path �EMBED Equation.2���, which is constant over the time intervals �EMBED Equation.2���, that generates f . (� EMBED Equation.3  ��� is, at most, the number of vertices on the corresponding frontier of V.)

	For a given D define the discrete path �EMBED Equation.2���. As in part (a), we extend the discrete path into a continuous-time path, �EMBED Equation.2���, by setting it constant over intervals of the form �EMBED Equation.2���. As before, �EMBED Equation.2���, evaluated by �EMBED Equation.2��� and �EMBED Equation.2���, evaluated by �EMBED Equation.2���, yield the same payoff.

	The paths �EMBED Equation.2��� and �EMBED Equation.2��� differ from each other on at most ( intervals �EMBED Equation.2���, because there are ( times when �EMBED Equation.2��� changes its value. Player j assigns a weight of �EMBED Equation.2��� to each interval. Therefore, the difference between player �EMBED Equation.2���'s payoffs from the two paths is bounded by �EMBED Equation.2��� (where M is the maximal difference between stage payoffs). This bound tends to 0 as D goes to 0. Thus, any point on the frontier of �EMBED Equation.2��� can be approximated by points in �EMBED Equation.2��� when �EMBED Equation.2��� is sufficiently small.

	We now show that the approximation is uniform. Suppose to the contrary that there is some � EMBED Equation.2  ���, a sequence � EMBED Equation.2  ��� and a sequence � EMBED Equation.2  ��� such that for every n and � EMBED Equation.2  ���, the distance between � EMBED Equation.2  ��� and � EMBED Equation.2  ��� is greater than � EMBED Equation.2  ���. Due to compactness of �EMBED Equation.2��� we may assume (taking a converging subsequence if needed) that � EMBED Equation.2  ��� converges to, say, � EMBED Equation.2  ���. We have shown that when � EMBED Equation.2  ��� is sufficiently small, there exists a point � EMBED Equation.2  ��� in � EMBED Equation.2  ��� whose distance to � EMBED Equation.2  ��� is less than � EMBED Equation.2  ���. As � EMBED Equation.2  ��� converges to � EMBED Equation.2  ���, the distance between � EMBED Equation.2  ��� and � EMBED Equation.2  ��� is less than � EMBED Equation.2  ��� when n is large. This is a contradiction.

Part c:	Let � EMBED Equation.3  ��� and let � EMBED Equation.2  ���be the path that generates � EMBED Equation.2  ���. Since � EMBED Equation.2  ���is close to B, there is a path � EMBED Equation.2  ��� of payoffs in � EMBED Equation.2  ��� such that for all k, � EMBED Equation.2  ���  and � EMBED Equation.2  ���. Since the repeated-game payoff to a player from a path of stage-payoffs is a weighted average of the stage-payoffs, the repeated-game payoffs � EMBED Equation.2  ��� generated by the new path satisfy � EMBED Equation.2  ��� and � EMBED Equation.2  ���. This means the point � EMBED Equation.2  ��� satisfies � EMBED Equation.2  ���.

Part d:  Trivial.   (

Remark: Notice that although the sets �EMBED Equation.2��� converge to the larger set �EMBED Equation.2��� as � EMBED Equation.2  ���, this convergence is not necessarily monotone: for fixed �EMBED Equation.2���, unless �EMBED Equation.2��� is an integer fraction of �EMBED Equation.2���, �EMBED Equation.2��� is not always a subset of �EMBED Equation.2���.

Proof of Lemma 1:

	Assume that � EMBED Equation.2  ��� and consider the following modification of the path:

	  � EMBED Equation.2  ���

The impatient player's valuation of the path is unchanged, while the patient’s one changes by � EMBED Equation.2  ���. If the path is already a solution to the maximization problem, the proposed modification must not increase the optimal value. In particular, � EMBED Equation.2  ��� has to be non-positive. Since � EMBED Equation.2  ���, we must have � EMBED Equation.2  ���.

	A slightly different modification of the path yields � EMBED Equation.2  ���.    (

Proof of Lemma 3:

	Assume to the contrary that there exists � EMBED Equation.2  ��� such that � EMBED Equation.2  ���. Let � EMBED Equation.2  ��� be the first � EMBED Equation.2  ��� such that � EMBED Equation.2  ��� (such � EMBED Equation.2  ��� must exist since � EMBED Equation.2  ���, and � EMBED Equation.2  ��� is a weighted average of � EMBED Equation.2  ���). Since � EMBED Equation.2  ���, also � EMBED Equation.2  ���. However, since � EMBED Equation.2  ���, we must have � EMBED Equation.2  ��� (recall that � EMBED Equation.2  ��� is the weighted average � EMBED Equation.2  ���). Choose � EMBED Equation.2  ��� s.t. � EMBED Equation.2  ���, where M is the maximal difference between the impatient player’s payoff in V.

	Consider now the following modification of the path,

� EMBED Equation.2  ���	In the new path, � EMBED Equation.2  ��� is unchanged, while � EMBED Equation.2  ��� is increased by � EMBED Equation.2  ���. Since � EMBED Equation.2  ��� we have � EMBED Equation.2  ���, and thus � EMBED Equation.2  ���. To show that this contradicts the assumption that the original path is � EMBED Equation.2  ���-optimal, we only need to show that all continuation payoffs along the path � EMBED Equation.2  ��� are individually rational.

	The impatient player’s constraints are satisfied since for � EMBED Equation.2  ��� his payoffs are unchanged, for � EMBED Equation.2  ��� � EMBED Equation.2  ��� are increased, and � EMBED Equation.2  ��� is at least � EMBED Equation.2  ���(because it has been reduced by no more than � EMBED Equation.2  ���). As for the patient player, her tail payoffs at stages � EMBED Equation.2  ��� are unchanged. Verifying that � EMBED Equation.2  ��� is trivial in the case where � EMBED Equation.2  ���. To prove that this is also the case when � EMBED Equation.2  ���, we show that � EMBED Equation.2  ��� of the original path is strictly greater than � EMBED Equation.2  ���, and choose small enough � EMBED Equation.2  ��� to guarantee that both � EMBED Equation.2  ��� and � EMBED Equation.2  ��� remain individually rational after the modification.

	Assume to the contrary that � EMBED Equation.2  ���. Since � EMBED Equation.2  ���, we have � EMBED Equation.2  ��� (recall that � EMBED Equation.2  ��� is a weighted average of the two). Since � EMBED Equation.2  ��� we obtain � EMBED Equation.2  ���, which implies that � EMBED Equation.2  ���. This violates the constraints and therefore � EMBED Equation.2  ���.	(
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� See, for instance, Aumann and Shapley (1976), Rubinstein (1976), Aumann (1981), Fudenberg and Maskin (1986), Abreu, Dutta, and Smith (1994).

� This observation has apparently been made by several authors. See, for instance, Rubinstein and Osborne (1994), Exercise 139.1.

� See Section 5.1 for a formal definition.

� The stage-payoffs pair (7/3,4/3) is generated by mixing 2/3-1/3 between UL and DL (i.e., the patient player plays L and the impatient mixes between U and D). Similarly, mixing between UL and UR generates the payoffs pair (4/3,7/3).

� The assumption that the players can use a public randomization device is almost without loss of generality. Fudenberg and Maskin (1991) show explicitly that any correlated mixed action can be approximated by alternating between pure actions with the appropriate frequency if the players are very patient.

� Notice that as D approaches zero, � EMBED Equation.2  ���approaches 1. For details, see Section 5.1.

� These continuous time payoffs are obtained by taking the limit, as D(0, of the first order element in the Taylor expansion of � EMBED Equation.2  ���. This yields � EMBED Equation.2  ���.

� The boundary of � EMBED Equation.2  ��� can be characterized in other ways as well. For instance, one may maximize � EMBED Equation.2  ��� subject to � EMBED Equation.2  ��� for every � EMBED Equation.2  ���. However, this maximization problem would not readily decompose across periods.

� A centered dot, .,denotes the inner product of two vectors.

� More formally, for a given facet of V (whose vertices are  � EMBED Equation.3  ��� and � EMBED Equation.3  ���), let � EMBED Equation.2  ��� be the value of � EMBED Equation.2  ��� such that � EMBED Equation.2  ��� is perpendicular to that facet. That is, � EMBED Equation.2  ���. When solving for the optimal path corresponding to � EMBED Equation.2  ���, we may let � EMBED Equation.3  ��� be any convex combination of � EMBED Equation.3  ��� and � EMBED Equation.3  ���. If we let � EMBED Equation.3  ��� and � EMBED Equation.3  ��� denote the pairs of discounted payoffs corresponding to � EMBED Equation.3  ��� and � EMBED Equation.3  ���, then � EMBED Equation.3  ��� and � EMBED Equation.3  ���. This shows that � EMBED Equation.3  ���� EMBED Equation.3  ���, and that the length of the line segment connecting  � EMBED Equation.3  ��� and � EMBED Equation.3  ��� decreases with k.

� Typically, � EMBED Equation.2  ��� is strictly inside � EMBED Equation.2  ���. This is so because points on the boundary of both, � EMBED Equation.2  ���and � EMBED Equation.2  ���, are generated by optimal divisions of the time axis between playing different vertices of V. In the case of � EMBED Equation.2  ���, these divisions are constrained to integer multiples of D. Since this constraint is typically binding, � EMBED Equation.2  ��� typically exceeds � EMBED Equation.2  ��� (even the vertices of � EMBED Equation.2  ��� do not touch � EMBED Equation.2  ���). An exception is the case where the (Pareto) frontier of V has only two vertices. In this case, all the vertices on the (Pareto) frontier of � EMBED Equation.2  ��� are on � EMBED Equation.2  ���.

� Notice that � EMBED Equation.2  ���, i.e., the formula covers the entire range � EMBED Equation.2  ���.

13 As r goes to infinity, � EMBED Equation.2  ��� goes to 1 and � EMBED Equation.2  ��� goes to 0. For any fixed UI, Sm tends to yl-ym. Thus,� EMBED Equation.2  ���.

� Convexity follows from the assumption that the players can use a continuous correlating device. Closedness relies on the fact that the correlating device can be replaced by one that generates only a finite number of signals. For the proofs, see Lehrer and Pauzner (1997). 

� Notice that the lower bound, � EMBED Equation.2  ���, may be empty for every � EMBED Equation.2  ���. In this case, the upper bound � EMBED Equation.2  ��� must consist of points on the IR level of one of the players. For instance, in zero-sum games, the upper bound is the singleton set � EMBED Equation.2  ���. Since the equilibrium set is not empty, it contains exactly that point.

15 To see why, recall that any Pareto-optimal point (in any direction () is generated by a path that ends at the vertex that gives the patient player her highest stage payoff (see page 6). Eliminating this vertex strictly reduces the optimum in any direction. If some point on the Pareto frontier of V is outside IRI, the highest vertex is eliminated when V is intersected with IRI. Therefore, the Pareto frontier of � EMBED Equation.2  ��� is strictly dominated by that of � EMBED Equation.2  ���.

� There may be 0,1 or 2 such players. If the number is 0, nothing is done at this step.

� The southwest frontier of the equilibrium set is simply that of � EMBED Equation.2  ���. The reason is that the southwest frontier of  V is never in the interior of IR. This is because V must have at least one point (weakly) Pareto-dominated by � EMBED Equation.2  ���. Such a point is obtained, for instance, when both players are minimaxing each other.

� To see why � EMBED Equation.2  ���, refer to footnote 18.

� In Lehrer and Pauzner (1996), some partial results concerning the n-player case are obtained. Briefly, it is shown that there always exist equilibrium payoffs that Pareto-dominate payoffs on the Pareto frontier of V, unless (1) there is a mutual minmax action profile and (2) the corresponding payoff is on the Pareto frontier of V. Moreover, in the case where all the Pareto optimal points in V are strongly individually rational, any Pareto optimal point in � EMBED Equation.2  ��� is an equilibrium payoff when D is small enough.





