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1. Introduction and main results.

This paper is a mathematical companion to an article introducing a new economics

model, by Burdzy, Frankel and Pauzner (1997). The motivation of this paper is applied,

but the results may have some mathematical interest in their own right. Our model, i.e.,

equation (1.1) below, does not seem to be known in literature. Despite its simplicity, it

generated some interesting and non-trivial mathematical questions.

In this paper, we limit ourselves to mathematical results; those interested in their

economic motivation should consult Burdzy, Frankel and Pauzner (1997). To make this

easier, the two papers have been written using comparable notation. A related paper by

Bass and Burdzy (1997) will analyze a simpli�ed version of our model and derive a number

of new results of a purely mathematical nature.

We will �rst prove existence and uniqueness for di�erential equations of the form (1.1)

below. These equations involve Brownian motion but they do not fall into the category

of classical \stochastic di�erential equations" as they do not involve the Itô theory of

integration. Typical solutions of these equations are Lipschitz functions rather than semi-

martingales. It turns out that the excursion theory for Markov processes is the appropriate

probabilistic tool for treatment of this family of equations.

We also establish several properties of the \bifurcation time," to be de�ned below.

We prove that the bifurcation time for (1.1) goes to 0 as the random noise becomes smaller

and smaller. More importantly, we determine the asymptotic values for probabilities of

upward and downward bifurcations.

The simplicity of equation (1.1) is misleading. If the process Bt in (1.1) is not a

Brownian motion but a fractional Brownian motion, none of the results in Theorems 1 and

2 can be proved using the same methods, except the existence part of Theorem 1. In fact,

we currently do not know any method of proving results analogous to Theorems 1 and 2

for fractional Brownian motion Bt.
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We say that Brownian motion Bt has drift � and variance �2 if E(Bt �B0) = �t and

E(Bt � B0 � �t)2 = �2t. Recall that a function g is called Lipschitz with constant c if

jg(t)� g(s)j � cjt� sj for all t and s.

Theorem 1. Let Bt be a Brownian motion with drift � and variance �2. Suppose that

k > 0, x0 2 (0; 1) and b0 are �xed real numbers, and B0 = b0, a.s. Assume that f

is a decreasing Lipschitz function with constant c1. Consider the following di�erential

equation:

dX=dt =

�
k(1�Xt) if Bt > f(Xt),
�kXt if Bt < f(Xt).

(1:1)

For almost every path Bt there exists a unique Lipschitz solution fXt; t � 0g of (1.1) which
starts from x0.

Note that dX=dt is not speci�ed by (1.1) for t such that Bt = f(Xt). A typical solution

Xt does not have a derivative for such t. If f�1 exists and is a Lipschitz function then

the function Xt = f�1(Bt) is a continuous solution of (1.1) but it is not Lipschitz. Hence,

uniqueness holds only for Lipschitz solutions. We note that k is a Lipschitz constant for

the Lipschitz solution of (1.1).

It will be shown in Bass and Burdzy (1997) that existence and uniqueness for solutions

to another, related di�erential equation can be proved using the results of Engelbert and

Schmidt (see Karatzas and Shreve (1988) Section 5.5). We have not been able to apply

that theory to (1.1). However, our proof of Theorem 1 seems to be more intuitive than an

application of general theorems from stochastic calculus.

The following simple results are quite useful.

Lemma 1. Suppose that X1
t and X2

t are Lipschitz solutions to equation (1.1) correspond-

ing to non-increasing Lipshitz functions f1 and f2 which satisfy f1(x) � f2(x) for all x. We

assume that the solutions X1
t and X2

t are de�ned relative to the same Brownian motion

Bt. We also assume that X1
0 � X2

0 . Then X1
t � X2

t for all t � 0 a.s.

Lemma 2. Suppose that Xt is the solution of (1.1). Let eXb;x
t be the solution to (1.1)

starting from eXb;x
0 = x0 + x and corresponding to eBt = Bt + b (f and k remain the same

in parts (i) and (ii) of the lemma).

(i) If b; x > 0 then eXb;0
t � Xt for all t � 0 a.s. and eX0;x

t � Xt for all t � 0 a.s.

(ii) As b and x go to 0, the processes eXb;x
t converge a.s. to Xt. The convergence is

uniform on every �xed interval [0; T ].
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(iii) Suppose that ffn : n = 1; 2; : : :g are Lipschitz functions with the same Lipschitz

constant. Fix some x0; b0 and k. For each n, let bXn
t be the solution to (1.1) corresponding

to the function fn in place of f . If the functions fn converge to (necessarily Lipschitz)

f on every bounded interval then the solutions bXn
t converge to Xt, the solution of (1.1)

corresponding to f .

The statement of the next theorem is rather complicated in order to be directly ap-

plicable in Burdzy, Frankel and Pauzner (1997). We precede it with a simpli�ed version

of the result, to help the reader grasp its meaning.

Fix some x0 2 (0; 1) and suppose that f is a decreasing Lipschitz function with

f 0(x0) 6= 0. Fix some � and �2. Let Bk
t be a Brownian motion with drift �=k, variance

�2=k, and starting from Bk
0 = f(x0) for every k. Let Xk

t be the solution of

dXk=dt =

�
(1�Xk

t ) if Bk
t > f(Xk

t ),
�Xk

t if Bk
t < f(Xk

t ).

Fix arbitrarily small c0 2 (0;min(x0; 1 � x0)), and let T k
1 = infft > 0 : Xk

t =2 (c0; 1�
c0)g and T k

0 = supft < T k
1 : Bk

t = f(Xk
t )g. Then as k !1 (as the variance and drift of Bk

�

go to 0), the random bifurcation times T k
0 go to 0 in distribution. Moreover, the probability

of a \positive" bifurcation (de�ned as dXk=dt > 0 for all t 2 (T k
0 ; T

k
1 )) converges to 1�x0

as k ! 1. The probability of a \negative" bifurcation goes to x0. Theorem 2 proves a

result that is even stronger, since the function f and other parameters can vary with k.

Theorem 2. For each k > 0, let Bk
t be a Brownian motion with drift �k and variance

�2k, where limk!1 �k = limk!1 �2k = 0. Assume that for each k, we have a continuously

di�erentiable decreasing function fk. Suppose that x
k
0 2 [0; 1] are numbers which converge

to some �xed x0 2 (0; 1) as k !1. Assume that limk!1 f 0k(x0) 6= 0, and the derivatives

are asymptotically uniformly continuous at x0, i.e., for every " > 0 there exist k0 <1 and

� > 0 such that jf 0k(x) � f 0k(x0)j < " for all x 2 [x0 � �; x0 + �] and all k > k0. Let X
k
t be

the solution to the following di�erential equation, with Bk
0 = fk(x

k
0 ), a.s.,

dXk
t =dt =

�
�k(1�Xk

t ) if Bk
t > fk(X

k
t ),

�b�kXk
t if Bk

t < fk(X
k
t ),

(1:2)

where limk!1 �k = � 2 (0;1) and limk!1
b�k = b� 2 (0;1).

Fix arbitrarily small c0 2 (0;min(x0; 1 � x0)), and let T k
1 = infft > 0 : Xk

t =2 (c0; 1�
c0)g and T k

0 = supft < T k
1 : Bk

t = fk(X
k
t )g.
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(i) The random times T k
0 converge to 0 in distribution as k!1.

(ii) The probability that dXk=dt > 0 for all t 2 (T k
0 ; T

k
1 ) converges to

�(1�x0)

�(1�x0)+b�x0 as

k ! 1. Consequently, the probability that the derivative of Xk is negative on the same

interval converges to b�x0
�(1�x0)+b�x0 .

For brevity, Theorem 2 is stated only for the case x0 2 (0; 1). It also holds when x0 2 f0; 1g,
with a slight change in the de�nition of T k

1 . Fix any arbitrarily small c0 > 0. If x0 = 0, let

T k
1 = infft > 0 : Xk

t � 1� c0g. If x0 = 1, let T k
1 = infft > 0 : Xk

t � c0g. (The de�nition
of T k

0 is unchanged.)

In Theorem 1, we prove the existence and uniqueness of the solutions to (1.1). The

analogous results hold for the solutions of (1.2), without assuming that �k = b�k. We omit

the proof, which is analogous to that of Theorem 1. Note that Lemmas 1 and 2 hold as

well if (1.2) is substituted for (1.1).

We note that Theorem 2 remains true if one (but only one) of the constants � or

b� is equal to zero. The proof of such modi�ed theorem does not require any conceptual

changes.

Corollary 1 below shows that the results of Lemmas 1 and 2 and Theorems 1 and 2

continue to hold if the trend in the Brownian motion is a more general function of t and

Bt.

Corollary 1. Let the functions �(b) and �(t; b) be Lipschitz in all arguments, and assume

that j�(t; b)j < �(b) for all b and t. Let the di�usion process bB be de�ned by d bBt =

d�t + ��(t; bBt)dt, where � is a Brownian motion with variance �2 and zero drift. Then

Theorem 1 and Lemmas 1 and 2 hold for bB in place of B. Theorem 2 remains true if we

replace Bk with the di�usion process bBk, which has variance �2k and drift �k�(t; bBk
t ) and

where �2k and �k satisfy the same properties as in the statement of Theorem 2.

Consider a right-continuous process (At)t�0. We will say that (At)t�0 has i.i.d. jumps

if: (1) for some random times ftigi�0, t0 = 0, the process At is constant on every interval

[ti�1; ti); and (2) the random vectors (ti� ti�1; Ati �Ati�) are independent and identically

distributed.

Consider a process At with i.i.d. jumps and A0 = b0 and the following di�erential

equation,

dX=dt =

�
k(1�Xt) if At > f(Xt),
�kXt if At < f(Xt).

(1:3)
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Since At is constant almost everywhere, there need not be a unique Lipschitz solution

to (1.3). LetXt andXt be the maximal and the minimal Lipschitz solutions; their existence

can be shown using the approach given in the proof of Theorem 1.

Fix a constant c > 0 and let g(b; x) be any Lipschitz function. Let A be either a

Brownian motion or a process with i.i.d. jumps and

�(x; b;A; f) = E

�Z 1

t=0

e�ctg(At;Xt)dt j (A0;X0) = (b; x)

�
;

�(x; b;A; f) = E

�Z 1

t=0

e�ctg(At;Xt)dt j (A0;X0) = (b; x)

�
:

Suppose that Aj
t is a sequence of processes with i.i.d. jumps such that the distribution

of (j � (ti� ti�1);
p
j � (Ati �Ati�)) is the same for all i and j, with the mean (1; 0) and the

variance of the second component equal to 1. Then it is standard to show (see Billingsley

(1968)) that the processes Aj
t converge in distribution to the Brownian motion with mean

0 and variance 1.

Proposition 1. Let fAi
tgi�1 be a sequence of processes with i.i.d. jumps that converges in

distribution to a Brownian motion B as i!1. Let f i be a sequence of strictly decreasing

Lipschitz functions that converges to f as i!1. Suppose that (xi; bi) converges to (x; b).

Then �(xi; bi;Ai; f i) and �(xi; bi;Ai; f i) both converge to �(x; b;B; f) = �(x; b;B; f).

2. Proofs. We will �rst prove Theorem 1. The proof of existence is quite elementary and

perhaps it is an easy corollary of known results. We provide it here for completeness. We

will give a quite intuitive proof of uniqueness instead of trying to derive uniqueness from

general results on stochastic di�erential equations.

Proof of Theorem 1. We will give the proof for the case �2 = 1 and � = 0, i.e., the

standard Brownian motion. The case of arbitrary �2 needs only minor adjustments. For

arbitrary �xed �, the distribution of Brownian motion without drift and the distribution

of Brownian motion with drift � are mutually absolutely continuous on any �nite interval

[0; t]. Hence, the existence and uniqueness of solutions to (1.1) follows for the case of

arbitrary constant drift from the case with no drift.

The �rst step is to prove the existence of a solution. Consider a � 2 (0; k=2) and de�ne

a �-approximate solution X�
t as follows. Suppose that b0 6= f(x0). It will be obvious from

the proof how to deal with the case when b0 = f(x0). Recall that almost all Brownian
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paths are continuous. This easily implies that the condition X�
0 = x0 and the equation

(1.1) de�ne a continuous function X�
t in a unique way until the �rst time t = t1 when

Bt1 = f(X�
t1
). We then let X�

t = X�
t1
+ (t � t1)k(1 � X�

t1
) for all t 2 [t1; t1 + �]. With

probability 1, Bt1+� 6= Bt1 = f(X�
t1+�

). Since � < k=2, the total increment of X�
t over

the interval [t1; t1 + �] is bounded by (1�X�
t1
)=2 and so we must have X�

t 2 (0; 1) for all

t � t1 + �. We extend the function X�
t in a unique way so that it is continuous at time

t1 + � and it satis�es (1.1) for all t > t1 + � until the �rst time t2 > t1 + � such that

Bt2 = f(X�
t2
). We let X�

t = X�
t2
+ (t� t2)k(1�X�

t2
) for all t 2 [t2; t2 + �]. If we continue

in this way, we will de�ne a �-approximate solution for all t � 0 since after every time tj

when the functions Bt and f(X
�
t ) are equal, we extend the solution for � units of time. We

note that the sequence of times tj will be in�nite a.s. but we do not need this property

in our proof. The function X�
t takes values in (0; 1) for all t, by the same arguement that

showed this for t � t1 + �. Note that the �-approximate solution satis�es (1.1) for all

t 2 (tj + �; tj+1), for all j, and it is continuous for all t. Hence, the derivative of X�
t is

de�ned almost everywhere and its absolute value is bounded by k, in view of (1.1). It

follows that the �-approximate solution is a Lipschitz function with the Lipschitz constant

k. Next, let � = 1=m, and for every integer m � 1, consider a 1=m-approximate solution.

Let Xt be the essential supremum of X
1=m
t , i.e.,

Xt = lim
n!1

sup
m>n

X
1=m
t :

The supremum of an arbitrary family of Lipshitz functions with constant k is a Lipshitz

function with the same constant, and the same remark applies to the limit of a sequence

of such functions. Hence, Xt is a Lipschitz function with constant k.

For a �xed t, we can �nd a subsequence of X
1=m
t converging to Xt. Using the diagonal

method and the Lipschitz property of X
1=m
t 's, we see that there exists a subsequence of

X
1=m
t which converges to Xt uniformly on compact sets. Without loss of generality we

will assume that X
1=m
t itself converges to Xt uniformly on compacts.

We will show that Xt is a solution to (1.1). The set of t such that Bt = f(Xt) is

closed because both functions Bt and f(Xt) are continuous. Consider any interval (s1; s2)

such that Bt 6= f(Xt) for all t 2 (s1; s2). Choose arbitrary small �1 > 0. Let �2 =

inft2(s1+�1;s2��1) jBt�f(Xt)j. Since the 1=m-approximate solutions converge uniformly to

Xt on [s1; s2] and f is Lipschitz, we have jf(X1=m
t )�f(Xt)j < �2=2 for all t 2 (s1+�1; s2�

�1) and su�ciently large m. It follows that for such t and m, we have f(X
1=m
t ) 6= Bt. Let

us assume that f(X
1=m
t ) > Bt for t 2 (s1 + �1; s2 � �1) and large m, the other case being
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analogous. When m is large enough so that 1=m < �1, it follows from our construction of

�-approximate solutions and from (1.1) that X
1=m
t =dt = �kX1=m

t for t 2 (s1+2�1; s2��1).

Let s0 = s1 + 2�1. We obtain X
1=m
t = X

1=m
s0 e�k(t�s0) for t 2 (s1 + 2�1; s2 � �1). Since

X
1=m
s0 ! Xs0 , we see that Xt = Xs0e

�k(t�s0) for t 2 (s1 + 2�1; s2 � �1). Thus Xt satis�es

(1.1) on (s1 + 2�1; s2 � �1) and in view of arbitrary nature of �1, the same claim extends

to the whole interval (s1; s2). The argument applies to all intervals (s1; s2) such that

Bt 6= f(Xt) for all t 2 (s1; s2). This implies that Xt is a Lipschitz solution to (1.1). The

proof of existence of a Lipschitz solution is complete.

Since the functions X
1=m
t are adapted to the Brownian �ltration FB

t = �(Bv; v � t),

so is their essential supremum, Xt. Moreover, the process f(Bt;Xt); t � 0g is strong

Markov with respect to the �ltration fFB
t ; t � 0g.

We will show that Xt is the largest of all Lipschitz solutions to (1.1), i.e., if X�
t is

another Lipschitz solution then Xt � X�
t for all t. Consider any Lipschitz solution X�

t to

(1.1) and suppose that X�
t > Xt for some t. Then there must exist � = 1=m such that

X�
t > X�

t for some t. Fix such � and let S be the in�mum of t such that X�
t > X�

t .

If S 2 [tj + �; tj+1) for some j, then f(X�
S ) = f(X�

S ) 6= BS a.s., and, by continuity,

the same relationship extends to some non-degenerate interval to the right of S. On this

interval, both X�
t and X�

t satisfy one of the conditions in (1.1), so they must agree, and

this contradicts the de�nition of S. Next suppose that S 2 [tj ; tj + �) for some j. On

this interval, the derivative of X�
t is equal to k(1 � X�

tj
). It is is easy to see that no

Lipshitz solution to (1.1) can grow faster than that on this interval, and so S � tj + �, a

contradiction which completes the proof of our claim.

The solution Xt is consistent in the following sense. Consider a �xed path fBt; t � 0g
and the solution Xt. Now choose any s > 0 and suppose that Xs = z. Let fX�

u; u � sg be
the largest Lipschitz solution with constant k for the equation (1.1) on the interval [s;1)

with X�
s = z and the path fBt; t � 0g truncated to fBt; t � sg. Then it is easy to see that

X�
u = Xu for all u � s. It follows that the portion fXt; t 2 [s; u]g of the solution to (1.1)

may be de�ned only in terms of Xs and fBt; t 2 [s; u]g.
Let D = f(b; x) 2 R2 : b = f(x)g. We will apply the results of Maisonneuve (1975)

to construct an exit system (Hb;x; dL) for the process of excursions of (Bt;Xt) from the

set D. We will briey describe the elements of the exit system. See Blumenthal (1992),

Burdzy (1987), Maisonneuve (1975), or Sharpe (1989) for various versions of excursion

theory. The �rst element of an exit system, Hb;x's, are excursion laws, i.e., Hb;x is an

in�nite �-�nite measure de�ned on the space C� of functions (eBt ; e
X
t ) de�ned on (0;1)
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(note that 0 is excluded) which take values in R2 [ f�g. Here � is the co�n state. Let

� be the lifetime of an excursion, i.e., infft > 0 : (eBt ; e
X
t ) = �g. Then under Hb;x, we

have (eBt ; e
X
t ) 2 R2 for t 2 (0; �) and (eBt ; e

X
t ) = � for t 2 [�;1), except for the set

of excursions of Hb;x-measure zero. The measure Hb;x is strong Markov with respect to

the transition probabilities of the process f(Bt;Xt); t � 0g killed at the hitting time of

D. Moreover, the Hb;x-measure of the set of paths for which limt#0(e
B
t ; e

X
t ) 6= (b; x) is

equal to 0. The second element of the exit system, dL, denotes the measure de�ned by a

non-decreasing process Lt. The process Lt is a continuous additive functional which will

be referred to as the local time for (Bt;Xt) on D. The process Lt does not increase on

any interval (s; u) such that (Bv;Xv) =2 D for v 2 (s; u); in other words, Ls = Lu for such

intervals.

Next we will study the excursion laws Hb;x. Note that we need to consider only Hb;x

with b = f(x). It is clear that eBt 6= f(eXt ) for t 2 (0; �). Hence, Xt is governed by one and

only one of the formulae given in (1.1), on the whole interval (0; �). In either case, eXt is an

exponential function or a linear transformation of an exponential function for the duration

of an excursion. Consider the process f(�t; eXt )g := f(eBt � f(eXt ); e
X
t )g under the measure

Hb;x. Let bH0;x be its distribution (b will be suppressed in the notation). Since Hb;x is

strong Markov with respect to the transition probabilities of the process f(Bt;Xt); t � 0g
killed at the hitting time of D, it follows that the distribution of �t is an excursion law

from 0 whose transition probabilities are those for Brownian motion with drift �f(Xt)

killed upon returning to 0. Let eH0;x be the excursion law on the paths f(�t; eXt )g such

that eX0 = x, the function eXt is governed by the same deterministic equation as in the case

of bH0;x, and the distribution of �t is an excursion law from 0 whose transition probabilities

are those for Brownian motion with no drift killed upon returning to 0. The only di�erence

between eH0;x and bH0;x is the absence of the drift in the former one.

Let S(�) be the amount of time spent by �t within (0; �), for small � > 0. Since

the drift �f(Xt) under bH0;x is bounded, it is not hard to see that the local properties

of excursions under bH0;x are similar to those of eH0;x. In particular, we have for some

�1 2 (0;1),

lim
�!0

bH0;x(S(�))=� = �1;

since a similar result is true for eH0;x.

Note that bH0;x is the sum of two measures; the �rst one is supported on paths for

which �t stays above 0 and the other one is supported on the paths below 0. Let S�(�)
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be the amount of time spent by �t within (��; 0). By analogy,

lim
�!0

bH0;x(S�(�))=� = �2;

where �2 is another normalizing constant. We will show that �2 = �1; this claim requires

a proof since the normalizations for the \positive" and \negative" parts of bH0;x, relative

to eH0;x, might not agree.

Suppose that T � is any stopping time for the �ltration generated by Lt, for example,

we may take ` > 0 and let T � be the stopping time infft > 0 : Lt � `g. Since Lt does

not increase when Bt is away from f(Xt), we must have BT� = f(XT� ). In view of the

Lipschitz property of f , we have jf(XT�+t) � f(XT� )j � c1kt, and so for small t we have

jf(XT�+t) � f(XT� )j � t5=6. Let A1 = A1(s) be the event that the �rst excursion of

(Bt;Xt) from the set D after the time T � with jeBt � f(eXt )j > t3=4 for some t < �, is such

that eBt > f(eXt ) for t < �. Let A2 be the analogous event with eBt < f(eXt ) for t < �. Let

T (a) be the hitting time of a for Bt and let � be the usual Markovian shift. We have for

small s,

fT (BT� + s3=4 + s5=6) � �T� < T (BT� � s3=4 + s5=6) � �T� < T � + sg � A1;

and

fT (BT� � s3=4 � s5=6) � �T� < T (BT� + s3=4 � s5=6) � �T� < T � + sg � A2:

It is easy to see that

lim
s!0

P (T (BT� + s3=4 + s5=6) � �T� < T (BT� � s3=4 + s5=6) � �T� < T � + s)

= lim
s!0

P (T (BT� � s3=4 � s5=6) � �T� < T (BT� + s3=4 � s5=6) � �T� < T � + s) = 1=2:

It follows that

lim
s!0

P (A1(s)) = lim
s!0

P (A2(s)) = 1=2:

Hence, as s goes to 0, the probability that the �rst excursion of � after T � which hits s3=4

will come before the excursion which hits �s3=4 converges to 1=2. Since T � is an arbitrary

stopping time for Lt, the normalizations for the \positive" and \negative" parts of bH0;x,

relative to eH0;x, must agree for almost all x (strictly speaking, they must agree only on

the set that may be charged by dLt but we can make them always equal without loss of

generality). This completes the proof that �1 = �2.
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Even though we already know that both parts of bH0;x have identical normalizations

relative to eH0;x, the value of �1 is not yet determined. At this point we choose the

normalization so that we have

lim
�!0

bH0;x(S(�))=� = lim
�!0

bH0;x(S�(�))=� = 1:

We choose the normalization of the local time to match that of the excursion laws so

that we can apply the excursion system theory. The last formula implies, just like for the

standard local time of Brownian motion at 0, that

lim
�#0

1

�

Z t

0

1fBs�f(Xs)2(0;�)gds = Lt; (2:1)

with probability 1, for every t � 0.

Now we apply the results from excursion theory proved above to show the uniqueness

of Xt. Suppose that X
�
t is another Lipschitz solution starting from the same point X�

0 =

x0 = X0. First we prove that the set Q of times t such that Bt = f(X�
t ) has zero Lebesgue

measure. Fix arbitrarily small a > 0. Consider � > 0, to be speci�ed later. Note that for

any integer j,

jf(X�
j�+s) � f(X�

j�)j � c1ks:

By conditioning on the values of Bj� and X�
j�, and by using Brownian scaling, we obtain

for all integer j � 0,

P (Bj�+s 2 [f(X�
j�+s) � c1ks; f(X

�
j�+s) + c1ks]) < a;

provided s < � and � is su�ciently small. Hence, the expected value of
R t
0
1fBs=f(X�

s
)gds

is less than at. The estimate holds for arbitrarily small a and so the expected value of

the integral is 0. By the Fubini theorem, the set Q has zero Lebesgue measure, with

probability 1. Let bQ be the set of all t such that Bt = f(X�
t ) or Bt = f(Xt). Clearly, the

same argument shows that bQ has zero measure.

For every s 2 [0; t] n bQ, the derivatives @
@s
X�
s and @

@s
Xs exist and are de�ned by (1.1).

Recall thatXt is the maximal Lipschitz solution and soXt � X�
t for all t. It follows directly

from (1.1) that if Bt < f(Xt) � f(X�
t ) or f(Xt) � f(X�

t ) < Bt then
@
@t
X�
t > @

@t
Xt. On

the other hand, the condition f(Xt) < Bt < f(X�
t ) implies that @

@t
X�
t < @

@t
Xt. However,

we always have @
@t
Xt� @

@t
X�
t � 2k. In view of the fact that bQ has zero measure, we do not

need to analyze other cases for the relative position of Bt, f(Xt) and f(X�
t ). We obtain

(Xt �X�
t ) � (Xs �X�

s ) �
Z t

s

1ff(Xu)<Bu<f(X�

u
)g2kdu:
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Let U(s) = infft > 0 : Lt � sg. In view of (2.1) we can �nd small � > 0 such that

1

2�

Z U(1=16c1k)

0

1fBs�f(Xs)2(0;2�)gds � 2LU(1=16c1k) = 1=(8c1k):

Let V = U(1=(16c1k)) ^ infft > 0 : jf(Xt) � f(X�
t )j � 2�g. Then

(XV �X�
V )� (X0 �X�

0 ) �
Z V

0

1ff(Xu)<Bu<f(X�

u
)g2kdu

�
Z V

0

1fBu�f(Xu)2(0;2�)g2kdu

�
Z U1=16k

0

1fBu�f(Xu)2(0;2�)g2kdu

� 4�k=(8c1k) = �=(2c1):

Since XV �X�
V � �=(2c1), we must have jf(Xt)� f(X�

t )j � �=2, and so V = U(1=16c1k).

Since this is true for arbitrarily small � > 0, we conclude that Xt = X�
t for t � U(1=16c1k).

An induction argument based on the strong Markov property applied at the stopping times

U(j=16c1k), j = 1; 2; : : :, shows that Xt = X�
t for t � U((j + 1)=16c1k) and every j � 1.

This implies that Xt = X�
t for all t.

Proof of Lemma 1. Assume �rst that X1
0 = x1 > x2 = X2

0 . Let T be the �rst time t

when X1
t = X2

t . We will argue that T = 1. On the interval [0; T ) we have X1
t > X2

t .

Hence, for any t 2 [0; T ), except a set of measure zero, we have either

(i) Bt < f1(X
1
t ) � f1(X

2
t ) � f2(X

2
t ); or

(ii) f1(X
1
t ) � f1(X

2
t ) � f2(X

2
t ) < Bt; or

(iii) f1(X
1
t ) < Bt < f2(X

2
t ).

In cases (i) and (ii), we have

d(X1 �X2)

dt
= �k(X1

t �X2
t );

while in case (iii),

d(X1 �X2)

dt
= k(1�X1

t ) + kX2
t > �k(X1

t �X2
t ):

It follows that X1
t �X2

t � (x1 � x2)e
�kt for t < T , and so T =1.

Now consider the case when X1
0 = X2

0 = x0. Let X
n
t be the solution of (1.1) de�ned

relative to f1, the same Brownian motion Bt, and such that Xn
0 = x0 + 1=n. By the �rst

11



part of the proof, Xn
t � X2

t for all t a.s. Now let n go to in�nity. Let X�
t be the limit

of a subsequence of Xn
t . The limit exists for a subsequence because all functions Xn

t are

Lipschitz with constant k. One can prove that X�
t is a solution to (1.1) starting from x0

just like in the proof of Theorem 1. By uniqueness, X�
t = X1

t . Since all the functions X
n
t

are greater than or equal to X2
t , we must have X

1
t � X2

t a.s.

Proof of Lemma 2. We will deduce part (i) from Lemma 1. The condition eBt > f(Xt)

is equivalent to Bt > f(Xt)� b, and this may be rewritten as Bt > f1(Xt), where f1(x) =

f(x) � b. Since f1(x) � f(x), Lemma 1 implies that eXb;0
t � Xt. The assertion eX0;x

t � Xt

follows directly from Lemma 1.

For part (ii), take any sequence f(bn; xn)g such that bn ! 0 and xn ! 0 as n goes to

in�nity. For a �xed t, there exists a subsequence f(bnj ; xnj )g such that eXbnj ;xnj
t converges.

By extracting further subsequences and then using the diagonal method we can obtain a

subsequence f(b0n; x0n)g of the original sequence f(bn; xn)g such that eXb0
n
;x0
n

s converges to

a limit X�
s for every rational s > 0. The convergence is uniform on compact sets because

all functions eXb0
n
;x0
n

s are Lipschitz with constant k. We see that X�
s must be a solution

to (1.1) by the same argument as in the proof of Theorem 1. By uniqueness, X�
s = Xs

for all s. Since the same is true for any initial sequence f(bn; xn)g, we conclude that eXb;x
t

converge to Xt a.s., uniformly on compacts.

The proof of part (iii) is completely analogous to that for part (ii). One can show

that for every subsequence of bXn
t , there is a further subsequence which converges and,

moreover, it converges to a solution of (1.1). The argument is �nished by invoking the

uniqueness of the solution.

Lemma 3. Let excursion laws Hb;x be de�ned as in the proof of Theorem 1 but relative

to the solution of (1.2) in Theorem 2. Fix arbitrarily small " > 0 and x 2 (0; 1 � ").

Let A be the event that for the excursion (eBt ; e
X
t ) with lifetime � under Hb;x, we have

limt!�� eXt � 1� ". Assume that the derivatives f 0k of the functions in (1.2) are uniformly

continuous, with the modulus of continuity independent of k. Moreover, we assume that

jf 0k(x)j > c0, where c0 > 0 is independent of x and k. Suppose bk = fk(x). There exists

an absolute constant � 2 (0;1) such that

lim
k!1

Hbk;x(A)

�jf 0k(x)j�k(1 � x)
= 1:

The convergence is uniform in x on every interval (0; 1� "1) � (0; 1 � ").

12



Proof. To simplify the proof, we will consider only the case when � = limk!1 �k = 1.

Let g
x;k
t = fk(1� (1�x) exp(��kt)). The function gx;kt may be represented as fk(X

k
t )

where Xk
t is the solution to (1.2) starting from Xk

0 = x, and assuming that the �rst

condition in (1.2) is always satis�ed, i.e., Bk
t > fk(X

k
t ) for all t � 0. The derivative of g

x;k
t

is a continuous function of t and its value at t = 0 is f 0k(x)�k(1� x). Let Tb;y be the �rst

time t � 0 with Bk
t = fk(X

k
t ), assuming Bk

0 = b and Xk
0 = y. Let �k be the �rst time t

when Xk
t � 1� ".

Fix an arbitrarily small � > 0. We will show that there exists � > 0 such that when

jy � xj � �, k > 1=�, and �6k < b� fk(y) < �4k, then

(1� �)(b � fk(y))� � P (Tb;y > �k) � (1 + �)(b � fk(y))�; (2:2)

where

� = �(k; x; �2) = 2jf 0k(x)j(1 � x)=�2k :

Consider a small � > 0 whose value will be chosen later in the proof. Assume that

jy�xj is su�ciently small so that one can �nd small u > 0 (not depending on k) such that

for any t1 2 (0; u),

��� @
@t
g
y;k
t jt=t1

��� <
���(1 + �=2)

@

@t
g
y;k
t jt=0

��� <
���(1 + �)

@

@t
g
x;k
t jt=0

���
= (1 + �)jf 0k(x)j�k(1� x) � (1 + �)jf 0k(x)j(1 � x):

Let K be the line passing through (0; fk(y)) with the slope (1 + �)f 0k(x)(1 � x). Let

A1 denote the event that the process t! (t;Bk
t ) intersects K for some t > 0, and let A2

be the event that the process (t;Bk
t ) intersects K at some time t greater than u. In view of

our assumptions on the derivatives of fk's, we must have �k > u, if u is su�ciently small.

This and the fact that K lies below the graph of gy;kt for t 2 (0; u) imply that the event

fTb;y � �kg contains A1 nA2.

The probability that Brownian motion Bt with drift � > 0, variance �2 > 0, starting

from Bt = b > 0, will ever hit 0 is equal to

exp(�2b�=�2); (2:3)

by a formula from page 362, Section 7.5, of Karlin and Taylor (1975). In particular, the

probability of this event is strictly between 0 and 1. The formula (2.3) applies also to lines

with a constant slope, with the drift of Brownian motion being increased by the slope of

the line.
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Assume that k is so large that j�kj < (1 + �)jf 0k(x)j(1� x)=4. An application of (2.3)

gives

P (A1) = exp(�2(b� fk(y))[j(1 + �)f 0k(x)(1 � x)j + �k]=�
2
k):

In order to estimate the probability of A2, we will apply the Markov property at time

u. Either the Brownian motion decreases by more than ju(1 + �)f 0k(x)(1 � x)=2j units
over the interval (0; u) or its distance from K at time u is greater than this quantity.

A standard estimate shows that for v > 1, the probability that the normal distribution

deviates by more than v standard units from its mean is bounded above by exp(�v2=2).
We have assumed that k is so large that the absolute value j�kj of the drift of Bk

t is less

than j(1 + �)f 0k(x)(1 � x)=4j. Hence if the Brownian motion Bk
t decreases by more than

ju(1+ �)f 0k(x)(1�x)=2j units over the interval (0; u) then its value at time u is more than

ju(1 + �)f 0k(x)(1 � x)=4jp
u�k

standard units away from its center. The probability of this event is bounded by

exp(�u[(1 + �)f 0k(x)(1 � x)]2=(32�2k)): (2:4)

If Bk
u is more than u(1+ �)jf 0k(x)j(1�x)=2 units above K then the probability that it will

ever hit K after time u is bounded by

exp(�2(u(1 + �)jf 0k(x)j(1 � x)=2)[j(1 + �)f 0k(x)(1 � x)j + �k]=�
2
k); (2:5)

by (2.3). The probability of A2 is bounded by the sum of (2.4) and (2.5). Since �6k <

b � fk(y) < �4k, it is elementary to check that for x < 1� " and large k, the sum of (2.4)

and (2.5) is less than �(1� P (A1)). It follows that

P (Tb;y > �k) � 1� (P (A1)� P (A2)) � (1 + �)(1� P (A1)):

Thus

P (Tb;y > �k) � (1 + �)(1� exp(�2(b � fk(y))[j(1 + �)f 0k(x)(1 � x)j + �k]=�
2
k)):

In view of �6k < b � fk(y) < �4k, this gives for large k,

P (Tb;y > �k) � (1 + �)2(2(b � fk(y))(1 + 2�)jf 0k(x)j(1 � x)=�2k):
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Since � can be arbitrarily small, we obtain for any � > 0 and large k,

P (Tb;y > �k) � (1 + �)2(b � fk(y))jf 0k(x)j(1 � x)=�2k :

This proves the upper bound in (2.2).

The proof of the lower bound in (2.2) proceeds along similar lines. We consider a

small � > 0. Suppose that k is su�ciently large so that �k > (1 � �)=(1 � �=2). Assume

that jy�xj is su�ciently small so that one can �nd small u > 0 (not depending on k) such

that for t1 2 (0; u),

��� @
@t
g
y;k
t jt=t1

��� >
���(1 � �=4)

@

@t
g
y;k
t jt=0

��� >
���(1� �=2)

@

@t
g
x;k
t jt=0

���
= j(1� �=2)f 0k(x)�k(1� x)j > (1 � �)jf 0k(x)j(1 � x):

Let K1 be the line passing through (0; fk(y)) with the slope (1� �)f 0k(x)(1�x) and let K2

be the horizontal line passing through the point (u; gy;ku ). Let A1 denote the event that the

process (t;Bk
t ) intersects K1 for some t > 0, and let A2 be the event that (t;B

k
t ) intersects

K2 at some t 2 [u; �k]. Since K1 lies above the graph of gy;kt for t 2 (0; u) and K2 lies

above the graph of gy;kt for t 2 (u; �k), the event fTb;y � �kg is contained in A1 [ A2. We

have, by (2.3),

P (A1) = exp(�2(b� fk(y))[(1 � �)jf 0k(x)j(1 � x) + �k]=�
2
k):

In order to estimate the probability of A2, we will apply the Markov property at time u.

Either the Brownian motion decreases by more than u(1��)jf 0k(x)j(1�x)=2 units over the

interval (0; u) or its distance from K2 at time u is greater than this quantity. Suppose that

k is so large that the absolute value j�kj of the drift of Bk
t is less than (1��)jf 0k(x)j(1�x)=4.

Then if the Brownian motion decreases by more than u(1 � �)jf 0k(x)j(1 � x)=2 units over

the interval (0; u) then its value at time u is more than

u(1� �)jf 0k(x)j(1 � x)=4p
u�k

standard units away from its center. The probability of this event is bounded by

exp(�u[(1� �)f 0k(x)(1 � x)]2=(32�2k)): (2:6)

Note one can �nd a constant t1 < 1 which depends on � but does not depend on k

or x and such that if Xk
t = g

y;k
t for all t < �k then �k < t1 a.s. Let K3 be the horizontal
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line which is u(1 � �)jf 0k(x)j(1 � x)=8 units above K2. Assume that k is so large that

the absolute value j�kj of the drift of Bk
t is less than u(1 � �)jf 0k(x)j(1 � x)=(8t1). Then

the absolute value of the integral of the drift �k over the interval (u; �k) is bounded by

u(1 � �)jf 0k(x)j(1 � x)=8. It follows that the probability that the Brownian motion with

drift �k and starting from B0 = b, will hitK2 after time u but before time �k is bounded by

the probability that Brownian motion with no drift starting from the level Bk
u will hit the

line K3 before time t1. This probability is in turn bounded by two times the probability

that the Brownian motion with no drift starting from the level Bk
u at time u will be below

K3 at time u+ t1. If B
k
u is more than u(1� �)jf 0k(x)j(1�x)=2 units above K2 then it is at

least u(1� �)jf 0k(x)j(1 � x)=4 units above K3. If this condition is ful�lled, the probability

that the Brownian motion with no drift is below K3 at time u+ t1 is bounded above by

exp(�(1=2)[u(1 � �)f 0k(x)(1 � x)=4]2=(t1�
2
k)): (2:7)

In view of our previous remarks, a bound for the probability of A2 may be obtained by

multiplying (2.7) by 2 and adding it to (2.6). If b� fk(y) 2 [�6k; �
4
k] and k is large then the

sum of (2.6) and two times (2.7), and so the probability of A2, is less than �(1� P (A1)).

It follows that

P (Tb;y > �k) � 1� (P (A1) + P (A2)) � 1� P (A1)� �(1� P (A1)) � (1� �)(1� P (A1)):

Thus

P (Tb;y > �k) � (1� �)(1� exp(�2(b � fk(y))[(1 � �)jf 0k(x)j(1 � x) + �k]=�
2
k)):

For b � fk(y) < �4k and large k, this gives

P (Tb;y > �k) � (1 � �)2(2(b � fk(y))(1 � 2�)jf 0k(x)j(1 � x)=�2k):

Since � can be arbitrarily small, we obtain for any � > 0 and large k,

P (Tb;y > �k) � (1� �)2(b � fk(y))jf 0k(x)j(1 � x)=�2k :

This proves the lower bound in (2.2) and so the proof of (2.2) is complete.

We will use (2.2) to estimate the Hb;x-measure of excursions whose second component

exits the interval [0; 1��] before the lifetime of the excursion. By the abuse of the notation,

we will refer only to the �rst component and ignore the second component of the excursion

(eBt ; e
X
t ) under the excursion laws. We recall from the proof of Theorem 1 that locally
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near the starting point, the excursion laws bH0;x may be approximated by the excursion

laws eH0;x of Brownian motion with no drift. The renormalized eH0;x-distribution of the

excursion at time t > 0, truncated to excursions with lifetimes exceeding t, is the same

as the distribution of Brownian motion starting from 0 and conditioned not to return

to 0 before time t. By scaling, this distribution is the same for any t, up to the usual

Brownian scaling factor, and so it has a density q(z=�k
p
t)=(�k

p
t). The eH0;x-mass of

excursions which have lifetimes greater than t > 0 is a constant times �k=
p
t, assuming

that for any �k we normalize the local time to be the density of the occupation measure.

It follows that, for small t, we can approximate the density of eH0;x-excursions and also of

bH0;x-excursions by q(z=�k
p
t)=t. We will apply the Markov property at t = �10k because a

typical excursion position at the time t = �10k is �5k away from the starting point, and so

we can apply formula (2.2). By applying the Markov property at time t = �10k we see that

the ratio of Hb;x(A) and

Z 1

0

[2zjf 0k(x)j(1 � x)=�2k] � [q(z=�6k)=�10k ]dz

converges to 1 as k!1. The last quantity is equal to

jf 0k(x)j(1 � x)

Z 1

0

(2z=�2k) � [q(z=�6k)=�10k ]dz = �jf 0k(x)j(1 � x):

Recall that we considered only the case when �k ! � = 1 to see that this completes the

proof.

Proof of Theorem 2. (i) In order to simplify the notation, we will assume in part (i)

that � = limk!1 �k = b� = limk!1
b�k = 1.

Fix some arbitrarily small p1 > 0 and t0 > 0. We will show that for large k the

random time T k
0 is less than t0 with probability greater than 1� p1. Suppose that M > 1

is a large integer whose value will be speci�ed later. Recall the meaning of c0 from the

statement of the theorem and let t1 = t0=(2M). If Bk
s 6= fk(X

k
s ) for all s in some interval

(s1; s2) then s ! Xk
s is monotone on this interval and it is an exponential function or a

linear transformation of an exponential function. It is easy to see that for any given t1 we

can �nd k0 <1 such that for k > k0, if B
k
s 6= fk(X

k
s ) for all s 2 (s1; s1+ t1) then we must

have T k
1 < s1 + t1, no matter what the value of Xk

s1
is. From now on we will assume that

k > k0(t1).

Find c1 > 0 and c2 2 (0;min(x0 � c0; 1 � c0 � x0)), such that jf 0k(x)j 2 (c1; c
�1
1 )

for x 2 [x0 � c2; x0 + c2] and k greater than some k0. We will assume without loss of

17



generality that t1 < c2=2. Recalling that x
k
0 ! x0 we see that the endpoints of the interval

[fk(x0 + c2=2); fk(x0 � c2=2)] are at least c1c2=4 units away from fk(x
k
0 ), for large k.

Let S0 = 0, and for j � 1, let Sj be the smallest t 2 [Sj�1 + �2k; Sj�1 + �2k + t1] with

Bk
t = fk(X

k
t ). If there is no such t, we let Sj = Sj�1 + �2k + t1. Let Aj = fT k

1 � Sjg and
Cj = fBk

Sj
2 [fk(x0 + c2=2); fk(x0 � c2=2)]g. We have

P (Aj ) = P (Aj \Aj�1 \ : : : \A0) (2:8)

� P (Aj \ Cj \Aj�1 \ Cj�1 \ : : : \A0 \ C0) + P ([Cj \ Cj�1 \ : : : \ C0]
c)

=

jY
m=1

P (Am \ Cm j Am�1 \ Cm�1 \ : : : \A0 \ C0) + P ([Cj \ Cj�1 \ : : : \ C0]
c)

�
jY

m=1

P (Am j Am�1 \ Cm�1 \ : : : \A0 \ C0) + P ([Cj \ Cj�1 \ : : : \ C0]
c):

Recall that Bk
0 = fk(x

k
0), the points x

k
0 converge to x0, and

[fk(x
k
0)� c1c2=4; fk(x

k
0) + c1c2=4] � [fk(x0 + c2=2); fk(x0 � c2=2)];

for large k. As k goes to in�nity, the variance and drift of Bk
t go to zero. Hence we may

and will assume that k is so large that the probability that Bk
s is outside the interval

[fk(x0 + c2=2); fk(x0 � c2=2)] for some s 2 (0; t0) is less than p1=2. This implies that

P ([Cj \ Cj�1 \ : : : \ C0]
c) � p1=2: (2:9)

Next we will estimate P (Am j Am�1 \ Cm�1 \ : : : \ A0 \ C0). Let us assume that

the event Am�1 \ Cm�1 \ : : : \ A0 \ C0 holds. We will further condition on the value

of Bk
Sm�1

and Xk
Sm�1

. Since we are assuming that Cm�1 holds, we must have Bk
Sm�1

2
[fk(x0 + c2=2); fk(x0 � c2=2)]. We will assume without loss of generality that Bk

Sm�1
�

fk(X
k
Sm�1

); the opposite case may be treated in an analogous way. Recall that s ! Xk
s

is a Lipschitz function with constant 1, and the Lipschitz constant for fk is c�11 , on the

interval [x0 � c2; x0 + c2]. Thus,

fk(X
k
Sm�1+s

) � fk(X
k
Sm�1

) + c�11 s;

for s � c2=2. If k is large enough so that �2k < c2=2 then

fk(X
k
Sm�1+�

2

k

) � fk(X
k
Sm�1

) + c�11 �2k: (2:10)

18



Suppose that k is su�ciently large so that and j�kj < 1. The variance of Bk
t is equal

to t�2k, so

P (Bk
Sm�1+�

2

k

�Bk
Sm�1

> 2c�11 �2k) > p2 > 0;

provided k is su�ciently large. This and (2.10) yield

P (Bk
Sm�1+�

2

k

� fk(X
k
Sm�1+�

2

k

) > c�11 �2k) > p2: (2:11)

For su�ciently large k we obtain from (2.10),

fk(X
k
Sm�1+�

2

k

) � fk(X
k
Sm�1

) + c�11 �2k � Bk
Sm�1

+ c�11 �2k

� fk(x0 � c2=2) + c�11 �2k � fk(x0 � c2);

and so Xk
Sm�1+�

2

k

� x0 � c2. Note that for large k we have

���� @@t fk(Xk
t )

���� > (c1=2)min(x0; 1� x0) = c3;

provided Xk
t 2 [x0 � c2; x0 + c2] and Bk

t 6= fk(X
k
t ). Let K be the straight line passing

through the point (Sm�1 + �2k; fk(X
k
Sm�1+�

2

k

)) with the slope c4 = �c3=2. Recall that we
have assumed that t1 < c2, that s! Xk

s is Lipschitz with constant 1, and that the absolute

value of the derivative of fk on [x0�c2; x0+c2] is greater than c1. All these facts imply that

if Xk
Sm�1+�

2

k

2 [x0 � c2; x0 + c2=2] and if Bk
Sm�1+�

2

k
+s

> fk(X
k
Sm�1+�

2

k
+s
) for all s 2 (0; t1)

then Xk
Sm�1+�

2

k
+s
2 [x0�c2; x0+c2] for s 2 (0; t1) and so the graph of the function fk(X

k
s )

stays below the line K for s 2 (Sm�1 + �2k; Sm�1 + �2k + t1). By monotonicity, the same is

true if we relax the assumption Xk
Sm�1+�

2

k

2 [x0 � c2; x0 + c2=2] and suppose instead that

Xk
Sm�1+�

2

k

� x0 � c2. It follows that if the Brownian motion Bk
Sm�1+�

2

k
+s

stays above the

lineK for all s > 0 then it cannot cross the graph of fk(X
k
s ) before the time Sm�1+�2k+t1.

This would imply that T k
1 < Tm. Hence, the (conditional) probability of Am is less than

the probability of hitting K at any time greater than Sm�1 + �2k. We estimate the last

probability using (2.3). Let us assume that

Bk
Sm�1+�

2

k

� fk(X
k
Sm�1+�

2

k

) > c�11 �2k;

as in (2.11). For large k, the absolute value of drift of Bk is bounded by jc4j, the same

quantity as the slope of K. The probability of hitting K is therefore less or equal to

exp
�
� 2(c�11 �2k)j2c4j

�2k

�
= p3 < 1:
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This and (2.11) give,

P (Am j Am�1 \ Cm�1 \ : : : \A0 \ C0) � (1� p2) + p2p3 = p4 < 1:

Combining this with (2.8) and (2.9) yields

P (AM ) � pM4 + p1=2:

We now choose M so that pM4 < p1=2 and then we choose large k so that M�2k < t0=2 to

obtain

P (T k
1 � t0) � P (T k

1 �M(�2=k + t1)) � P (T k
1 � SM ) = P (AM ) � p1:

This completes the proof of part (i) of Theorem 2.

(ii) We have just proved that the bifurcation time T k
0 converges to 0 in distribution,

as k goes to in�nity. By the continuity of Brownian paths, the position of the Brownian

motion at the bifurcation time converges to x0, in distribution. Lemma 3 shows that the

ratio of the mass that the excursion laws give to excursions bifurcating upward to the mass

given to excursions going downward and starting from the same point x has the same limit

as
�jf 0k(x0)j�k(1 � x0)

�jf 0k(x0)jb�kx0
which is

�(1� x0)b�x0 ; (2:12)

assuming that x ! x0 and k ! 1. The processes of upward excursions and downward

excursions are independent Poisson processes with random intensities. The ratio of the

intensities converges to the quantity in (2.12), in distribution, on the whole interval [0; T k
0 ].

This implies that the ratio of the probability of having an upward bifurcation to the

probability of having a downward bifurcation converges to �(1� x0)=b�x0.
Proof of Corollary 1. By the Girsanov theorem, the distribution of bBt on any �nite

interval [0; t0] is mutually absolutely continuous with the distribution of Bt (see Karatzas

and Shreve (1988)). The properties of solutions to (1.1) proved in Theorem 1 and Lemmas

1 and 2 hold with probability 1, so they hold when we replace Bt with bBt.

The argument used to prove the original Theorem 2 can be used to prove its new

version, when we replace Bk by bBk. We will limit ourselves to the observation that the
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drift of bBk is a continuous function of the value of the process and is e�ectively bounded

on a bounded time interval as the values for the drift when bBk is outside a �nite interval

are irrelevant to the estimates. With this fact in hand it is not hard to modify the original

proof but the details are left to the reader.

Proof of Proposition 1. We will only sketch the proof as it is quite standard. See

Billingsley (1968) for the methods applied below. We will only deal with the maximal

solution X
i

t to (1.3) with A and f replaced by Ai and f i, and Ai
0 = bi, X

i

t = xi. Let Pi

be the joint distribution of the pair of processes (Ai
t;X

i

t). It is easy to prove the tightness

of the sequence of measures Pi as Ai
t converge to Brownian motion by assumption and

X
i

t are Lipschitz. Let P be the limit of some convergent subsequence of Pi. The �rst

component of the process under P is a Brownian motion and the second one is a process

with Lipschitz trajectories. We can prove that they satisfy the equation (1.1) by using

the same argument as was used for sequences of approximate solutions in the proof of

Theorem 1. By uniqueness of the solutions to (1.1) (see Theorem 1), the whole sequence

Pi converges to P.
In order to �nish the proof, it remains to check the uniform integrability of

�(xi; bi;Ai; f i). This is a standard excercise in view of the Gaussian estimates for the

tails of the one-dimensional distributions of Brownian motion and the Lipshitz character

of both X
i

t and g.
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