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1 Introduction

Bilateral trade with private values is a fundamental problem in mechanism design. Myerson and

Satterthwaite (1983) have shown that in any non-trivial buyer-seller problem with continuous valu-

ations, full e¢ ciency cannot be attained. Also with discrete (�nite) valuations, for many parameter

values the �rst-best outcome cannot be reached.

Jackson and Sonnenschein (2007) show that with many objects (and valuations that are indepen-

dent across objects) the problem disappears in the limit: the �rst-best outcome can be approached

as the number of objects tends to in�nity. While their mechanism approaches the �rst best in the

limit, for a �nite number of objects it is not the optimal one (not second best).1 Cohn (2010)

constructs a more elaborated mechanism which, although also not optimal, achieves exponential

convergence to the �rst best, rather than polynomial as in Jackson and Sonnenschein (2007).2

This paper looks for second-best mechanisms, focusing on the case of binary valuations. We

construct a set of mechanisms that spans the entire Pareto frontier of the buyer�s and seller�s ex

ante gains from trade. These mechanisms share a simple structure. Objects which both agents

are eager to trade (low value for the seller and high for the buyer) are traded. Objects which

both agents are reluctant to trade (high value for the seller and low for the buyer) are not traded.

Objects with a mixed desire to trade are traded only if the reluctant agent announces that the

number of (other) objects she is eager to trade is above some threshold. This threshold depends on

the designer�s objective function: the stronger the preference for an agent, the lower the threshold.

In the extreme case in which the designer�s objective identi�es with the seller�s, our mechanism

becomes the monopolist�s pro�t-maximizing one. Our results imply that the monopoly sells the

�rst M goods at a price equal to the buyer�s high valuation, while additional goods are discounted

and sold at the buyer�s low valuation (provided that the monopoly wishes to sell at that price).

The bene�ts of such "mixed bundling" �o¤ering a bundle of goods at a price lower than the sum

of individual prices �have been studied in the literature on auctions and on monopolistic screening.

McAfee, McMillan and Winston (1989) show that a monopoly selling two goods can bene�t from

bundling, at least in the case that the buyer�s valuations are independent. Armstrong (2000) studies

revenue-maximizing auctions for two goods. In the part of his analysis that deals (like this paper)

1Jackson and Sonnenschein treat a more general collective decision problem; in this context their mechanism works
even without monetary transfers between agents.

2Athey and Miller (2007) consider a related problem in a context of sequential trade. They identify conditions
under which a �rst-best outcome is attainable under ex post incentive compatibility.

1



with the i.i.d. and binary valuations case, he shows that a bidder announcing a high value for

one object receives priority in the bidding for the other object. Avery and Hendershott (2000)

study revenue-maximizing auctions for two objects, with one buyer interested in both and many

buyers interested in only one object. They show that, for the multi-object buyer, the probability of

receiving one object and the price paid for it may depend on the announced valuation for the other,

leading sometimes to an ine¢ cient allocation. While all these papers deal with the case of two

objects, our paper deals with an arbitrary number of objects. (Our problem remains tractable by

the assumption that objects�valuations are i.i.d.) Our paper also di¤ers in that the uncertainty is

double sided (except for Avery and Hendershott 2000, where the opportunity cost generated by the

one-object bidders makes the uncertainty in the interaction between the seller and the multi-object

buyer double-sided). Finally, we characterize the whole e¢ cient frontier of the trading problem,

while the above papers focus only on the seller�s preferred mechanism.3

In a closely related paper, Fang and Norman (2008) show that bundling can also be bene�cial in

the context of provisioning multiple public goods (when exclusion is allowed). They study a model

with many potential users, whose willingness to pay is private information. After they report their

types the government decides whether to produce each good, whether to exclude certain agents from

using it, and how much to charge each agent. For the case of binary valuations, they characterize

the optimal mechanism (with equal weights on all consumers). They show that as the number of

agents grows without bounds: (1) either none or all of the public goods are provided, and (2) a user

with a low valuation is excluded i¤ she announced low valuations too many times. There are strong

mathematical connections between our paper and Fang and Norman�s. However, their main result,

regarding the exclusion rule, is not parallel to our main result. This is because the public-goods

analogue to trade in the buyer-seller problem is provision, rather than exclusion.

In their survey of the vast literature on multidimensional screening, Rochet and Stole (2003)

explain that such environments tend to be di¢ cult to solve when they lack an exogenous type-

ordering, i.e., when the set of binding IC constraints depends on the set of trading probabilities of

the di¤erent objects (or quantities, in their general formulation). A related di¢ culty, they add, is

that the IC conditions are frequently binding not only among adjacent types. In our model, the

assumptions of symmetry across objects and of binary valuations give rise to a natural ordering of

3Note that our problem is di¤erent from the standard monopolistic bundling model in that the monopoly�s type
is private information (in other words, the monopoly here is an "informed principal" �see Myerson 1983 and Maskin
and Tirole 1990). Moreover, and to its further advantage, the monopoly devises its optimal mechanism at the ex
ante stage, and then both the buyer and the monopoly submit their reports to the mechanism.
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types �according to the number of eager valuations. This ordering is not "exogenous" in Rochet and

Stole�s sense: whether the IC constraints between adjacent types are the only binding ones depends

on the trading probabilities. Nonetheless, we solve for the optimal mechanism in a relaxed problem,

in which IC is required to hold only between adjacent types relative to this ordering, and show

that the optimal trading probabilities in the relaxed problem are monotone. This, in turn, implies

that these constraints are the only binding ones in the original problem. To what extent can this

methodology be generalized to problems with more than two valuations per object remains an open

question for future research. The main challenge is, presumably, to identify an appropriate ordering

of types. Unlike the binary-valuations case, however, this ordering may depend on parameters of

the model. With three valuations, for example, type (reluctant; eager) may either be "above" or

"below" type (intermediate; intermediate), depending on the speci�c problem�s parameters.

2 The Model

Consider a private values buyer-seller problem with N objects, labeled i 2 I = f1; :::; Ng. Each

agent assigns one of two possible valuations to each object. To treat the two agents in a symmetric

way, we denote the valuations of the buyer (b) by vbe > vbr > 0 ("e" stands for "eager" to trade

the object, and "r" stands for "reluctant"); for the seller (s) the valuations are vsr > vse � 0.

We also denote the di¤erence between the valuations of agent j 2 fb; sg by �j =
���vje � vjr���. For

non-triviality of the problem, we assume that vbe > v
s
r > v

b
r > v

s
e.

A type, for agent j 2 fb; sg, is a vector of object valuations wj =
�
wj1; :::; w

j
N

�
2W j . Valuations

are independent across objects and agents. Speci�cally, each wji takes the values v
j
e and v

j
r with

probabilities qj 2 [0; 1] and
�
1� qj

�
, respectively. We assume that agents are risk-neutral, and

their utilities from possessing multiple objects are additive.

By the revelation principle (Myerson 1979), we can restrict attention to incentive-compatible and

direct mechanisms. Mechanism � =


p; ts; tb

�
speci�es, for each pair of announcements

�
ws; wb

�
, a

probability p
�
i;ws; wb

�
of trade for each object i and a monetary transfer tj

�
ws; wb

�
to agent j.

The utility of agent j of type wj who announces ŵj , when the rival �j announces ŵ�j , is:

ub(wb; ŵb; ŵs) =
XN

i=1
p
�
i; ŵs; ŵb

�
wbi + t

b
�
ŵb; ŵs

�
us(ws; ŵs; ŵb) = �

XN

i=1
p
�
i; ŵs; ŵb

�
wsi + t

s
�
ŵb; ŵs

�
.
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Under truth telling of �j, the interim expected utility of agent j of type wj who announces ŵj is:

U j(wj ; ŵj) = Ew�j
�
uj(wj ; ŵj ;w�j)

�
,

where Ew�j denotes the expectation over all types of �j. Agent j�s ex ante utility (under truth

telling) is:
EU j = Ewj

�
U j(wj ; wj)

�
,

where Ewj is the expectation over all of j�s types. Finally, the revenue of the mechanism is:

R
�
ws; wb

�
=�

�
ts(ws; wb) + tb(ws; wb)

�
. (1)

3 Optimal Mechanisms

For any pair of weights � =
�
�s; �b

�
(non-negative and summing to 1), an �-optimal mechanism

is one that maximizes the �-weighted sum of the agents�ex ante utilities:

Max p; ts; tb �sEU s + �bEU b

subject to the constraints:

(IC) U j(wj ; wj) � U j
�
wj ; ŵj

�
for any wj ; ŵj 2W j

(IR) U j
�
wj ; wj

�
� 0 for any wj 2W j

(BB) R
�
ws; wb

�
� 0 for any ws 2W s, wb 2W b.

A utility pair
�
EU s; EU b

�
induced by an �-optimal mechanism is called an �-optimal outcome.

An �-facet of the Pareto frontier is the set of all �-optimal outcomes.

Our main result characterizes a set of simple mechanisms that spans the entire Pareto frontier:

Theorem 1 Any �-optimal outcome can be achieved by a direct mechanism in which:

� An object which both agents are eager to trade is traded with probability 1.

� An object which both agents are reluctant to trade is traded with probability 0.

� An object which agent �j is eager to trade and agent j is reluctant to trade is traded with:

� probability 1, if the number of objects that j is eager to trade exceeds threshold M j,

� probability 0, if it is below M j,

� probability �j, if it is exactly M j,

where M j 2 f0; :::; Ng and 0 < �j � 1. Moreover, denoting by M j (�) the set of all thresholds

M j in mechanisms that generate an �-facet of the Pareto frontier, the correspondence M j (�)

is weakly decreasing in �j.
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A constructive proof of the theorem is given in Section 4. The proof also shows how to compute

M j , �j and the payments to agents. We proceed by explaining the intuition of the result, and

conclude with an application to bundling and consumer surplus in the special case of monopoly.

Intuition for Theorem 1

In a �rst-best solution, each object is traded whenever the buyer�s valuation is higher than the

seller�s, i.e., as long as at least one agent is eager to trade. This outcome, however, is generally

infeasible: for many parameter values, the information rents that are required to induce the agents

to reveal their types and agree to participate are higher than the total surplus generated by trade,

and thus budget balance is violated. To restore budget balancedness, the mechanism must restrict

trade between some of the types, thereby reducing rent payments. Second-best optimality, then,

requires to identify the most economical trade restrictions.

It is convenient to think of the mechanism as if it collects all the surplus from trades (temporarily

leaving agents with zero net utilities) and uses it to pay the agents the required information rents.

These rents are then the agents��nal payo¤s. The mechanism sets trade probabilities for each pair

of types and each object. Increasing each of these probabilities induces (1) a change in the total

surplus generated by the mechanism and (2) a change in the sum of required rents to other types

of both agents. The di¤erence (2)-(1) is the budgetary cost of increasing that probability. The

direct bene�t (change in the objective function) is the �-weighted sum of the same induced rents.

A second-best mechanism prioritizes trades with lower ratios of budgetary cost to direct bene�t.

A priory, agents have an incentive to lie downwards: pretend to be eager to trade fewer objects,

in order to obtain better trading prices. Rents are thus paid per object that the agent admits

being eager to trade. The rent equals the expected gain from lying, which is proportional to

the probability that the agent is allowed to trade after a "reluctant" report. There are thus two

obvious cases with no trade-o¤ between the cost and the bene�t of trades: Whenever both agents

are eager to trade an object there is no reason to restrict trade, since trade increases surplus without

generating rent payments for other types. And, whenever both agents are reluctant, they should

not trade �such trade decreases the surplus and only increases the incentive of other types to lie.

A tradeo¤ exists when one agent is eager to trade an object and the other is reluctant. Call

the set of all the types of an agent, who have exactly m eager valuations, "level m". Allowing (all)

level m types of one agent to trade objects they are reluctant to (when the other agent is eager to

trade) necessitates rent payments to all the types at levels above m. These trades also generate

a surplus, which is proportional to the number of types in level m times the number of reluctant
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valuations per type. Our key (and non-trivial) result is that the induced budgetary cost to direct

bene�t ratio is decreasing in m. We thus obtain, for each agent j, a threshold M j such that levels

above M j trade their reluctant objects and those below do not.

The thresholds for the two agents are the lowest integers for which the total rents do not exceed

the surplus generated by the mechanism.4 Since decreasing threshold M j increases j�s rent, there

is a trade-o¤ between the two thresholds. Recall that the objective function is the �-weighted sum

of the rents. Thus, threshold M j is (weakly) decreasing in �j .

If �j is su¢ ciently high, M j equals 0. Agent j is always allowed to trade, and trade restrictions

apply to agent �j only. As we further increase �j , the �-optimal mechanism picks an even higher

M�j , and pays the economized rent (minus the lost surplus) as a lump sum payment to j.5

Monopoly and consumer surplus:

Consider the extreme case of �s = 1 and �b = 0. Here, the seller can be viewed as a monopolist who

sets the mechanism in his best interest. If N is small, the monopolist sets M b = N , which implies

that only objects which the buyer is eager to trade (high valuation) are traded, at the highest price

he is willing to pay, vbe. Since there is no trade when the buyer is reluctant to trade, the buyer

receives no rents at all. For large N , the monopolist sets M b < N , i.e., agrees to sell some of the

objects at a price equal to the buyer�s low valuation vbr (provided the monopoly has low cost, v
s
e,

for these objects). In these cases, the buyer is paid a positive expected rent, i.e., ends up with a

positive (expected) consumer surplus. This is formalized in the following proposition (proved in

the appendix), which applies also to the opposite, monopsony case:

Proposition 1 Assume that �j = 0. Then, in any �-optimal mechanism, agent j has a strictly

positive ex ante utility, or equivalently M j < N , if and only if N � qj

1�qj
�j

vbe�vse��j
.

4The probability of trade at the threshold may be between 0 and 1 so that total surplus and rents are equated.

5For some parameter values, a �rst-best solution (no trade restrictions) is feasible. Here, the total surplus exceeds
the required rents, and both agents may receive lump sum payments. Note, however, that for a �rst-best solution, �
must be in a neighborhood of (0:5; 0:5). At extreme values of �, the optimal solution must involve restricting trade
(and reducing rents) for the agent with low �j , in order to to increase the lump sum payment to the preferred agent.
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4 Proof of Theorem 1

We start with a convenient decomposition of the transfers tj , into two parts:

tb(ws; wb) =
XN

i=1
�p
�
i;ws; wb

�
wbi + �

b
�
ws; wb

�
(2)

ts(ws; wb) =
XN

i=1
p
�
i;ws; wb

�
wsi + �

s
�
ws; wb

�
.

This decomposition can be interpreted as follows. First, each agent gets paid (or pays) the left

summand; as long as his announcement is truthful, this payment exactly compensates for the

expected loss (or gain) from giving away (or receiving) the objects. Then, the agent is also paid a

rent, � j , implicitly de�ned by (2). Under truth-telling, this rent is in fact his net utility: denoting

�� j
�
wj
�
= Ew�j

�
� j
�
wj ; w�j

��
, we observe that U j(wj ; wj) = �� j

�
wj
�
.

Since the agents are risk neutral and their types are independent, for any mechanism satisfying

ex ante budget balance there exists a mechanism satisfying ex post budget balance with the same

trading rule and same interim utilities to both agents (Proposition 2 in Borgers and Norman 2008).

We can thus replace the ex post budget-balance condition (BB) by its weaker ex ante counterpart:

(BB�) Ewb;ws
h
R
�
ws; wb

�i
� 0.

For any type wj , we say that a report ŵj is a a local downward deviation if there is exactly one

object i 2 N such that wji = v
j
e, ŵ

j
i = v

j
r and w

j
i0 = ŵ

j
i0 for all i

0 6= i. We say that a mechanism is

LDIC (Local Downward Incentive Compatible) if all types prefer truth telling to a local downward

deviation:

De�nition 1 A mechanism is LDIC if U j(wj ; wj) � U j
�
wj ; ŵj

�
for any wj 2 W j and any local

downward deviation ŵj of wj.

We proceed by looking for a LDIC-optimal mechanism: one that maximizes �sEU s + �bEU b

subject to LDIC, IR and BB�(the �nal step of the proof shows that this mechanism satis�es, in

fact, the full set of IC constraints).6 We start with the following lemma:

Lemma 1 In any LDIC-optimal mechanism, the probability of trade is 1 for objects which both

agents are eager to trade, and 0 for objects which both agents are reluctant to trade.7

6For a closely related discussion, in the case of unidimensional trade, see Bolton & Dewatripont (2005), pp. 78-80.

7 In fact, the proof can be easily adapted to show that the lemma also holds if "LDIC-optimal" is replaced by
"X-optimal" where X is any subset of the IC conditions.

7



Since our problem is symmetric across objects (each agent�s valuations are i.i.d. across objects),

we can restrict the search to the domain of symmetric mechanisms, which are agnostic to changing

the names of the objects. Let � : I ! I denote a permutation mapping, and let M� denote the

corresponding permutation operator on vectors, so thatM�w is a vector in which the ith element is

the � (i)th element in w (formally, M� is the matrix de�ned by [M�](i;j) = [IN�N ](��1(i);j)). Then:

De�nition 2 Mechanism � =


p; � s; � b

�
is symmetric if for any

�
ws; wb

�
and any permutation �,

(1) p
�
i;ws; wb

�
= p

�
� (i) ;M�w

s;M�w
b
�
for all i 2 I, and (2) � j(ws; wb) = � j(M�w

s;M�w
b).

Lemma 2 For any LDIC mechanism � =
�
p; � s; � b

�
there exists a symmetric LDIC mechanism

�̂ =
�
p̂; �̂ s; �̂ b

�
with the same ex ante utilities for the agents and revenue for the mechanism.8

Let g
�
wj
�
denote the number of objects that type wj is eager to trade. In a symmetric

mechanism �, the rents � s and � b depend only on g (ws) and g
�
wb
�
; the probability of trade in

object i, p
�
i; ws; wb

�
, depends only on the valuations of the speci�c object, wsi and w

b
i , and on

g (ws) and g
�
wb
�
. We thus partition the set W j of all types of agent j to N + 1 disjoint sets

fGjmgNm=0 such that all types wj in G
j
m satisfy g

�
wj
�
= m. We refer to types in Gjm as types in

"level m", and denote an arbitrary type in Gjm by wj;m. Denote the probability that type wj;m

trades an object he is reluctant to, conditional on �j being eager to trade that object, by �jm.

A tight mechanism is one in which each type is exactly indi¤erent to a local downward deviation:

De�nition 3 A mechanism is tight if U j(wj ; wj) = U j
�
wj ; ŵj

�
for any wj 2 W j and any local

downward deviation ŵj of wj.

The search for optimal LDIC mechanisms can be further restricted to the smaller and more

structured domain of tight and symmetric ones (TSLDIC):

Lemma 3 For any symmetric LDIC mechanism � =
�
p; � s; � b

�
there exists a TSLDIC mechanism

�̂ =
�
p; �̂ s; �̂ b

�
with the same ex ante utilities for the agents and revenue for the mechanism.9

In a TSLDIC-optimal mechanism, the expected rent �� j of type wj;m is uniquely determined

by the probabilities f�jmgN�1m=0 and by c
j , the rent of the lowest type wj;0. Since wj;m+1 is exactly

8We omit the explicit proof since this is a standard technique in the literature �see, e.g., Fang and Norman (2008).
Note that like the IC property, LDIC is also preserved after any permutation of the objects.

9Note that this lemma would not necessarily hold if the LDIC condition were replaced by full IC. This is because,
in general, the addition of "tightness" might violate some of the IC constraints.
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indi¤erent to a local downward deviation, ��
�
wj;m+1

�
= ��

�
wj;m

�
+
�
q�j � �jm + (1� q�j) � 0

�
�j

(recall that, by Lemma 1, if �j is reluctant to trade object i, the probability of trade is 0). Thus:

��
�
wj;m

�
= cj + q�j�j

Xm�1

k=0
�jk. (3)

for any m 2 f0; :::; Ng; j 2 fb; sg. The ex ante utility of agent j is then:

T j
�
cj ; �j0:::�

j
N�1

�
= cj + q�j�j

XN

m=0

h
fBD(m;N; q

j)
Xm�1

k=0
�jk

i
where fBD is the p.d.f. of the binomial distribution. Let S denote the ex ante surplus generated

by trade. The surplus comes from eager-eager and eager-reluctant encounters, and is given by:

S
�
cs; �s0:::�

s
N�1; c

b; �b0:::�
b
N�1

�
= Nqsqb(vbe � vse)

+qs(vbr � vse)
XN�1

m=0

h
(N �m) fBD(m;N; qb)�bm

i
+qb(vbe � vsr)

XN�1

m=0
[(N �m) fBD(m;N; qs)�sm] .

By (3), the IR constraint reduces to cj � 0. Ex ante budget balance requires S (�) � T s (�)+T b (�).

In an optimal mechanism this condition must hold with equality (otherwise, a constant could be

added to the payments of one agent, increasing his utility without violating IC).

For brevity of notation denote �j�1 = cj and �j = f�jmgN�1m=�1. A TSLDIC mechanism that

satis�es the conditions of Lemma 1 can then be characterized by two vectors �b; �s. Given weights�
�s; �b

�
, we look for

�
�s; �b

	
that maximize the �-weighted sum of ex ante utilities:

MAX�s;�b �sT s (�s) + �bT b
�
�b
�

subject to: (BB�) T s (�s) + T b
�
�b
�
� S

�
�s; �b

�
= 0

(IR) �j�1 � 0; j 2 fs; bg

(PROB) 1 � �jm � 0; m 2 f0; :::; N � 1g ; j 2 fs; bg

(4)

Let rjm denote the ratio of the derivatives of the BB�condition and of the objective function,

both w.r.t. �jm. Since both functions are linear in �
j
m, r

j
m is a constant:

rjm =
@
�
T s (�s) + T b

�
�b
�
� S

�
�s; �b

��
=@�jm

@ [�sT s (�s) + �bT b (�b)] =@�jm
=
1

�j
@
�
T j
�
�j
�
� S

�
�s; �b

��
=@�jm

@T j (�j) =@�jm
2 [�1;+1].

(5)

(If the denominator is 0 we de�ne rjm to be �1 or +1, according to the sign of the nominator.)

In an optimal solution of the linear program (4), �jm�s with lower r
j
m are set to their upper bound,

and those with higher rjm are set to 0:

Lemma 4 In an optimal solution of (4), for j; j0 2 fb; sg and l; k 2 f�1; :::; N � 1g, if rjk < rj
0

l

then either �jk attains its upper bound, or �
j0

l = 0.
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Crucially, for each agent j, rjm is monotonically decreasing in m:

Lemma 5 For each agent j, if �1 � l < k � N then rjk < rjl .

By Lemma 4 (and since the objective function is increasing in all �jm), there is a unique cuto¤

r� 2 frjmgj2fb;sg; m2f�1;:::;N�1g, determined by BB�, such that, in an optimal solution of (4), �jm = 0

if rjm > r�, �
j
m attains its upper bound if r

j
m < r�, and �

j
m is strictly above 0 and weakly below its

upper bound (1 if m � 0 or 1 if m = �1) if rjm = r�.10 By Lemma 5, there can be at most two

��s for which rjm = r�, belonging each to a di¤erent agent. In case there is only one, its value is

uniquely determined by BB�. If there are two, then BB�uniquely determines their sum �jm + �
�j
m0 .

Note that Lemma 4 provides a necessary but not su¢ cient condition for an optimal solution of

(4). Nevertheless, since the only degree of freedom in specifying the solution is how to split the

sum �jm + �
�j
m0 into �

j
m and ��jm0 , and since any way of doing that yields the same value for the

objective function, then any such pair de�nes an optimal solution. By changing �jm and �
�j
m0 while

keeping their sum constant, utility is transferred between the agents at a constant rate. Thus, the

set of all such pairs spans an �-facet of the Pareto frontier.

This simple structure of optimal solutions to (4) implies a simple structure to the mechanisms

that induce them. Fix an optimal solution
�
�s; �b

�
. If �jm > 0 for some m � 0, let M j denote

the smallest m 2 f0; :::; N � 1g for which �jm > 0 and let �j = �jMj ; otherwise, set M j = N . Let

�̂ =


p̂; �̂ b; �̂ s

�
with p̂ as de�ned in Theorem 1 with parameters M j ; �j , and with �̂ j satisfying

(3). Then �̂ induces
�
�s; �b

�
and is TSLDIC-optimal. To complete the proof we show that this

mechanism is monotone and hence fully incentive compatible.

To de�ne monotonicity, we introduce the following notation. Given a symmetric mechanism �,

denote the probability that type wj;m trades an object with valuation vj 2 fvje; vjrg, by pj(vj ;m).

That is, pj(vj ;m) = Ew�j
�
p
�
i;wj ; w�j

��
where wj 2 Gjm and wji = vj (this is well de�ned by

symmetry). We say that � is monotone if the probability to trade objects with eager valuations is

always weakly higher the that of trading objects with a reluctant valuation, and if the probability

to trade an object with a given valuation is weakly increasing in m:

De�nition 4 A symmetric mechanism is monotone if (1) pj(vje; k) � pj(vjr ;m) for all m; k and

(2) pj(vj ;m+ 1) � pj(vj ;m) for all m and vj 2 fvje; vjrg.11

10Existence of r� follows from the continuity of BB�in the vector of ��s, and since it is positive (negative) if all the
��s are set to 0 (their upper bound).

11Note that pj(vje;m) is de�ned only for m 2 f1:::Ng and pj(vjr; k) is de�ned for k 2 f0:::N � 1g. The conditions
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�̂ is monotone since pj(vjr ;m) = q�j � �jm +
�
1� q�j

�
� 0 where �jm � 1 is weakly increasing in

m, and since pj(vje; k) = q�j � 1 +
�
1� q�j

�
� �j where �j � 0 is constant (the probability of trade

depends only on the type of agent �j who is reluctant to trade the object).

Lemma 6 A monotone and TSLDIC mechanism is incentive compatible.

Thus, the TSLDIC-optimal mechanism �̂ satis�es IC and is therefore �-optimal.

Computation of the payments to the agents

Given the trade probabilities described above, any payment scheme that provides type wj;m with

the expected rent given in (3) completes the speci�cation of the mechanism. The simplest scheme

�xes the payment to wj;m independently of �j�s type; plugging in M j and �j , we obtain:

� j
�
wj;m; w�j

�
=Max

�
0; cj +

�
m�M j (�)� 1 + �j (�)

�
�jq�j

	
That is, the agent is paid �j�jq�j for the �rst "eager" report above the threshold Mj , and �jq�j

for each of the others. Recall that the rents � are translated back into payments t using (2).

Note that this simple speci�cation satis�es only the ex ante budget balance constraint. To

re-obtain ex post budget balance, simply rede�ne the payments as follows:

t̂j
�
wj ; w�j

�
= tj

�
wj ; w�j

�
+
1

2

�
R
�
wj ; w�j

�
� Ew�j

�
R
�
wj ; w�j

��
+ Ewj

�
R
�
wj ; w�j

���
,

where R
�
wj ; w�j

�
is the revenue of the mechanism, as de�ned in (1).

Appendix : Proofs

Proof of the second part of Theorem 1: M j (�) is decreasing in �j . Consider an �-

optimal mechanism with thresholds
�
M s (�) ;M b (�)

�
and an �̂-optimal mechanism with thresholds�

M s (�̂) ;M b (�̂)
�
. Denote the respective derivatives�ratios by rjm and r̂jm and the cuto¤s by r�

and r̂�. Assume to the contrary that �j < �̂j butM j (�) < M j (�̂). By de�nition ofM j , and since

rjm decreases in �j for all m, r� � rj
Mj(�)

> r̂j
Mj(�)

� r̂�. Since the r�jm �s decrease in ��j = 1� �j

and since r� > r̂�, r�jm � r� implies r̂�jm > r̂� for all m. Thus, also for �j fewer types trade. But

this implies that both T s (�s) and T b
�
�b
�
are lower, contradicting optimality.

Lemma 1. Eager-Eager Encounters: Assume to the contrary that � =


p; � s; � b

�
is a LDIC-

optimal mechanism with p
�
k; ŵs; ŵb

�
< 1 for some

�
ŵs; ŵb

�
such that ŵsk = vse and ŵ

b
k = vbe.

Modify the mechanism by setting p
�
k; ŵs; ŵb

�
= 1. The modi�ed mechanism is also LDIC since

are required to hold only when pj(�; �) is de�ned.

11



for each agent j (i) The utility from reporting any type other than ŵj (either truthfully or not)

is unchanged; (ii) For type ŵj , the utility from reporting truthfully is unchanged; (iii) For any

type ~wj 6= ŵj , the expected utility from pretending to be ŵj is weakly lower (same if ~wjk = vje

and strictly lower if ~wjk = vjr). The ex ante surplus of the mechanism is, however, increased by�
1� p(k; ŵs; ŵb)

�
�prob(ŵb) �prob(ŵs) �

�
vbe � vse

�
, where prob(ŵj) is the prior probability that agent

j is of type ŵj . This additional surplus can be transferred to one of the agents (as a lump sum, so

that incentives are una¤ected), contradicting the optimality of �.

Reluctant-Reluctant Encounters: Assume to the contrary that � =


p; � s; � b

�
is LDIC-optimal

where p
�
k; ŵs; ŵb

�
> 0 for some

�
ŵs; ŵb

�
such that ŵsk = vsr and ŵ

b
k = vbr. Modify � by setting

p
�
k; ŵs; ŵb

�
= 0. The same arguments as above (with the slight change that for type ~wj , pretending

to be ŵj yields the same expected utility if ~wjk = vjr and strictly lower if ~w
j
k = vje) imply that

the modi�ed mechanism is also LDIC. The ex ante surplus of the mechanism is increased by

p(k; ~ws; ~wb) � prob( ~wb) � prob( ~ws) � (vsr � vbr), again contradicting the optimality of �.

Lemma 3. Since � is symmetric and LDIC, then ��
�
wj;m+1

�
� ��

�
wj;m

�
+ q�j�jm�j for j 2 fb; sg;

m 2 f0; :::; N � 1g. Suppose now that � is not tight. Then, there is an agent j for which at least

one of these N inequalities is strict. Denote the index of the �rst one by k:

q�j�jm�j = �� j
�
wj;m+1

�
� �� j

�
wj;m

�
for m 2 f0; :::; k � 1g

q�j�jk�
j < �� j

�
wj;k+1

�
� �� j

�
wj;k

�
q�j�jm�j � �� j

�
wj;m+1

�
� �� j

�
wj;m

�
for m 2 fk + 1; :::; N � 1g

Let �̂ =
�
p; �̂ s; �̂ b

�
denote a mechanism with p as in �, and �̂ j de�ned as follows:

�̂ j
�
wj;m; w�j

�
=

8<: �
�
wj;m; w�j

�
+ d

�
1� FBD

�
k;N; qj

��
for m 2 f0; :::; kg

�
�
wj;m; w�j

�
+ d

�
1� FBD

�
k;N; qj

��
� d for m 2 fk + 1; :::; N � 1g

where d = ��
�
wj;k+1

�
� ��

�
wj;k

�
� q�j�jk�j and FBD is the c.d.f. of the Binomial distribution.

Since the prior probability of having at least k + 1 eager valuations is 1 � FBD
�
k;N; qj

�
, the

mechanism�s ex ante revenue and the agents�ex ante utilities are the same as under �. Moreover,

q�j�jm�j = �̂
j �
wj;m+1

�
� �̂ j

�
wj;m

�
for m 2 f0; :::; kg

q�j�jm�j � �̂
j �
wj;m+1

�
� �̂ j

�
wj;m

�
for m 2 fk + 1; :::; N � 1g

If �̂ is TSLDIC - we are done, otherwise - repeat the process of eliminating a non-binding constraint

(�nitely many times) until the mechanism is tight.
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Lemma 4.12 Suppose to the contrary that rjk < r
j0

l but there exists an optimal solution
�
�s; �b

�
for which �jk does not attain its upper bound and �

j0

l > 0. De�ne the following constants:

ajk = @
�
�sT s (�s) + �bT b

�
�b
��
=@�jk aj

0

l = @
�
�sT s (�s) + �bT b

�
�b
��
=@�j

0

l

bjk = @
�
T s (�s) + T b

�
�b
�
� S

�
�b; �s

��
=@�jk bj

0

l = @
�
T s (�s) + T b

�
�b
�
� S

�
�b; �s

��
=@�j

0

l

and let rk = b
j
k=a

j
k, rl = b

j0

l =a
j0

l . Consider now an alternative solution
�
~�s; ~�b

�
which is identical

to �s; �b, except that ~�jk = �
j
k + " and ~�

j0

l is such that the budget constraint is satis�ed, that is,

bjk(~�
j
k � �

j
k) = b

j0

l (�
j0

l � ~�
j0

l ). The value of the objective function for
�
~�s; ~�b

�
is:

�sT s(~�s) + �bT b(~�b) = �sT s(�s) + �bT b(�b) + ajk(~�
j
k � �

j
k) + a

j0

l (~�
j0

l � �
j0

l )

= �sT s(�s) + �bT b(�b) + (~�jk � �
j
k)b

j
k=rk � (�

j0

l � ~�
j0

l )b
j0

l =rl

> �sT s(�s) + �bT b(�b) + [(~�jk � �
j
k)b

j
k � (�

j0

l � ~�
j0

l )b
j0

l ]=rk

= �sT s(�s) + �bT b(�b),

which is a contradiction to the optimality of
�
�s; �b

�
.

Lemma 5. For m � 0, the numerator of rjm is @�jT j
�
�j
�
=@�jm = �jq�j�j

�
1� FBD

�
m;N; qj

��
.

The denominator is @
�
T j
�
�j
�
� S

�
�b; �s

��
=@�jm = @T j

�
�j
�
=@�jm�q�j(vbe�vse��j) (N �m) fBD(m;N; qj).

Thus,
rjm =

1

�j

�
1� (v

b
e � vse ��j)

�j
� (N �m)� fBD(m;N; qj)

(1� FBD (m;N; qj))

�
(6)

For m = �1, that is for cj , rj�1 = 1=�j > r
j
m for all m � 0. To show that rjm decreases in m, it

remains to show that (N �m) [fBD(m;N;q)]
[1�FBD(m;N;q)] is strictly increasing in m for every q 2 [0; 1].

Let pm = fBD(m;N; q) =
�
N
m

� �
qj
�m �

1� qj
�N�m. Following Chechile (2003), de�ne W =

pk+jpk̂
pk̂+jpk

for every k̂; k; j 2 f0; :::; Ng. Observe that W =
[(k̂+j)�:::�(k̂+1)][(n�k)�:::�(n�k�j+1)]
[(k+j)�:::�(k+1)][(n�k̂)�:::�(n�k̂�j+1)]

, and multi-

ply both sides by (
n�k̂)
(n�k) to get:

pk+jpk̂
pk̂+jpk

(n�k̂)
(n�k) =

[(k̂+j)�:::�(k̂+1)][(n�k�1)�:::�(n�k�j+1)]
[(k+j)�:::�(k+1)][(n�k̂�1)�:::�(n�k̂�j+1)]

.

Let k̂ > k. Since each of the terms in the numerator of the RHS is larger than the cor-

responding term in the denominator, then
pk+jpk̂
pk̂+jpk

n�k̂
n�k > 1 or, equivalently, 1

n�k
pk+j
pk

> 1
n�k̂

pk̂+j
pk̂
.

Thus, 1
n�k

Pi=N�(k̂�k)
i=k+1 pi

pk
> 1

n�k̂

Pi=N
i=k̂+1

pi

pk̂
, and therefore also 1

n�k

Pi=N
i=k+1 pi
pk

> 1
n�k̂

Pi=N
i=k̂+1

pi

pk̂
. SincePi=N

i=0 pi = 1 then 1
n�k

1�
Pi=k
i=0 pi
pk

> 1
n�k̂

Pi=k̂
i=0 pi
pk̂

. Recall that FBD(k;N; q) = 1 �
Pi=k
i=0 pi, and

therefore: (n� k) fBD(k;N;q)
1�FBD(k;N;q) < (n� k̂)

fBD(k̂;N;q)
1�FBD(k;N;q) .

Lemma 6. Consider two di¤erent types wj;m and ŵj;m+k where k � 0. In a TSLDIC mechanism,

12An alternative proof of this lemma, using Lagrange-multipliers, is available upon request from the authors.
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��
�
ŵj;m+k

�
� ��

�
wj;m

�
=
Pk�1
l=0 p

j(vjr ;m+ l)�j . By monotonicity:

k�jpj(vjr ;m) � ��
�
ŵj;m+k

�
� ��

�
wj;m

�
� k�jpj(vje;m+ k). (7)

De�ne the distance


wj;m; ŵj;m+k

 between wj;m and ŵj;m+k as the number of elements by

which the two vectors di¤er. By monotonicity, and since


wj;m; ŵj;m+k

 � k, we have:

1

2

�


wj;m; ŵj;m+k


� k��j �pj(vjr ;m)� pj(vje;m)� � 0 � (8)

1

2

�


wj;m; ŵj;m+k


� k��j �pj(vje;m+ k)� pj(vjr ;m+ k)�
Adding (7) and (8) and applying simple algebraic manipulations, we get:

��
�
ŵj;m+k

�
� ��

�
wj;m

�
+
1

2

�


wj;m; ŵj;m+k


+ k��jpj(vjr ;m)�12 �


wj;m; ŵj;m+k


� k��jpj(vje;m)
(9)

��
�
wj;m

�
� ��

�
ŵj;m+k

�
�1
2

�


wj;m; ŵj;m+k


+ k��jpj(vje;m+k)+12 �


wj;m; ŵj;m+k


� k��jpj(vjr ;m+k)
(10)

Note that there are exactly 1
2

�

wj;m; ŵj;m+k

+ k� objects that ŵj;m+k is eager to trade and
wj;m is reluctant to trade, and 1

2

�

wj;m; ŵj;m+k

� k� objects that ŵj;m+k is reluctant to trade
wj;m is eager to trade. Thus, for every k, (9) implies that ŵj;m+k does not gain from pretending to

be wj;m, and (10) implies that wj;m does not gain from pretending to be ŵj;m+k. This means that

the mechanism is incentive compatible.

Proposition 1. The ex ante utility of agent j is determined by �� j , which is, in turn, determined

by f�jmgN�1m=�1 according to (3). Lemma 5 implies that in an �-optimal mechanism �jm is (weakly)

increasing in m and thus �� j is positive i¤ �jN�1 > 0. By (5), for �
j = 0 the value of rjN�1 is either

+1 or �1, implying �jN�1 = 0 or �
j
N�1 = 1, respectively. By (6), for �

j = 0, rjN�1 = �1 i¤:

�j �
�
1� FBD

�
N � 1; N; qj

��
� (vbe � vse ��j) � fBD(N � 1; N; qj)

�j � (1� FBD (N � 1; N; qj)) < 0

Note that the denominator is always positive, substitute fBD(N � 1; N; qj) = N
�
qj
�N�1 �

1� qj
�

and FBD
�
N � 1; N; qj

�
= 1�

�
qj
�N to get that rjN�1 = �1 i¤ N � qj

1�qj �
�j

vbe�vse��j
.
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