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Abstract

We study a coordination game with randomly changing payoffs and small fric-
tions in changing actions. Using only backwards induction, we find that players
must coordinate on the risk dominant equilibrium. More precisely, a continuum
of fully rational players are randomly matched to play a symmetric 2 x 2 game.
The payoff matrix changes over time according to some Brownian motion. Players
observe these payoffs and the population distribution of actions as they evolve.
The game has frictions: opportunities to change strategies arrive from indepen-
dent random processes, so that the players are locked into their actions for some
time. As the frictions disappear, each player ignores what the others are doing
and switches at her first opportunity to the risk dominant equilibrium. History

dependence emerges in some cases when frictions remain positive.

J.E.L. No.: C73. Field: Game Theory.



1 Introduction

Games with multiple strict Nash equilibria present a major difficulty for game theory.
Most equilibrium refinements do not select a unique equilibrium in such games, and
those that do are not unanimous in their predictions. Nonuniqueness not only limits
the predictive power of the theory; it casts doubt on its entire validity. Without an
explanation of how players reach coordination, it is hard to justify why equilibrium play
is, at all, a reasonable prediction.

The difficulty of generating predictions from the normal form game need not be
considered a failure of game theory. It may simply indicate that the game sometimes
needs to be specified in greater detail. One important goal of game theory is to find
out which details are most relevant in determining whether equilibrium behavior is
reasonable and, if so, which equilibrium is the better prediction. A way to approach this
goal is to study the models that result from filling in the missing details of the normal
form game in various ways.

In population models, a large population is randomly matched, from time to time,
to play a given normal-form game. Rather than simply postulating that players guess
correctly what others will do, these models provide a dynamic framework in which
players can observe the actions of others in the process of picking their own. This gives
rise to an interactive process that can potentially lead to equilibrium play. The study
of population models also enlarges the predictive scope of game theory to the process of
convergence to equilibrium play itself, rather than limiting it to the ultimate result. A
number of important issues can be studied, including rates of convergence and the role
of initial conditions.

Most of the population literature has focused on the evolution of play in a fixed world.
In this paper we study the evolution of play when the world changes over time. In many
of the natural applications of population models, such as the choice between technological
standards or the economy’s coordination on high or low activity, the assumption that

the world is changing is more realistic. The state of technological knowledge, oil prices



and weather conditions are only a few of many factors that change over time and affect
the relative payoffs from different choices.

We model the changing world using an exogenous stochastic process that affects the
payoff matrix of the static game. We assume that, in the (perhaps very distant) future,
these changes in payoffs have the potential to make any action strictly dominant. This
leads to an unraveling effect that yields sharp predictions about what players will do
in the present. With small frictions in changing actions, the equilibrium that is risk-
dominant at any given time must be played. Moreover, convergence to that equilibrium
occurs as fast as the frictions allow. This contrasts with most population models, in
which the selection either depends on initial conditions or is only a long run prediction,
taking the form of an ergodic distribution with most of its weight put on one equilibrium.

Players in our model are fully rational. Models with rational players have typically
been solved using the assumption of rational expectations equilibrium?. In contrast,
our result is established using only iterated conditional dominance, an extension of
backwards induction to infinite horizon games.

One should not consider our use of iterated conditional dominance as a refinement of
Nash equilibrium; in our model, every Nash equilibrium outcome survives the iterative
procedure. Rather, we use iterated dominance so as to avoid the assumption of equi-
librium play: i.e., that players’ strategies happen to be best responses to each other. A
primary motivation for looking at population models is to explain why players playing
a normal form game coordinate on an equilibrium. Assuming equilibrium play in the
dynamic game would only shift the problem of justifying coordination from one model
to another. In contrast, iterated dominance traces a plausible process by which players
reason about what others will do. In our model, this process alone leads players to co-

ordinate their beliefs. Accordingly, our use of weaker assumptions in the dynamic game

2This is an assignment of strategies and beliefs to each player, such that each player’s belief over
the expected evolution of the environment is correct given everybody’s strategies, and such that each

player’s strategy is optimal given that belief.



helps justify the prediction of equilibrium play in the normal form game.

This paper is closely related to papers by Carlsson and van Damme [10] and Matsui
and Matsuyama [24]. In the former, two players play a one shot game of incomplete
information. Each receives a slightly noisy signal of the game’s payoffs. Iterated strict
dominance leads to the selection of the risk-dominant equilibrium through a contagion
argument. In Matsui and Matsuyama, a large population of rational players is randomly
matched to play a fixed game. There are multiple rational expectations equilibria;
however, only the stationary state in which the risk-dominant equilibrium is played
possesses certain stability properties. Our model is like that of Matsui and Matsuyama,
but the payoffs in the static game change randomly over time. This leads to equilibrium
selection through a contagion argument that is akin to that of Carlsson and van Damme.
The relations among these three papers are discussed in detail in section 5.

The rest of this paper is organized as follows. The model and results are presented
in sections 2 and 3. We explain the intuition for the results in section 4. Section 5 is
a literature review. Section 6 concludes with a discussion of how the results depend on
the various features of the model. The formal proofs are collected in an appendix, with

references to mathematical results that appear in Burdzy, Frankel, and Pauzner [9].

2 The Model

The static game we study is a 2 X 2, symmetric coordination game, with two strict Nash
equilibria. The population literature has typically focussed on these games since, while
being extremely simple, they exhibit the problems associated with multiple equilibria to
their full extent. In addition, many economic interactions can be analyzed using models
of large populations that are randomly matched to play such games.

To understand our model, it may be helpful to keep in mind the following story. The
professors in a certain university work on two types of computers: IBM and Macintosh.

From time to time, two professors need to share files. Their payoffs from this interaction



depend on the type of computer that each has; in particular, imperfect compatibility

creates a benefit to coordination. The following table gives an example.

IBM | Macintosh
IBM 3,3 2,0
Macintosh | 0,2 4,4

Occasionally, a professor’s computer breaks down and she must choose a new one. To
decide which to buy, she needs to consider several issues. At the current state of tech-
nology, how do the two computers compare? How many other professors currently use
each standard? Which are they likely to choose when their own computers break down?
How will their choices be affected by possible technological developments and by their
own predictions of how people will choose after them?

One may wonder whether the professors eventually coordinate on a given computer
standard and, if so, on which and how soon. These are the types of questions we seek
to answer in our more general model. We first describe the static game, which specifies
the players’ payoffs from a single match. We then present the dynamic context in which

players are matched and choose their actions.

2.1 The Static Game

We consider a symmetric static game with two actions, R and L. Payoffs depend on a
random parameter B, that changes over time, ¢: if a player playing a meets a player
playing a’ at time t, her payoff in the static game is u(a, a’, By). Higher values of B; raise
the relative payoff to playing R while lower values make L more desirable. More precisely,
the relative payoff to playing R against the action a, A(a, B;) = u(R, a, B;) —u(L,a, By),
is continuous and strictly increasing in B, at a bounded rate: there exists a positive

constant w such that for all b > l;,

~

0 < Aa,b) — Ala,b) < w[b— b] (1)
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The game has strategic complementarities. That is, the relative payoff to playing R
is higher when one’s opponent is playing R: A(R, B;) > A(L, B;).? The following table

gives an example of the time-t payoff matrix.

R L
3+ B34+ B |2+ B0
L| 02+B5B 4,4

We assume that B; follows a Brownian motion. This is essentially the continuous
time version of a random walk and may also have a deterministic trend. The Brownian
motion has two parameters. The variance o2 tells us how fast the Brownian motion
spreads out. The trend p gives the rate at which its mean changes over time. More
precisely, a Brownian motion has the following properties (Billingsley [3, p. 522]):

1. It is continuous with probability one.

2. For any ¢t > t > 0, the random variable B, — B; (which takes values in R) is

normally distributed with mean ju(t — #) and variance o2(t — t).

3. Its increments are independent. For any t > t > v > 0, the random variable

B, — B; is independent of B, — B;.

In our game, an action is p-dominant (Morris, Rob and Shin [25]) if it is a best
response whenever the opponent is expected to play that action with probability at
least p. We say that an action is exactly p-dominant if a player is indifferent when her
opponent puts a weight of exactly p on that action.® (Equivalently, p is the smallest
number for which the action is p-dominant.) For example, in the above game, when
B; = 0, R is exactly 0.4-dominant. Clearly, R is exactly p-dominant if and only if L is
exactly (1 — p)-dominant.

3This assumption also ensures that only (R, R) and (L, L) can ever be pure Nash equilibria.

4For the purpose of the definition, we allow p to take values also outside the interval [0,1]. For

example, if R is exactly —0.2-dominant, it is strictly dominant.



This terminology permits a convenient rescaling. We denote by BP the value of B,

at which R is exactly p-dominant in the static game:
pU(R, Ra Bp) + (]' - p)U(R, La Bp) = pU(L, Ra Bp) + (1 - p)U(L, La Bp) (2)

In the above game, for instance, 0 = B%*. Note that BP is decreasing in p: if a player’s
opponent plays R with higher probability, the player will be willing to play R at lower
values of B;. An action is risk-dominant (Harsanyi and Selten [16]) if it is a best response
when one’s opponent is expected to play both actions with equal probabilities. In our

terminology, R is risk-dominant whenever B, > BY? and L is whenever B, < B/2.

2.2 The Dynamic Context

A continuum of players are randomly matched from time to time to play the static
game. A player’s matches arrive according to a Poisson process with common arrival
rate m > 0. When a player is matched, she cannot instantaneously change actions.
Rather, she is locked into an action she chose before. Her opportunities to revise actions
arrive according to a Poisson process with common arrival rate k. When £k is high we
say that frictions are small, since players are locked into their actions for less time. We
assume that all of the Poisson processes are independent and that there is no aggregate
uncertainty.’

The players observe the evolution of both B, which we call the “state of the world”,
and X;, the proportion of players currently committed to playing R (rather than L),
which we call the “state of play”. We refer to the pair (B, X;) as the “state of the
environment”. The public history at time ¢ is the evolution of the environment until
that time, (B,, Xy )uepo,q- A player’s private history at time ¢ consists of her actions and
the details of her matches up to time ¢. A player’s information set at time ¢ is given by

the public history, together with her private history. Strategies are functions from the

5Judd [17] discusses some technical problems that arise with a continuum of i.i.d. variables. Boylan

[7], and Gilboa and Matsui [15] offer possible solutions in the context of random matching.



set of all information sets to the action set { R, L} that indicate the action a player will
choose at any information set, should she have an action revision opportunity.5

Note that the actions of any player will be observed by only a countable number
of other players. Since there is a continuum of players, the probability is zero that a
player’s past actions or those of her opponents will have any effect on the actions taken
by any future opponent. This means that a player’s payoffs from different actions can in
no way depend on her private history. For this reason we may assume, without loss of
generality, that a strategy is simply a map from the set H of all possible public histories”
to the action set {R, L}.

Suppose an agent receives an opportunity to revise her action at time ¢, after the
history h;. Denote the (realized) times of her subsequent matches by 1o, . ... Suppose
that at the time of the agent’s nth subsequent match the state of the world is B, , the
agent is playing the action a,, € {R, L}, and the agent’s partner in that match is playing
b, € {R, L}. Then the agent’s time ¢ continuation payoff is

Z G_T(tn_t)u(ana bna Bfn) (3)
n=0

where r > 0 is the constant discount rate.® When a player has a revision opportunity,
she maximizes the expectation of (3) with respect to the probability distribution over
paths (B,),~+ and her beliefs about the path of play (X,),~¢ that will result from any
given realization of (By)y¢-

Because a single player has no influence over which path (X,),~; will occur, the best

she can do is to pick the action that maximizes her discounted payoff for the (random)

6The restriction to pure strategies is without loss of generality. Our iterated dominance argument

applies almost unchanged if a player can choose a mixed strategy.
"This is the set of all paths (B, Xy)uepo i, for any ¢ and (B, Xo).

8 Alternatively, the player’s payoff may depend on the state of the world at the time that she picked
her action, B, rather than on the states at the times of the matches, B, . Such a specification may be
more appropriate in our motivating example, since the properties of a computer depend largely on the

state of technology at the time of purchase. All of our results hold for this specification as well.



period in which she will be committed to that action. In any period [v, v + dv], a player
is matched with probability mdv to an opponent who plays R with probability X, and
L with probability 1 — X,. With probability e **~% the player is still locked into the
action she chose at time ¢. Since her pure discount factor is e "*~*_ her effective discount

factor is e=**+7®=")  Therefore, the relative payoff to playing R is:

mE VOO e~ (X A(R, B) + (1 — X,)A(L, By)) do
Jou=t

A player chooses R if this is positive and L if it is negative.
Finally, to give our iterated dominance argument a place to start, we assume that for

By large enough, R is strictly dominant: that F {fvoot e THR=OA(L, B,)dv | Bt} > 0.

For sufficiently low values of B;, an analogous condition makes L strictly dominant.

3 Solving the Model

Rather than looking for equilibria, we analyze the game using a more primitive solution
concept: the iterative elimination of conditionally dominated strategies (see Fudenberg
& Tirole [13, pp. 128 ff.]). This is essentially the extension of backwards induction to
infinite horizon games.

It is important to note that, in our model, iterated conditional dominance is not a
refinement of Nash equilibrium.? This is because players are small, so that no unilateral
deviation can alter the probability distribution of reached information sets. Therefore,
given a Nash equilibrium, one can alter the strategies in any way at unreached informa-
tion sets and the resulting strategy profile will remain a Nash equilibrium. In particular,
one can adjust the strategies at unreached information sets so that the overall equi-
librium is subgame perfect. But every subgame perfect equilibrium survives iterated

conditional dominance.'©

9We thank Philip Reny for suggesting the argument that follows.

10Ty be more precise, let s be a Nash equilibrium strategy profile, and let s(b, ) denote the play pre-



In our model, the iterative procedure works as follows (ignoring some technical points
that are addressed in the proofs). Suppose a player receives an action revision oppor-
tunity at time ¢. If B, is large enough, R is strictly dominant, so the player will choose
R regardless of her beliefs over which strategies are used by the other players. Let f°
be the boundary of the region where R is strictly dominant. This is depicted in Figure
1. To the right of f°, we know that the player must play R; to the left of f° we cannot
yet say what the player does. In the first step we eliminate all the strategies in which a

player plays L in states (B;, X;) that are to the right of f°.

Figure 1: The iterative elimination procedure.

In the second step we assume that a player believes that other players will always
play R when they are to the right of f°. With this belief, there is a new boundary, f?,
such that a player must play R when she is to the right of f'. f! must lie to the left of
19, since knowing that other players will sometimes play R makes R a more appealing
action. In the next step we find f2? and so on. Let F' be the limit of the sequence f°,
f,.... Whenever (B, X;) is on the right side of F', any player who is called to act
must play R. In a similar way, starting an iterative process from the left side of the

environment space where the action L is dominant, we construct a bound G, such that

scribed by s for histories that begin with (Bg, Xo) = (b, ). We construct a subgame perfect equilibrium
§ that has the same distribution of equilibrium paths as s as follows. If h; is consistent with s, players
continue to play according to s. Otherwise, let v < ¢ be the earliest time such that h; is consistent
with all players having ‘reset their clocks to zero’ at time v and having played according to s(B,, X,)
thereafter. Under §, players continue to conform to s(B,, X, ) after seeing the history h;. Clearly, §

induces the same equilibrium play as s and is subgame perfect.



any strategy that survives the iterative elimination prescribes playing L to the left of G.

The iterative elimination procedure divides the environment space into three regions.
In all the surviving strategies, R is played to the right of F' and L is played to the
left of G. We do not know what happens in the “?” region between the two lines;
different strategies might partition this region into R and L in different ways, and their
prescriptions might even depend on aspects of the history that are not reflected in the

time-t environment space.

3.1 Results

Our main result states that as frictions disappear, the “?” region shrinks to the vertical
line at B'/2. This is depicted in Figure 2. Apart from a vanishing range of values of B,
around B'/?, a player’s choice between L and R is uniquely determined by the state of
the world B;. The player simply plays the action that would be a best response in the

static game against an opponent who puts equal weight on R and L.

L F=dG R

BL/2 By
Figure 2: Case of vanishing frictions (k — o00).
Theorem 1
Fix o, p, and r. For any € > 0, there is a k such that if k > k,
R must be played whenever By > BY? + ¢ and L whenever B, < BY/? — ¢.

Proof See appendizx.

This result has strong implications for the evolution of aggregate play in the pop-
ulation. Consider the initial normal-form game, and assume that the actions L. and R
are not exactly 1/2 dominant. If frictions are small enough, the population will immedi-

ately converge to the action that is risk-dominant, regardless of the initial state of play
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Xo. A dynamic interpretation is that the population follows the evolution of the world.
Whenever B, is above B'/2, the whole population plays R, while when B, is below B'/2,

all players coordinate on L. Switching between equilibria occurs very quickly.

Theorem 2 considers the case in which lock-in remains positive and instead the world
changes more and more slowly. Once again, the (B, X}) space is divided uniquely into
R and L regions. If the players are perfectly patient, the risk-dominant equilibrium
is again selected. But if players are impatient, the curve that separates the R and L
regions is strictly downward sloping. An example is depicted in Figure 3. (In general
the curve need not be straight.) The fact that the indifference line is downwards sloping
means that for some intermediate range of values of By there is history dependence: the
initial state of play determines the equilibrium on which players eventually coordinate.
If enough players are initially playing R, the rest of the population will follow; otherwise,

play converges to L.

L F=G R

Xt =0 I
BY/2 By

Figure 3: Case of slowly changing world and fixed frictions.

Theorem 2

Fix k and r, and let h(x) = :ﬁ_—;i
For any e > 0, there is a @ > 0 and a 7t > 0 such that if 0 <& and p <7,
R must be played whenever By > B"*) + ¢ and L whenever B, < B"Xt) —¢.

As players become more and more patient (r — 0), h(x) — 1/2, as in Theorem 1."!

Proof See appendiz.

" Theorem 2 holds k fixed and takes o and x to zero. This is actually not necessary; the result holds
whenever k/o and k/p both go to infinity. This generalization of Theorem 2 implies Theorem 1 since

if k goes to oo, h(x) goes to 1/2.

11



4 Intuition

Outline

We first explain the intuition for the case of vanishing frictions, and then discuss how
things change with positive frictions and a slowly changing world. Why must F' (and,
analogously, G) converge to a vertical line at B'/?? Consider a player who chooses an
action at time ¢ at some point on F' and who believes that all other players will choose
R to the right of F' and L to the left. We show that such a player must be indifferent
between R and L. We can then infer B; by counting the proportion p of R opponents
she expects to meet: since she is indifferent, B, must equal BP.

We then show that, if X; = 1, the player expects to meet at least one half R players.
Since she is indifferent, the upper endpoint of F must be to the left of B'/2. Similarly,
the lower endpoint must lie to the right. Hence, if F' were not identically B'/?, there
would be some point where F' had a finite, negative slope and was not equal to B/2.1?
The heart of the proof shows that whenever F' has such a slope, the player expects to

meet exactly one half R players. Since she is indifferent, F' must in fact equal B/

The Argument in Greater Detail

Let us say that a player plays “according to F” if she always chooses L to the left
of F' and R to the right. If a player believes that all other players play according to F,
then she also wants to. Why? To compute f™ from f" ! we use the belief that makes
R the least desirable: that all players play L to the left of f*~' (and R to the right).
This is just the belief that other players play according to f™~!. With this belief, a
player wants to play according to f™. Since one more iteration from F' gives F', a player
who believes that all other players play according to F' will also want to. A continuity
argument implies that, if the player is on F', she is indifferent between R and L.

Suppose our player revises her action at time ¢. While she is locked into this action

2In the intuition we assume that F' is continuous. In fact, we don’t know this about F, and the

formal proof does not assume it.
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she will be matched to a sequence of players, whom we divide into two groups: “new
players and “old” players. A player is “old” if, at the time of his match with her, he is
locked into an action that he chose before time t. A “new” player is one who chose his
action after time ¢. The expected number of “old” players equals the expected number
of “new” players. Why? Over a player’s lifetime, half of the players she is matched
with will have chosen their actions before she chose hers, because all players have the
same rate of revision opportunities. But a lifetime is just a sequence of commitments to
actions.’® Since the period of commitment that begins at time ¢ is, ex ante, the same as
any other, the expected numbers of “new” and “old” players in the period must also be
equal.'*

The probability that an “old” player plays R is given by X;. This immediately gives
bounds on F'(0) and F'(1). (We now treat F as a function from X; to B;.) Suppose that
a player chooses an action on F' when X; = 1. Since all old players are playing R, she
cannot expect to meet more than one half L players. Since she is indifferent on F', she
must be to the left of B'/2. This shows that (1) < B'/2. Analogously, F(0) > B'/2.

Now suppose that, in the limit as frictions vanish, F is not a vertical line at B'/2.
Then there must be a point away from B2 where F has a finite, negative slope. Suppose
a player receives an action revision opportunity on F' at this point at time ¢. Assume she
believes that all other players play according to F. As argued above, she is indifferent
between R and L. Let’s count the proportion of R players she expects to meet while
locked into her action. Half of them will be old players; of these, X; play R. Half of

them will be new players; we will show that the probability that a new player plays

13For a discussion, see Hare Krishna (1742).

“More formally, let O; and N; be the (random) numbers of old and new players that a player will
meet while locked into her ith action. Over a player’s lifetime she meets equal proportions of new
and old players: plim;_, {Zle Ni/zilzl O;| = 1. Divide both the numerator and the denomi-
nator by I. Since the expectation of N; is independent of i, the law of large numbers implies that

plim;_, {zle N} /I = E(N;), and likewise for O;. Thus, E(N;) = E(0;).

13



R is 1 — X; in the limit. Therefore, the total proportion of R players converges to
X;/2 4 (1 — X;)/2 = 1/2. Since the player is indifferent, F'(X;) must be close to B'/?
when £ is large.

How does a player forecast how the new players will play? To answer this, we need to
know how her belief over other players strategies combines with the exogenous stochastic
process B to give a prediction of how the state of play X will evolve. Suppose all players
do play according to F'. Then X satisfies the following differential equation:

k(1—X,) if B, > F(X))
—kX, if B, < F(X))

Why? When B; > F(X;), all players currently playing L. switch to R when they have the
chance. The proportion of L players is 1 — X, and they get chances to change actions
at the rate k, so X; = k(1 — X;). Similarly, when B, < F(X;), players switch from R to
L, and the proportion of R players is X, so X, = —kX,.

F

X, = —kX, X, =k(1-X,)

Figure 4: Local dynamics around F'.

Figure 4 illustrates the dynamics of the system. Suppose we are initially on F'. If
B increases slightly, players start switching to R, so X rises. This causes us to move
away from F. X will continue to rise unless a reverse movement of B brings us to the
other side of the indifference line. If this happens, X will begin to fall—again, until a
sufficiently large reverse movement of B takes us back to F'. The longer we stay on one
side of F', the less chance that we will return, since the changes in X always take us

further away from F. Thus, sooner or later there will be a bifurcation: a time beyond

14



which we stay on one side of the line until X (almost) reaches either 0 or 1.1

As frictions shrink to zero, two things happen. First, the bifurcation happens almost
instantaneously, so that almost all new players choose their actions after the bifurcation.
This means that either nearly all new players choose R (if there is an upwards bifurca-
tion) or nearly all choose L (if the bifurcation is downwards). Second, the ratio of the
probabilities of bifurcating up vs. down converges to the ratio of the speeds at which the
population moves to R versus L on the two sides of F. This ratio is just (1 — X;)/X;.
The intuition for these two properties is explained below.

The probability that an “old” player plays R is given by X;. With small frictions,
the probability that a “new” player will play R is just the probability that X bifurcates
upwards, which is 1 — X;. In total, the player must believe that her probability of being
matched to an R player is

1 1 1

§~Xt+§~(1—Xt):§ (4)

Since the player is indifferent between R and L given her belief, F'(X};) cannot be different

from B'/? in the limit as k goes to infinity. This completes the intuition for Theorem 1.

The Case of a Slowly Changing World

The intuition for Theorem 2 is exactly the same, with one exception. With non-
vanishing frictions, a player is locked into her action for a positive amount of time. If
she is impatient, she puts more weight on old players than on new players. This is
because old players are typically encountered earlier than new players during the period
of commitment. This means that in equation (4), she puts a weight of more than one
half on the X; and less than one half on the 1 — X;. Thus, a higher X; makes R a more
appealing choice. As a result, F' is not vertical but rather slopes downward. The rest of
the argument is still valid. The relevant properties of bifurcations still hold since they

depend only on k becoming large relative to o and .

I5Note that X is never exactly equal to 0 or 1 since for every given length of time there is a positive

fraction of players who have not yet received a chance to change their actions.
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Intuition for Bifurcation Properties

We first need to show that the bifurcation occurs almost instantly. This is easiest
to see in the second case, of fixed frictions and a slowly changing world. After a short
time on either side of F', X takes us away from the line at a fixed rate; the slower B is,
the smaller is the chance that a reverse movement in B will take us back, and thus the
earlier is the bifurcation.

In the other case, of shrinking frictions, we need to show something stronger. In order
for the player to ignore how new players play before the bifurcation, the bifurcation must
happen very early relative to the time 1/k that she expects to be locked into her action,
which itself shrinks to zero as frictions disappear. To show this, we stretch the time
scale so as to keep the expected lock-in time fixed. (IL.e., we replace B; with Bt = Bin
and X; with Xt = Xi/k.) The Brownian motion in the new scaling becomes slower and
slower, whereupon the prior argument can be applied.

The second thing we need to show is that the relative chance of bifurcating up vs.
down equals (1—X;)/X;. To see this, it helps to transform the problem to one dimension:
the horizontal distance between B; and F'(X;). Locally, F' is approximately a straight
line. Thus, the distance Dy = By — F(X}) looks locally like a Brownian motion with
two different constant trends, each pulling D away from zero (see Figure 5). Denote
the trends pulling D to the right and left by Agp = k(1 — X¢)|F'(X;)| + p and A =
kX | F'(Xe)| — .

AL ~—  — Ar

0 D,

Figure 5: Linearization of D, = B, — F(X,) around v = t.

In this approximation, a bifurcation occurs at time t if D; equals zero but D, is nonzero
for all v > ¢. An upwards bifurcation in (B, X;) space corresponds to a positive bi-

furcation of D. We will show that the ratio of probabilities of positive and negative

16



bifurcations of D is approximately the ratio of the respective trends, Ag/Ar, which
converges to (1 — X;)/X; as k grows.

Suppose that D; = 0. Let P' be the probability of a positive bifurcation of D
occurring at any time after t. Let P' be the probability of a negative bifurcation.
Let Pl and P!, respectively, be the probabilities of a positive and negative bifurcation
occurring at some time v € [t,¢ + ¢]. We claim that the ratio PT/P! of bifurcation
probabilities equals the ratio P!/P}. Why? Let P. = P!+ P!. If there is no bifurcation
in the interval [t,t + €], then we must have D, = 0 for some v > ¢+ ¢€. As of time v, the
probability of an upwards bifurcation is once again P'. Thus, P! = P! + (1 — P.)P'.
This shows that P" = P!/P,. Likewise, P! = P}/P.. Therefore, P'/P' = P!/P}.

Since this equality holds for all ¢, it also holds as € goes to zero. This limit turns out
to be easy to compute. For an upwards bifurcation to occur in [t, ¢+ €], two things must
happen. First, D must be positive at time £+ €. Second, D must remain positive forever
after. Where is D at t 4+ €¢? Since D, = 0, the value of D at time ¢ + € is dominated
by the noise in B. This is because the standard deviation of B;.. — B; is proportional
to /€, while the linear trends A\g and A7 produce a change of order only e. For small
€, \/€/€ is arbitrarily large. So for small € we can treat the distribution U, of Dy, as
approximately symmetric around zero. (In particular, it is approximately normal with
mean 0 and variance o2¢).'0

Given that D is positive at t 4 ¢, what is the probability that it remains so forever
after? If Dy = 2z and z is small, this probability is proportional to the distance z

times the trend A\g. To see this, let p be this probability, and consider what happens
if D, starts twice as far away, at 2z. What is the probability that D never hits zero?

16This property of Brownian motions, that the noise swamps the trend over short intervals, is an
implication of independent increments. The change in the Brownian motion over a given interval of
length, say, 1, is the sum of N i.i.d. changes over intervals of length 1/N. The only way this sum can
retain a nontrivial variance as N grows is for the variance over each subinterval to remain relatively

large; i.e., at least proportional to 1/N.
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It is the probability p that D never hits z, plus the probability 1 — p that D hits z
times the probability p that, from z, D never reaches zero. This is p+ (1 — p)p, which is
approximately 2p since, for small z, 1 —p is close to one. This shows that the probability
that D never hits zero if it starts at z is proportional to z for small z.

Why is this probability is also linear in Ag? Note that as long as D > 0, D is simply
a Brownian motion with trend Ag. Let us multiply the time scale by 4 and the space
scale (the horizontal axis) by 2. This gives a new Brownian motion D, = 2D, 4, which

has the same variance as the old one:
Var(f)w — ﬁv) = Var(2D, /4 — 2Dy 1) = 40* (w/4 —v/4) = o*(w — v) = Var(Dy — D,)

The new process D begins at 2z. Since the time scale is stretched by twice the space
scale, the trend of D is Agr/2, half the trend of D. But a change in the scaling cannot
affect the probability that D never hits zero, which must still be p after doubling the
initial distance z and halving the trend Ag. Since the probability that D never hits zero
is linear in z, it must also be linear in A\g.

Hence, if Dy, = z and z is small, the probability that D, remains positive for all
v > t 4 € is proportional to zAg. Since most of the weight of W, is on small z’s, the
probability P! is approximately proportional to

/ T ARV (2) = g / Y 4w,z

. =0 =0

The probability P! that D bifurcates to the left in [t, ¢+ ¢] is approximately proportional
to

0 0o )
/ 2 ApdW,(2) ~ / AdV.(z) = A\ / 2dV(2)
Z=—00 0 Jz

Z= =0
because U, is approximately symmetric. Therefore, the ratio P! /P! equals Ag/\f, as €
goes to zero. Since Ag = k(1 — X3)|F'(X:)| + p and A\, = EXy|F'(Xy)| — u, this ratio
converges to (1 — X;)/X; as k goes to infinity. This shows that the relative probability

of bifurcating up vs. down equals (1 — X;)/X; as frictions vanish.
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5 Relation to the Literature

This paper is related to two research programs. The first studies how connections among
“nearby” games can determine how rational players will behave in a given game. The
second is the literature on population models.

The first program began with Nash [26, 27, 28]. He showed that his bargaining game
has a unique solution if one imposes conditions on how the solution can vary when the
game is changed.!” Later contributions used a strategic rather than axiomatic approach;
important examples include Carlsson and van Damme [10] and Morris, Rob and Shin
[25].

Our framework is closely related to Carlsson and van Damme’s. They study a one-
shot 2 x 2 game whose payoffs are not common knowledge. Rather, each player receives
a noisy signal of the true payoffs. The space of possible payoffs includes regions where
each action is strictly dominant. Because of the noise, there is no common knowledge
among the players that the true game is not in one of these regions. Iterated strict
dominance gives rise to a contagion effect that starts from these regions and determines
how players will play throughout the space of possible payoffs. For small enough noise
in the signals, the players must play the risk-dominant equilibrium of the true game.

In both their paper and ours, the connection between different decision problems
gives rise to a contagion effect. A player’s optimal action depends on what she thinks
her opponent will do. In Carlsson and van Damme, a player does not know exactly which
signal her opponent received, so she must take into account a distribution of possible
types of opponents. The action of each of these opponents is the solution to a decision
problem in a slightly different game. In our game, a player does not know what the state
of the environment will be when her future opponent chooses his own action. Again,
there is a distribution of possible “types” of opponents, each seeing a different state.

However, it is not possible to apply the technique of Carlsson and van Damme directly

17See Carlsson and van Damme [10, pp. 1007-1008] for a discussion.
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to our framework. A naive attempt to do iterated dominance on the payoff variable B,
alone leads to a much weaker result: that an action must be played if it is better than
1/4-dominant. No prediction can be reached if B, is greater than B3/* but less than
B'*. This is because the iterative procedure tells us only how new players will play,
and these constitute just half of a player’s potential opponents.'®

The second research program, on population models, divides into three branches:
“mechanical”, “boundedly rational” and “rational”. The “mechanical” branch (e.g.,
Foster and Young [12], Fudenberg and Harris [14]) postulates some law of motion for
the whole population, such as the replicator dynamics. While well suited to biological
evolution, this paradigm has been criticized as an economic model of human behavior
because it ignores the individual’s decision problem. In contrast, the “boundedly ra-
tional” branch derives the population’s law of motion from a rule of thumb used by
individual players. The rule of thumb need not be optimal but has to be “reasonable”.
For example, players might play a best response to the actions that others have used
in the past. The classic papers in this branch are Kandori, Mailath and Rob [18] and
Young [30]. Other contributions include Bergin and Lipman [2], Binmore and Samuelson
[4], and Binmore, Samuelson, and Vaughan [5].

One limitation of both mechanical and boundedly rational models is that equilibrium
selection occurs only in the long run and takes the form of a ergodic distribution with

most of its weight on the selected equilibrium.'® Some have also criticized models with

18Ty see this, suppose that iterated dominance from the region where R is strictly dominant “goes
as far as 0”. That is, if a player believes that others choose R when B; > b and L when B; < b, then
she is always willing to play R at b and is sometimes indifferent. When is she indifferent? In the worst
case, when all old players are playing L. With small frictions, the player cares only about the very near
future, when the Brownian motion is equally likely to be above or below b. Therefore, given her belief,
she expects that half of the new players will play R and half L. Since she is indifferent and one quarter

of her opponents play R, b must be B/4.

YModels of bounded rationality with local interactions in place of random matching yield faster

convergence; see, for example, Ellison [11] and Blume [6].
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boundedly rational players on the grounds that it is hard to justify the choice of a
particular rule of thumb. This is especially true when a player could do better by
recognizing that others are using the given rule.

In models with rational players, equilibrium selection is typically fast and irreversible.
Moreover, a clever player cannot “outsmart” her opponents if they are fully rational
as well. Most importantly, the “rational” approach makes it possible to analyze the
individual player’s decision problem and the process of forming beliefs about what others
will do.

Matsui and Matsuyama [24] study a “rational” model like ours but with a fixed world.
Both steady states in which all players play the same action are rational expectations
equilibria of the dynamic game. However, Matsui and Matsuyama find support for the
prediction that the risk-dominant equilibrium of the static game is more likely to be
played: from any initial state of play there is a rational expectations equilibrium leading
to it; and from initial states close enough to the risk-dominant equilibrium, play must
converge to it.

Lagunoff and Matsui [21] consider models with large (rational) players and lock-in.
In pure coordination games with patient players, every subgame perfect equilibrium
must lead to the Pareto dominant equilibrium of the static game. This happens because
players are large enough to influence aggregate play, so they can “steer” others into the
Pareto dominant equilibrium by playing it themselves. Although they may lose in the
short run, they do not care if they are sufficiently patient. Matsui and Rob [23] and
Lagunoff and Matsui [22] also assume large, rational players but do not use equilibrium
reasoning. Instead, they identify conditions (including restrictions on beliefs) under
which play converges to the Pareto dominant equilibrium.

Our paper also belongs to the “rational” branch, but differs in two ways from the
above models. First, we use backwards induction rather than equilibrium notions or ez
ante restrictions on beliefs. Second, we assume that payoffs change stochastically over

time. Fudenberg and Harris [14] also assume that payoffs follow a Brownian motion,
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but in a mechanical model. They show that this perturbation alone does not give rise
to equilibrium selection under the replicator dynamics. Changes in payoffs appear also
in the model of Ben-Porath, Dekel and Rustichini [1], who study how different mutation

rates perform in a changing world.

6 Concluding Remarks

We view a normal form game as an abstraction that captures aspects of strategic inter-
action that are common to a variety of contexts. Since the normal form game is often
not enough to make a prediction, we would like to learn which omitted features affect
the outcome. An analysis of which assumptions are critical for our results can shed some

light on conditions that make coordination on the risk-dominant equilibrium more likely.

Small Players

We assumed that players are small enough that they do not think that their actions
will be observed and affect the evolution of play. If this assumption is relaxed, punish-
ments can be devised that can sustain other types of behavior or, as in Lagunoff and
Matsui [21], a player may incur short term losses in order to steer play towards the

Pareto dominant equilibrium.

The Contagion Argument

A contagion argument works by connecting nearby decision problems, which enables
players to predict what others will do. A few assumptions seem to be critical. For the
argument to have a place to start, there must be regions of the parameter space where
each action is strictly dominant. In addition, for the argument to work throughout the
parameter space, all of a player’s opponents must face decision problems that are different
from (but close to) her own. Otherwise there may be a region of the parameter space
with multiple equilibria, since players can have different self-sustaining beliefs about the
behavior of those who face the same decision problem. In our model, we ensure that

decision problems differ by breaking the simultaneity of moves: the measure of players
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who change their actions simultaneously (and thus who see the same the same value of
By) is always zero. Carlsson and van Damme [10] achieve a similar effect by assuming a
continuous distribution of payoff signals, so that the two players never observe exactly
the same signal.

Our contagion argument also uses the assumption that the relative payoff to R against
either action is strictly increasing in B;. One might be interested in cases where this does
not hold. For example, in some range, a higher B, may raise the payoff to coordinating on
either action; i.e., it may raise the relative payoff to R if others choose R, but lower it if
others choose L. More generally, the relative payoff to R may depend in an arbitrary way
on B;. This may prevent the contagion from spreading throughout the parameter space.
Nevertheless, the following weaker version of Theorem 1 can still be proved. Assume only
that the game has strategic complementarities (A(R, B;) > A(L, B;)) and that A(a, B;)
is Lipschitz in By. (A function is Lipschitz if its rate of change is bounded.?) Let b be
any value of B; at which R is strictly dominant. Let (b,b) be the largest (potentially
infinite) interval that includes b, such that R is risk-dominant (and L is not) throughout
the interval. In the limit as frictions vanish, R must be played at all points in this

interval. An analogous result can be proved for L.

The Stochastic Process

Brownian motion is a natural process to study because it is the only continuous
process that has independent, stationary increments [29, pp. 146, 157].2' However, one
may still wonder how our assumption of Brownian motion limits the generality of our
results. Here we consider two ways in which this assumption can be weakened.

The first is continuity. There are many discontinuous processes with independent,
stationary increments. A discrete process with this property is a random walk; it makes

a sequence of i.i.d. jumps at fixed intervals. Alternatively, the time between jumps may

2Formally, g is Lipschitz if there exists a ¢ > 0 such that |g(t) — g(s)| < ¢|t — s| for all ¢ and s.

21Stationarity means that the distribution of increments over a given time interval can depend only

on its length.
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itself be a random variable; e.g., jumps may occur at Poisson intervals. Brownian motion
is the limit of all such processes as the (expected) time between jumps goes to zero.??
Proposition 1 shows that our results hold for all such processes in a neighborhood of
Brownian motion in the case of vanishing frictions (Theorem 1). The time between
jumps must be small relative to the frictions so that only a small fraction of players face
the same decision problem. An analogous result can be proved for the case of a slowly
changing world (Theorem 2).

Consider a right-continuous process (A¢)¢>o. We will say that (A;)i>o has i.i.d. jumps
if there is a (random) sequence of times {ty = 0, 11,15, ...} such that: (1) the process A;
is constant on every interval [t;_1,¢;); and (2) the random vectors (¢; — t;—1, Ay, — Ar,_,)
are independent and identically distributed. (In particular, each jump has a distribution

that can depend only on the time since the prior jump.)

Proposition 1

For each i, let (A})i>o be a process with i.i.d. jumps. Suppose that, as i goes to infinity,
(A}) converges in distribution to a Brownian motion (By) with trend pu and variance
o2, Let T; be the game described in section 2, except that the payoff parameter changes
according to (A%) instead of (By).

For any € > 0, there is a k and a function 1(-) such that if k > k and i > ¥ (k), R must
be played in I'; whenever Al > BY? 4 ¢ and L must be played whenever Al < BY? — ¢,
Proof See appendizx.

The assumption of independent, stationary increments can also be weakened. First,
our results hold if B is any strictly increasing Lipschitz function of a Brownian mo-

tion. This is because any such transformation of B is equivalent to a change in the

22More precisely, both the time between jumps and the jumps themselves must shrink to zero in an
appropriate way. If the jumps shrink too slowly relative to the time between them, the increments of
the resulting process over a fixed time period will not have a finite mean and variance. If they shrink
too quickly, the process will become a straight line. Otherwise, the end result must be a Brownian

motion.
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utility function: instead of u(a,a’, B,) where B, = g(B;), we use the utility function
t(a,a’, By) = u(a,d, g(By)). With @, the relative payoff to playing R is still a Lipschitz
function of B,. This extension is important because the primitives that affect payoffs in
the real world (such as prices or temperatures) may be bounded.

The results also hold if the trend parameter, rather than being the constant u, is
a bounded Lipschitz function of ¢. For instance, B, may be the price of oil, which has
a seasonal component. The trend can also be a Lipschitz function of B; itself. One
important example is the mean-reverting process dB;, = dB; — wu(By — b)dt, where By
is a Brownian motion with no trend. Our results may be of greater interest with such
processes. This is because Brownian motions tend to wander away from B'/? to regions
where one action is strictly dominant; a mean reverting process with b close to B/?
spends a positive fraction of its time in the area where the static game has multiple

equilibria.?

Homogeneity of Players

How robust are our results to the assumption that all players have the same payoff
function? Suppose that the payoff of player i € [0,1] is u(a,d’, By + 6;), where 0; is a
personal taste parameter. Assume that most of the players have taste parameters in
the range [0, ¢']: no more than e are below 6, while no more than ¢ are above 6'. A
modification of our argument shows that as frictions vanish, at least 1 — € of the players
play R when B; > B'Y/?=/?2 — ¢ and at least 1 — ¢ play L when B, < B'/?*¢/2 _ ¢’
This shows that there is continuity: when most of the players have very similar tastes,
our results hold approximately. It remains an open question whether one can determine
what happens for intermediate values of B;. This is especially interesting when there is

a large degree of heterogeneity.

ZIn the long run By has a stationary distribution that is normal with mean b and variance a2 /2u
(see Proposition 5.1 in Karlin and Taylor [20, p. 219]). A Brownian motion does not have a stationary

distribution, as its variance goes to infinity.
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Discounting

We have assumed that the discount rate r is positive. However, there are relevant
situations in which a player has some reason to put more weight on the future. For
example, a technology (such as the Internet) may be used by a growing number of
people. A user thus might expect to interact with other users more often as time passes.

With a negative discount rate, a player’s payoff while committed to a given action
may still be well defined. This is because, when the player takes into account her
chance of obtaining a new revision opportunity, her effective discount rate becomes
k + r. Therefore, a player’s payoft during her commitment period is finite as long as
r > —k. In the case of vanishing frictions (k — 00), this is true for any r, and the result
of Theorem 1 can be proved in this case. With a slowly changing world, payofts are well
defined only if » > —k. Even in this range, iterated dominance implies a weaker result
than that of Theorem 2. If r € (—k,0), players must play R when B, > BY/?>~* and L
when B, < BY?** where \ = |r/(4k + 2r)|. What happens for B, € (BY/?* B!/27%)

remains an open question.
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A Proofs

Mathematical Preliminaries

We first collect several mathematical results that are proved in Burdzy, Frankel, and
Pauzner [9] (henceforth, BEP). We begin with two lemmas. The first states that the
differential equation that governs the evolution of the state of play has a unique solution

that depends on certain parameters of the model in a continuous way.

Lemma 1 (BFP) Let B, be a Brownian motion with drift u and variance o®. Let
k> 0. Fiz xg € (0,1) and by € R and assume that (By, Xo) = (bo, o). Assume that f
1s a decreasing Lipschitz function. Consider the following differential equation:
0X, /i — { E(1—Xy) if By > f(Xy), )
—kX; if By < f(Xy).
1. This equation has a unique Lipschitz solution (X;)i>o for almost every path (By)i>o.
2. Over any closed time interval [0,T], the solution Xy is a uniformly continuous

function of by and xo. If f(X;) is replaced by f(X;) + A, the solution Xy is also

uniformly continuous in A.

Since equation (5) does not specify what happens when B; = f(X}), uniqueness
applies only to Lipschitz solutions. For example, X; may be identically equal to f~'(B;)
in some time interval; this gives a solution to (5) that is not Lipschitz. However, only
Lipschitz solutions are consistent with the model, since no more than kdt of the agents
can change strategies in a period of length dt.

A trivial corollary to Lemma 1 shows that the relative payoff to playing R in the
dynamic game is also a continuous function of initial conditions and of f. Let ¢(b, z; f)
be the relative payoff to playing R that a player expects if she believes that (5) will hold
and chooses her action at (B, Xg) = (b, z), which is

E M: e L (X,A(R, B) + (1 — X)A(L, B)) dt | (By, Xo) = (b, 2)
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Corollary 1 Assume that [ is Lipschitz. Then the function ¢(b,x; f) is continuous in
b and x. Moreover, ¢(b, x; f + ) is continuous in vy € R.

Proof

Without loss of generality, we assume that Brownian motions B, and B, starting
from any two different points By = b and BO = b are related by By — b = Bt — b and
suppose that (b, Z) converges to (b, z). Note that

6(ba3 1) — 600,33 1) = B[ [~ e O (XA(R B) - XA(R By)) de

T e L (1= X)A(L, B) — (1= X)A(L, By)) dt

Jt=0

By Lemma 1, X, converges uniformly to X; on any closed time interval [0, 7] as (b, ) —
(b, x). This implies that ¢(b, z; f) — ¢(1~),:E; f) goes to zero. Thus, ¢(b, x; f) is continuous

in its first two variables. Continuity in f follows in a similar manner. Q.E.D.

Lemma 2 shows that bifurcation times go to zero and that the relative chance of

bifurcating up vs. down equals the relative speed of X on the two sides of F.

Lemma 2 (BFP) For each n > 0, let B]' be a Brownian motion with drift j, and
variance o2, where lim, o ft, = lim, o 02 = 0. Let f, be a continuously differentiable
decreasing function. Suppose that xy € [0,1] converge to some fized xy € (0,1) as
n — oo. Assume that lim, . f,(x0) exists and is nonzero, and the derivatives are
asymptotically uniformly continuous at xq, i.e., for every e > 0 there exists an ng < co
and a 6 > 0 such that |f}(z) — f(xo)| < € for all x € [xg— 6,20+ 6] and all n > ng. Let
X[ be the solution to the following differential equation, with X{ = xf and By = fn(x3),
A= X7) if BY > fu(X]),

dX}/dt = { R .
Assume that lim, ..o Ay = A € (0,00) and lim,_eo Ay = A € (0, 00). Let ¢y € (0, min(zo, 1—
x9)), and let TP = inf{t > 0: X & (co, 1 — o)} and T§ =sup{t <17 : B} = f(X])}.
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1. The random bifurcation times T§ converge to 0 in distribution as n — oo.

2. The probability that the bifurcation is positive (i.e., that dX"/dt > 0 for all t €
n n A(l—2x
(T3, 17)) converges to m
For brevity, Lemma 2 is stated only for the case z¢ € (0,1). It also holds when zy €
{0,1}, with a slight change in the definition of T%F. Let ¢y € (0,1). If 29 = 0, let
TP =inf{t >0: XF >1—co}. fag=1,let Tf =inf{t >0: X} <}

Lemma 3 concerns the case of processes with i.i.d. jumps (see definition on p. 24).
It is used to show that, as the processes converge to a Brownian motion, so does the
relative payoff to playing R. Fix a discount rate ¢ > 0 and let v(b,z) be any Lipschitz
function. Let A be either a Brownian motion or a discrete process with independent,

stationary increments. Suppose that Ay = f(Xy) and that X satisfies

X, — E(1—X,) if A > f(Xy) (6)

Because equation (6) does not specify what happens if A; = f(X}), it does not pin
down what happens to X in the period after 0 before A jumps: X can either remain
unchanged, move up, or move down. Let X; and X, be the maximal and the minimal

Lipschitz solutions to (6). Let

Db A, f)=F | [~ e w(A, Tt | (A0, Ko) = (b,2)
L/t=0 i

and

@(CE, b7 Au f) =FE /OO eictV<At;Xt)dt | (A07X0) = (b7 I)
L/1=0 |

Note that if ¢ = 7+ k and v(b,z) = A(R,b) + (1 — 2)A(L,b), ® and @ are the highest

and lowest relative payoffs to playing R that a player can expect.

Lemma 3 (BFP)
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Let A® be a sequence of processes with i.i.d. jumps that converges in distribution to
the Brownian motion B as i — oo. Let f* be a sequence of strictly decreasing Lipschitz

functions that converges to f as i — oo. Suppose that (z',b") converges to (x,b). Then

@ (27, b A% fY) and ®(2°, b AY, f1) both converge to ®(z,b; B, f) = ®(x,b; B, f).

Proof of Theorem 1

Since we know little about the shapes of the f™’s, it is technically difficult to work
with them directly. Instead, we work with sequences of functions whose form we do
know. Fix some p > 0 and let go(z) = —px + Ao, where )y is the smallest constant such
that R is strictly dominant at every (b, x) for which b > go(x). Then inductively define
gn(z) for n > 1 by letting ¢, (x) = —px + A, where A, is the smallest number such that
(b, 75 gn—1) > 0 for all (b, z) with b = ¢, (z).

Let Qg (x) be the infimum of ¢,(x) as n goes to infinity. (We write @ to denote the
dependence on k.) By iterated elimination, R must be played to the right of Q. We
first show that @ must have the indifference property: that there is an x € [0,1] such
that ¢(Qr(x), z; Q) = 0. Suppose otherwise. Then we have ¢(Qx(x),x; Q) > 0 for all
x. By the continuity of ¢ and compactness of [0,1], there is a band of strictly positive
width to the left of Q% such that qzﬁ(l;,f; Q1) > 0 for all (l;,f) within this band. But
(b, x; Qk + 7y) is continuous in v € R by Corollary 1. Thus, for ¢, sufficiently close to
Qk, ¢(5,£; ¢n) > 0 for all (lN), Z) in some band to the left of g, that includes Q. This
implies that ¢,,1 < Q, a contradiction. So (), must have the indifference property. For

any k, let x; be one such point of indifference. That is,

(R E[ [T I AR B + (1= X)A(L.B)) dt | (Bo,Xo) = (Qelan). )| =0
g

where (X;)s~o satisfies:

X, — k(1 —X;) if By > Qr(Xy) ®)
—kX; if By < Qi(Xy)
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By passing to a subsequence if necessary, we may assume that the indifference points x
converge to a point z. € [0, 1] as k — oo.

We now make a simplification: in taking the limit of (7) as & — oo, By can be
replaced by By. The intuition is that as & — oo, players care increasingly about the
payoffs they get in smaller and smaller neighborhoods of ¢ = 0, where B; is closer and

closer to By (since By is continuous with probability one). By (1), for any a € {R, L},

(r + k)E { /t'oo e~ A(a, B) — Ala, BO)|dt}

Jt=0

is no greater than

(k) [ e ITENB, — Bolldt < w(r+k) [ e BB, — BoPar

Jt=0 Jt=0

Since B, — By is normal with mean ut and variance o2t, this is no greater than

w TR [ 2y H2dt < w(r+k /OO —r R o/t t)dt
e+ k) [ eI (updt < k) [ e oV + |ulild

0 B JT 1
— W(r+k) [UW * '“'W]

which goes to zero as k — 0o. Hence, we can substitute By = Qx(x)) for B; when we
take the limit of (7) as k — oo.

We now want to show that the time of bifurcation goes to zero as k goes to oo, even
relative to the agent’s time horizon (which also goes to zero). We rescale time so that the
agent’s horizon is independent of k. We then need to show that the time of bifurcation
in the new units goes to zero. Let v = (r+ k)t, X, = Xo/(r+k), and B, = Byr4k)- Then
(7), with By = Q. (1) substituted for B,, becomes

lim {/1;0:0 e’ (XDA(Ra Qk(wr)) + (1 — X)A(L, Qk(%))) dt | Xo=ax| =0

k—o00

where X, satisfies

)'N( _ Tik(l - Xv) if Bv > Qk(Xv)

SRR, i B < Qi)

and (B, ),>0 is a Brownian motion with drift parameter p/(r+k) and variance parameter

0?/(r + k) that begins at By = Qx(xs).
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We now define the time of bifurcation. Fix an arbitrarily small ¢ > 0. If 2, € (0, 1),
we will assume moreover that ¢y < min(ze, 1 — o). Let TF be the first time v at which
B, ¢ (Qu(1 — o), Qrlco)). Let T} be the largest v < TF at which B, = Qx(X,). The
time of bifurcation is defined as T%; it is the last time at which B, = Q(X,) before X,
reaches an co-neighborhood of either 0 or 1. If 7o, = 0, we let T be the first time v at
which B, < Qr(1 —cg). If 7o = 1, we let T} be the first time v at which B, > Qr(co).
The definition of T{ is unchanged in these cases.

By Lemma 2, as k£ — oo,

(i) The bifurcation times T¥ converge to zero in distribution; and
(ii) The probability that X +k(1 X,) for all v € (T}, TF), converges to 1 — zu.
The probability that Xv = —HLka for all v € (TF,TF), converges to Too.

By taking ¢y arbitrarily close to zero, we obtain

lim E( | Xo = zr) = (I—2s)(1 = (1= 2)e™) + Too(Tooe™")

k—o00

= 1 =2+ (225 — 1)
so that

lim E U“ i~ (f(vA(R Qula)) + (1= X)A(L, Qul)) dv | Xo =

kh_{go e (B(X, | Xo=2)[A(R, Qulrr)) — AL, Qilr))] + A(L, Qu()) ) dv
kh—{go ( [1 = 2o + (2200 — 1)e™"][A(R, Qrlzr)) — AL, Qu(zr))] + A(L, Qk(l’k))> dv
~ lim ( Qr(zk)) +A(L Qr(xy))

Since the first line is equal to zero by the indifference property, it must be that
A(R, lim Qx(xx)) + A(L, lim @ (zx)) = 0

By (2), limy oo Qi(z1) = B'2. This concludes the proof for R, since the slope —p of

the function Q) can be arbitrarily close to zero. The proof for L is analogous.

Proof of Theorem 2
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The proof follows the lines of the proof of Theorem 1, so we simply sketch the
main steps. We need to show that the indifference line is given by B**). We construct a
sequence of functions g, as follows. Let qo(x) = B"® + )¢, where ) is large enough that
o(b, z;q0) > 0 for all (b, ) with b > go(x). Then inductively define ¢,(z) = B"™ + A,
where ), is the smallest number such that ¢(b, z;q, 1) > 0 for all (b, z) with b = g,(x).

Notice that each ¢, is Lipschitz. This is because B™® is given implicitly by
zA(R, B"®) + (1 — 2)A(L, B"™®) =0
By differentiating this with respect to x, we obtain

dBM® gz Ay(R, B") + (1 — 2)Ay(L, B"™)
dv A(R, BM*)) — A(L, B#))

where As(+,-) denotes the derivative of A(-,-) with respect to the second argument.
Since A(R, B;) > A(L, By) for all By, the denominator is bounded away from zero over
the compact interval [B"") B"9)] By (1), the numerator is bounded above, so B"®) is
Lipschitz, as are its translations g,.

Let Q5 be the infimum of the g,’s. (The subscripts of (), , indicates its dependence
on the parameters of the Brownian motion.) By iterated dominance, R must be played
to the right of Q5 ,. As in Theorem 1, we can show the “indifference property” for Qs ,
i.e., that there exists an x5, with ¢(Qupu(Top); Topu: Qop) = 0. Again, we can assume
that z,, converges to x., as o and pu go to zero.

As before, we can substitute Qo ,(2s,) for By in computing the limit of

(Qopu(Top), Top; Qo). The indifference property then implies

i, (r + k) E {/::) ety (X A(R, Qo (o) + (1 = Xi) AL, Qo pu(20,))) di

1,0
| (BO;XO) = (QU,M(IU7M)7I.U7M)] =0

where X, satisfies an equation analogous to (8). Using the same change of variables

v = (r + k)t, we obtain

lim E { / : e (XDA(R, Qop(0,)) + (1 — X)A(L, Qg,u(:cg,u))) dt | Xo =, =0

H,0—0
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where X, satisfies

5 _ 2 (1-X,) if By > Qou(Xy)

SRR, i By < Q)

and (B, ),>0 is a Brownian motion with drift parameter p/(r+k) and variance parameter
o?/(r + k) that begins at By = Qq.(20.,)-

Fix an arbitrarily small ¢y > 0, and let 75" be the corresponding bifurcation time.
By Lemma 2, as o, 4 — 0, the time of bifurcation converges to zero and the chances of
bifurcating to 1 and 0 converge to 1 — x, and x.,, respectively. Therefore,

lim B(X, | Xo=20u) = (I=ae)(l = (1= @w)e ) + o (woce 75)

o=

k.
= 1= Too+ (26 — 1)e 7"
so that

lim F {/UOO e’ (XQ)A(R’ QopulTop)) + (1 - Xv)A(L7 Qa,u($a7u))> dv | Xo= Lop

0 —0 Ju=0

T e
rT +T+A

r+ 2k

. TZoo + k
= Jim, [T A Qulr) +

(1. Qo)

Since the first line is equal to zero by the indifference property, and A(-,-) is strictly

increasing in its second argument by (1), it must be that

rTeo + k
r+ 2k

T + 1+ Kk

A li
(R My Q) + — "oy

A(L, Tim Qi) =0

By (2), lim,, 5.0 Qo.u(5,) = B"@=) where h(z) = :ﬁ—;’; The proof for L is analogous.

Proof of Proposition 1

To find out where R must be played, we do the iterative elimination using the lowest
possible relative payoff to playing R. This equals the function @ (defined on p. 30), where
we let ¢ =r +k and v(b,z) = 2A(R,b) + (1 — 2)A(L,b). Let gj(x) = —pz + Ao, where
R is strictly dominant at every (b, z) for which b > ¢{(z) and b is a possible value of A’.
Let ¢ () = —px + A\, where ), is the smallest number such that ®(b, z; A, ¢’ _,) > 0
for all (b, x) such that b = ¢/, (x) is a possible value of A’. Let Q} be the infimum of the
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qi’s over n. QL must have the indifference property: there is an % € [0, 1] such that
D(Qi(xh), xi; A, Q%) = 0. Moreover, R must be played to the right of Qj if the payoff
perturbation follows A’

By passing to a subsequence if necessary, we may assume that the limits z; =
lim; oo 2}, and Q) = lim; . Q% exist. By Lemma 3, ®(Qj(z}), x}; A’ Q}) converges
to ®(Qr(xk), xr; B, Qk), which therefore must also be zero. This means (following the
argument of Theorem 1) that Qy(z;) converges to BY/? as k — co. Hence there is a k
such that, if & > k, Qu(21) < BY? +¢/3. Since p was chosen arbitrarily, we can assume
that it is less than €/3; this guarantees that Q(z) < B'? 4 2¢/3 for all z. Finally,
choose (k) such that if i > ¢ (k), @} is no further than ¢/3 to the right of Qi (i.e.,
Q, < Qr +¢/3). Tt follows that Q}(z) < BY? 4 ¢ for all . Accordingly, if £ > k and
i > ¢(k), R must be played under the discrete process A’ whenever A: > B'/2 +¢. An

analogous proof holds for L using ®.
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