Abstract

We study a coordination game with randomly changing payoffs and small fric-
tions in changing actions. Using only backwards induction, we find that players
must coordinate on the risk dominant equilibrium. More precisely, a continuum of
fully rational players are randomly matched to play a symmetric 2 x 2 game. The
payoff matrix changes according to a random walk. Players observe these payoffs
and the population distribution of actions as they evolve. The game has frictions:
opportunities to change strategies arrive from independent random processes, so
that the players are locked into their actions for some time. As the frictions dis-
appear, each player ignores what the others are doing and switches at her first
opportunity to the risk dominant equilibrium. History dependence emerges in

some cases when frictions remain positive.
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1 Introduction

Games with multiple strict Nash equilibria present a major challenge for game theory.
Most equilibrium refinements do not select a unique equilibrium in such games, and
those that do are not unanimous in their predictions. These difficulties have moti-
vated an interest in explicitly modelling dynamic processes by which play might evolve.
By tracing a gradual process in which players adjust their actions in response to past
play, one could hope to identify conditions that govern whether players will eventually
coordinate on an equilibrium and, if so, on which one.

Most dynamic models have focused on the evolution of play in a fixed world. We
assume instead that the world changes over time. In many of the concrete examples of
multiple equilibria, such as the choice between technological standards or the economy’s
coordination on high or low activity, the assumption that the world is changing is more
realistic. The state of technological knowledge, oil prices, and weather conditions are
only a few of many factors that change over time and affect the relative payoffs from
different choices.

The model has a continuum of fully rational players who are randomly matched
in pairs to play a symmetric 2x2 game with strategic complementarities. There are
frictions: in each period, each player has only a small probability of being able to
change her action. The payoff matrix of the game change every period, according to
a random walk. We assume that, in the (perhaps very distant) future, the cumulative
changes in payoffs have the potential to make either action strictly dominant.

We focus on the limit case in which the frictions become small, so that players’

2 The model becomes dominance-

chances to change actions come more and more often.
solvable.  The equilibrium that is risk-dominant at any given time must be played.
Moreover, convergence to that equilibrium occurs as fast as the frictions allow.

This contrasts with the predictions of most dynamic random matching models with

players who are not fully rational (such as Kandori, Mailath and Rob [15] and Foster

2Tn taking this limit as frictions become small, we also shrink the time between periods, in order to

retain the property that each player has only a small chance to change actions in a given period.



and Young [8]). In such models, when there is selection (e.g., as mutations go to zero),
it takes a relatively weak form: the selected equilibrium is played almost all of the time
in the ultra-long run. Our result also contrasts with selection in other matching models
with rational players, where equilibrium refinements have typically been needed (e.g.,
Matsui and Matsuyama [18]).

The result is driven by a contagion argument. Because of strategic complementarities
in the static game, players have an incentive to pick the same action that their opponents
are likely to choose. Hence, if a player picks her action when the game’s parameters are
near a region where an action (call it a) is strictly dominant, she has an incentive to pick
that action as well. This is because while she is locked into her action, random payoff
changes are likely to move the game into the region of strict dominance, leading some
of the player’s opponents to pick a. So a must be played when sufficiently close to the
dominance region. But then ¢ must be played when sufficiently close to this adjacent
region, and so on.

In the limit as frictions become small, this iterative process covers the entire parame-
ter space, giving unique predictions of what players will do in any situation. This result
depends crucially on the assumption that only a small proportion of players change ac-
tions in each period, so that two players matched at random will nearly always have
chosen their actions seeing different payoffs. Without this, there might be multiple
equilibria for some parameters, since a player’s optimal action could depend on what
others plan to do at the same payoffs.

We also consider the case in which frictions remain large but payoff shocks shrink
to zero. If players are completely patient, the same result obtains: the risk-dominant
equilibrium is selected. With impatience, players’ strategies are still uniquely deter-
mined, but they now take into account the distribution of actions in the population. In
particular, there can be history dependence: for a range of payoffs, if enough players
are initially playing a given action, the rest of the population must follow.

This paper is related to papers by Carlsson and van Damme [6] and Matsui and
Matsuyama [18]. The former analyzes a static game in which two players each receive

a slightly noisy signal of the game’s payoffs. Iterative strict dominance leads to the



selection of the risk-dominant equilibrium through a contagion argument. Matsui and
Matsuyama study a dynamic model in which a large population of players are randomly
matched to play a static game. There are multiple rational expectations equilibria;
however, only the stationary state in which the risk-dominant equilibrium is played
possesses certain stability properties. Our model is like that of Matsui and Matsuyama,
but the payoffs in the static game change randomly over time. This gives rise to a unique
outcome. Like Carlsson and van Damme, we prove this using a contagion argument.
However, our contagion mechanism is fundamentally different since our model is dynamic
and, as such, has state variables that have the potential to generate history dependence.
The key to our argument is showing that the effect of the state variables is offset by
players’ future behavior. The relations among these three papers are discussed in detail
in section 4.

Another related paper is Frankel and Pauzner [9]. They apply some of the tech-
niques of this paper to a continuous-time macroeconomic model in which workers choose
between two sectors, one of which has external increasing returns and is subject to pro-
ductivity shocks. The paper also studies extensions to cases not analyzed in this paper.
In particular, it identifies conditions under which there is a unique equilibrium of the
dynamic game with nonvanishing frictions and shocks.

The rest of this paper is organized as follows. The model is presented in section 2.
Section 3 presents the results and their intuitions, with proofs deferred to the appendix.
In section 4 we review related literature. Section 5 concludes with a discussion of how

the results depend on the various features of the model.

2 The Model

2.1 The Static Game

We consider a symmetric static game with two actions, R and L. Payoffs depend on a
random parameter B, that changes over time: if a player playing a meets a player playing

a’ at time ¢, her payoff in the static game is u(a, d’, B;). Higher values of B, raise the



relative payoff to playing R while lower values make L. more desirable. More precisely,
the relative payoff to playing R against the action a, A(a, B;) = u(R, a, B;) —u(L,a, By),
is strictly increasing and continuously differentiable in B;.

The game has strategic complementarities. That is, the relative payoff to playing R
is higher when one’s opponent is playing R: A(R, B;) > A(L, B;).*> The following table

gives an example of the time-t payoff matrix.

R L
R |3+ B,3+B |2+ B0
L| 02+5 4,4

An action is p-dominant (Morris, Rob and Shin [19]) if it is a best response whenever
the opponent is expected to play that action with probability at least p. We say that an
action is exactly p-dominant if a player is indifferent when her opponent puts a weight
of exactly p on that action.* (Equivalently, p is the smallest number for which the
action is p-dominant.) Clearly, R is exactly p-dominant if and only if L is exactly
(1 — p)-dominant.

This terminology permits a convenient rescaling. We denote by BP the value of B;

at which R is exactly p-dominant in the static game:
pU(R, R7 Bp) + (1 - p)U(R, L7 Bp) - pU(L, R7 Bp) + (1 - p)U(L, L7 Bp) (1)

In the above game, for instance, when B; = 0, R is exactly 0.4-dominant, so 0 = B%*,
Note that B? is decreasing in p: if a player’s opponent plays R with higher probability,
the player will be willing to play R at lower values of B;. An action is risk-dominant
(Harsanyi and Selten [13]) if it is a best response when one’s opponent is expected to play

both actions with equal probabilities. In our terminology, R is risk-dominant whenever

B, > B2 and L, is whenever B, < BY/2,

3This assumption also ensures that only (R, R) and (L, L) can ever be pure Nash equilibria.

4For the purpose of the definition, we allow p to take values also outside the interval [0,1]. For

example, if R is exactly —0.2-dominant, it is strictly dominant.



2.2 The Dynamic Context

The game takes place in a sequence of periods at times t = 7,27,37,.... There is a
continuum of players of measure 1. In each period, a subset of the players is randomly
selected to revise their actions. Each player has an independent chance k7 of receiving
an action revision opportunity.” We assume no aggregate uncertainty;® hence, in each
period a measure k7 of players can change actions. When k is large, we say that frictions
are small since a player’s expected lock-in time 1/k is short.

After actions are revised, the payoff parameter changes randomly (from B, . to By).
We assume that it follows a random walk: it jumps by either ur+0/T or u7—0+/7, with
equal probabilities. We use this formulation so that the real-time mean and variance
do not depend on the parameter 7: for any times ¢ > ¢’ that are both integer multiples
of 7, the random variable B; — By has mean pu(t — t) and variance o(t —t). We refer
to u as the trend of B and to ¢? as the variance.

Following the change in the payoff parameter, another subset of the players is selected
and randomly matched in pairs. Each pair collects the static game payoffs correspond-
ing to the actions they are currently locked into and to the new value of the random
parameter. Each player has an independent chance m7 of being matched; the measure
of matched players is thus mr.

Let X, be the proportion of players locked into R after actions are revised in period
t. We refer to X; as the “state of play,” B; as the “state of the world,” and the pair
(By, X;) as the “state of the environment.” The public history at time t is the evolution
of the environment until period ¢ — 7, (By, Xy)v—0r.. 1—7. (The initial values (By, Xo)
are given.) A player’s private history at time t consists of her actions and the details
of her matches through period ¢t — 7. A player’s information set at time ¢t = 7,27,... is

given by the public history, together with her private history. Strategies are functions

5The assumption that the action revision rate is independent of a player’s current action is for

expositional simplicity only; see the discussion in section 5.2.

6Judd [14] discusses some technical problems that arise with a continuum of i.i.d. variables. Boylan

[3] and Gilboa and Matsui [12] offer possible solutions in the context of random matching.



from the set of all information sets to the set of mixtures over { R, L'} that indicate what
a player will do should she have an action revision opportunity.”

When a player has a revision opportunity, she chooses the best action given the
probability distribution over paths (B,),—¢.r, . and her beliefs about the path of play
(Xy)v—t4r,.. that will result from any given realization of (By)y—ti+r... In any period v,
a player is matched with probability m7 to an opponent who plays R with probability
X, and L with probability 1 — X,,. If she is locked into action a € {R, L}, her expected
payoff in the period is thus m7(X,u(a, R, B,) + (1 — X,)u(a, L, B,)). This payoff is
relevant to her time ¢ decision only if she has no revision opportunities between times
t and v. This event has the probability (1 — kT)% Hence, her relative payoff to

choosing R in period ¢ is:®

E| Y mr(l—kr)Fe Y (X,A(R, B,) + (1 — X,)A(L, B,)) (2)

v=t,t+T,...

where r > 0 is the common discount rate. A player chooses R if this relative payoff
is positive and L if it is negative. Note that the relative weight on period v, (1 —
k’T)vTitefr(“*t), depends on k. When revision opportunities are frequent (k large), players
put most of the weight on payoffs that they receive very soon. Nevertheless, we will see
that more distant events remain important because of backwards induction.

Finally, to give our iterative dominance argument a place to start, we assume the

existence of dominance regions. For B; ; large enough,

E| Y mr(1—kr)Se " OA(LB)du | B .| >0 (3)

v=t,t+T,...

TA given strategy profile gives rise to a particular dynamical system. Let A, denote the vector of
private histories at time ¢t. Let R(h;) denote the probability that a randomly selected player chooses
R after the history h;. (If players use only pure strategies, R(h;) is just the proportion who choose R.)
Then X; = Xy (1 — k7) + kTR(h:), while B, = B;_, + ut 4 0/7 with equal probabilities.

8This holds because the player’s action choice can have no influence over which path (XU)U:LHT?__

will occur, since any player’s action will be observed by only a countable number of other players.



which implies that R is strictly dominant. For B; , small enough,

E|l Y mr(l—kn)Fe " IA(R,B)dv | B ,| <0 (4)

v=t,t+7,...

so that L is strictly dominant.

3 Solving the Model

Rather than looking for equilibria, we analyze the game using a more primitive solution
concept: the iterative elimination of conditionally dominated strategies (see Fudenberg
& Tirole [10, pp. 128 fI.]). This is essentially the extension of backwards induction to
infinite horizon games. It is important to note that, in our model, iterative conditional
dominance is not a refinement of Nash equilibrium: every Nash equilibrium outcome of
the dynamic game survives the iterative process.’

When carrying out the iterative procedure, we use a simple method to keep track of
the strategies that survive each successive round of elimination. We consider the space

R x [0,1] of all conceivable values of the current state (B;, X;). When we discover that

R must be played in all surviving strategies after any public history A, that ends in the

9This is because players are small and anonymous, so that no unilateral deviation can alter the
probability distribution of reached information sets. Therefore, given a Nash equilibrium, one can alter
the strategies in any way at unreached information sets and the resulting strategy profile will remain a
Nash equilibrium. In particular, one can adjust the strategies at unreached information sets so that the
overall equilibrium is subgame perfect and thus survives iterated conditional dominance. To make this
argument precise, let s be a Nash equilibrium strategy profile, and let s(b, ) denote the play prescribed
by s if the initial state is (Bg, Xo) = (b, ). We construct a subgame perfect equilibrium § that has the
same distribution of equilibrium paths as s as follows. If the public history at time £ is consistent with s,
players continue to play according to s. (In particular, they ignore deviations by individual opponents.)
Otherwise, let v < t be the earliest period such that the public history at time t is consistent with all
players having ‘reset their clocks to zero’” at time v and having played according to (B, X,,) thereafter.
Under the new profile §, players continue to conform to s(B,, X,,) after seeing the history h;. Clearly, 3
induces the same equilibrium play as s and is subgame perfect. (We thank Philip Reny for suggesting

this argument.)



state (B, X;), we tag the state with ‘R’.1° We do the same for L.

Suppose a player receives an action revision opportunity at time ¢t. If B; is large
enough, R is strictly dominant, so the player will choose R regardless of her beliefs over
which strategies are used by the other players. Let f° be the boundary of the region
where R is strictly dominant (i.e., where (3) holds). This is depicted in Figure 1. To the
right of f°, we know that the player must choose R; on or to the left of f© we cannot yet
say what the player does. We tag the region to the right of f° with ‘R’. This corresponds
to eliminating all the strategies in which any player ever chooses L in states (B, X;)

that are to the right of f°.

S L NNy

Xt — 0
Bl/2 Bt

Figure 1: The iterative elimination procedure.

In the second step we assume that a player believes that other players will always
choose R when they are strictly to the right of f°. With this belief, there is a new
boundary, f!, such that a player must choose R when she is strictly to the right of f*.
/' must lie weakly to the left of f, since knowing that other players will sometimes
choose R can only make R a more appealing action. In the next step we find f? and
so on. Let F be the limit of the sequence f°, f1,.... Whenever (B, X;) is strictly to
the right of F', any player who is called to act must choose R. In a similar way, starting
an iterative process from the left side of the environment space where the action L is
dominant, we construct a sequence ¢°, g, ..., with limit G.

In all strategies that survive the iterative procedure, R is played to the right of F
and L is played to the left of . We cannot preclude the possibility of a region (denoted

by ‘?” in Figure 1) between the two curves. Because it is not tagged with ‘R’ or ‘I.’; we

0Gince the random walk is a discrete process, ® x [0, 1] may include some states that cannot be
reached from a given (Bg, X). This does not present a problem; by tagging unreachable states, we do

not alter the set of surviving strategies.



cannot say how players will act in this region (if it exists). Different strategies might
partition this region into R and L in different ways, and their prescriptions might even

depend on aspects of the history that are not reflected in the time-t environment space.

3.1 Results

We have results for two limiting cases: small frictions and small noise. In both cases,
we take the period length 7 to zero first. This ensures that the impact of the 7k players
who revise actions simultaneously in each period is negligible relative to the effects of
the random changes in B, which are of order /7.1

Theorem 1 pertains to the case of small frictions: when k tends to infinity. In the
limit, 7' and G coincide with the vertical line at BY/2. This is depicted in Figure 2.
Apart from a vanishing range of values of B, around B'/?, a player’s choice between L
and R is uniquely determined by the state of the world B;. The player simply plays the
action that would be a best response in the static game against an opponent who puts

equal weight on R and L.

L F=d R

B2 B,
Figure 2: Case of vanishing frictions (k — o0).
Theorem 1 Holding o, i1, and r fized, limg ., lim, o F' = limg_,oo lim, o G = BY?2,

FEquivalently, for any € > 0, there is a k and a function 7(-) > 0 such that if k > k and

7 < 7(k), then R must be played whenever B, > BY? ¢ and L whenever B, < B'/? —¢.

This result has strong implications for the evolution of aggregate play in the popula-

tion. For almost any initial state, the population quickly coordinates on the action that

HThe fact that the random changes in B are proportional to the square root of the time interval
is not a special feature of a random walk; it must hold for any stochastic process with independent

increments. See section 5.1.



is risk-dominant. A dynamic interpretation is that the population follows the evolution
of the world. Whenever B, is above B'/2, the whole population plays R, while when
By is below B2, all players coordinate on L. Switching between equilibria occurs very
quickly whenever B, crosses B'/2.

Our second result (Theorem 2) concerns the case in which lock-in remains positive
and instead the trend and variance of the payoff parameter tend to zero. Once again, the
environment space is divided uniquely into R and L regions. If the players are perfectly
patient, the risk-dominant equilibrium is again selected. But if players are impatient,
the curve that separates the R and L regions is downward sloping rather than vertical.
An example is depicted in Figure 3. (In general the curve need not be straight.)

The fact that the indifference line is downwards sloping means that for some inter-
mediate range of values of By there is history dependence: the action players choose
depends on the current state of play. In this region, if enough players are playing R,

the rest of the population will follow; otherwise, play converges to L.

L F=d R

Xt — 0 I
B2 B,

Figure 3: Case of slowly changing world and fixed frictions.

Theorem 2 Let h(x) = ﬁ—;: and let B"O denote the curve B, = B"XY).  Holding k

and r fized, lim, , olim, o F = lim,, o lim, o G = B"0.
FEquivalently, for any e > 0, there is a @ > 0, t > 0, and a function (-) > 0, such that
ifo <@, |p| <7, and 7 < 7(0), then R must be played whenever B, > B"X9) 4 ¢ and

L whenever B, < BMX0) — ¢,

1

Remark: as players become patient (r — 0), h(z) — 3,

of Theorem 1.

so the result converges to that

The proofs of the two theorems are somewhat technical and appear in the appendix.

Intuitions are given below.
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3.2 Intuition for Theorem 1

We will explain why R must be played to the right of B2 in the limit as 7 — 0 and
then k — oo. The argument that L must be played to the left of B'/? is analogous.
To go through the iterative elimination, we need to build a sequence of curves such that
a player must play R to their right. The functions f", defined on p. 8, are difficult to
work with since we know little about their shapes. Instead, we work with sequences of
functions whose form we do know: downwards sloping, almost vertical straight lines.
Fix a slope p that is negative and large in absolute value. Let ¢y be the leftmost
line with slope p such that R is strictly dominant to the right of ¢o. Then inductively
define g, for n > 1 as the leftmost translation of gy such that R is a strict best response
at any state to the right of g, even for a player who expects others to choose L. when to
the left of g, 1 and R to the right. Since this is the strategy profile that makes R the
least appealing among not yet eliminated profiles, R must be played to the right of g,.
Let @ be the limit of the ¢,’s as n goes to infinity. R must be played to the right of
). Moreover, there must be at least one point on ) where a player would be indifferent
between R and L if she believed that others would choose R when to the right of @)
and L to the left. Otherwise, the iterative process would have gone beyond Q.22
Consider such a player; let us call her ‘A’.  We will show that under A’s beliefs, in the
limit as 7 — 0 and then & — oo, the proportion of R players among the opponents A
expects to meet during her lock-in period converges to one half. Moreover, A meets all
of her opponents very quickly in the limit, so her discount rate r plays essentially no
role. Thus, since she is willing to play L, it must be that B; converges to a number

no greater than BY2.' Since @) can be taken as close to vertical as we like, R must be

2There might be only one point of indifference since we restrict the shape of (). If the shape of Q

were unrestricted (as in the construction of F'), a player would be indifferent at all points.

13We are implicitly assuming that the relative payoff from choosing R is a continuous function of the

state; the proof does not make this assumption.

14Recall that if a player expects her opponent to play R with probability p, the state at which she is
indifferent is BP. Thus, if she is willing to play L, the state must be no greater than BP.
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played at any state to the right of B'/? in the limit.

It remains to count how many of A’s opponents she expects to play R. Suppose A
revises her action at time ¢ -+ 7, after observing the state (B, X;). While locked into her
new action, she will meet a sequence of opponents. We divide them into three groups:
“new” players, “old” players, and “same-time” players. A player is old if, at the time
of his match with A, he will be locked into an action that he will have chosen at or
before time t. A new player is one who will have chosen his action after time ¢t + 7. A
same-time player will have chosen his action simultaneously with A, at time t + 7.

The expected number of old players equals the expected number of new players.
Why? If we select one of A’s matches at random, knowing nothing about when she or
her opponent chose her action, the probability that A chose first equals the probability
that her opponent chose first. This is because all players have the same rate of revision
opportunities. Thus, over A’s lifetime, she is expected to meet the same number of new
and old opponents. Since the current period of commitment is, ex ante, the same as any
other, the expected numbers of new and old players in the period must also be equal.

We now count the proportion of R players A expects to meet while locked into her
action when we first take 7 to zero and then take k to infinity. Since this means that
kT goes to zero, the set of same-time opponents becomes negligible.  Hence, half of
A’s opponents will be old players in the limit; of these, X; will play R. Half of A’s
opponents will be new players; we will show that under A’s beliefs, the probability that
a new player plays R converges to 1 — X;. Therefore, the total proportion of R players
indeed converges to

1

§-Xt+%-(1—Xt)% (5)

How does A forecast the behavior of new players? Suppose that, as A believes, all
players do choose R when to the right of () and L when to the left. While the state is to
the right of ), all players currently playing L switch to R when they get the chance. In
each period v, a measure k7 of players have chances to change actions. The proportion
of L players is 1 — X, so X}, increases by k7(1 — X,). Similarly, when B, < Q(X,),
players switch from R to L, and the proportion of R players is X,,, so X, decreases by

ktX,.

12



X=Xy 7 _ —IZCXU Xp—Xy7r k’(l o XU)

Figure 4: Local dynamics around Q).

Figure 4 illustrates these dynamics. Recall that A chooses her action when the
state is on (); consider what happens afterwards. The dynamics are unstable since the
changes in X always pull us further away from (). These dynamics will eventually lead
to a bifurcation: a time beyond which the state remains on one side of the line until X
(almost) reaches either 0 or 1.1°

The basic properties of bifurcations are presented in Lemma 1 (see section 3.4 below).
By the lemma, in the limit as 7 — 0 and then £ — oo, two things happen. First, the
bifurcation time goes to zero relative to A’s expected lock-in time, 1/k. This means that
essentially all of A’s new opponents will have chosen their actions after the bifurcation.
Hence, either all new opponents choose R (if there is an upward bifurcation) or all choose
L (if the bifurcation is downward). Second, the probability of an upward bifurcation
converges to 1 — X;. Thus, the probability that a “new” player will play R converges

to 1 — Xy, as claimed.

3.3 Intuition for Theorem 2

The intuition is essentially the same as for Theorem 1, with one exception. With nonva-
nishing frictions, a player’s expected lock-in time does not go to zero. If she is impatient,
she puts more weight on old players than on new players. This is because old players
are typically encountered earlier than new players during the period of commitment.

This means that in equation (5), she puts a weight of more than one half on the X; and

SNote that X never actually reaches 0 or 1, since for every given length of time there is a positive

fraction of players who have not yet received a chance to change their actions.
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less than one half on the 1 — X;. Thus, a higher X; makes R a more appealing choice.
As a result, the division line is not vertical but rather slopes downward.'® The rest of
the argument is still valid. The relevant properties of bifurcations still hold since they
depend only on k becoming large relative to o and . The intuition for this is explained

below.

3.4 Bifurcation properties

Both theorems rely on two crucial properties of the dynamical system depicted in Figure
4:  when B, = Q(X}), (a) the system bifurcates very quickly and (b) the ratio of
probabilities of an upward and downward bifurcation converges to the ratio of the speeds
at which the system moves up and down, (1 — X;)/ X;. Lemmas 1 and 2 state these
properties for the cases corresponding to Theorems 1 and 2, respectively. An intuition
follows; rigorous proofs appear in the appendix.

We formally define a bifurcation as follows. Let us say that a state (B, X;) is close
to @ if it is within one horizontal jump of Q.!” Fix a small § > 0 that is less than the
smaller of the distances from X; to 0 and 1.1% If (B, X;) is close to @, the (random)
time of a 6-bifurcation is the last time v > ¢ at which the state is close to () before X

19 We say that the bifurcation is upward

reaches a ¢-neighborhood of either zero or one.
if, following the bifurcation, the state remains to the right of @) (so that X grows towards

1). Otherwise it is a downward bifurcation.

Lemma 1 Fiz o, p, and 6. Let Q) : [0,1] — R be any strictly decreasing, continuously

differentiable function. Consider the dynamical system depicted in Figure 4.2° For any

6Because of this, we cannot do the iterations with straight lines as in Theorem 1. Instead, we use

translations of the curve B0, TFor details, see the proof.
17This holds if —o\/7 + p7 < By — Q(X}) < 0/T + ur.
Ble., § <min{X;, 1 — X;}.

I9Tf X, equals 0 or 1, é can be any small positive number. The bifurcation time is then the last time

at which the state is close to ) before X comes within 6 of 1 or 0, respectively.

20Tn this system, B, — B,_; equals u7 + (T\/7_' with equal probabilities. X, — X,_; equals —k7X,_,
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e > 0, there is a k and a function 7(-) > 0 such that if k > k and 7 < 7(k), and if
(B, Xy) is ‘close to @), then

1. with probability at least 1 — e, a 6-bifurcation will happen within time e /k;

2. the probability that the bifurcation will be upward is within € of 1 — X;.

Lemma 2 Fiz k. Let Q) : [0,1] — R be any strictly decreasing, continuously differen-
tiable function. Consider the dynamical system depicted in Figure 4. For any e > 0,
there are ¢ > 0, 1 > 0 and a function 7(-) > 0 such that if o < o, |p| < p, and T < 7(0),
and if (By, Xy) is ‘close to @), then

1. with probability at least 1 — e, a 6-bifurcation will happen within time e /k;

2. the probability that the bifurcation will be upward is within € of 1 — X,.

3.5 Intuitions for Lemmas 1 and 2

We begin with the intuition for Lemma 2. Lemma 1 will follow by a change of variables.
It is convenient to linearize the dynamical system: let D, = B; — Q(X;), so that |Dy|
is the horizontal distance between the state and ). We can think of the process D
as the sum of a random component (mean zero jumps of +0/7) and two deterministic
trends: positive jumps of approximately AgT = k(1 — X)|Q'(X)|7 when D is positive
and negative jumps of about —Ap7 = —kX|Q'(X)|7 when D is negative. (We can
ignore the p7 term since g goes to zero while k is fixed.) The trends Ag and A, are

depicted in Figure 5.

A —  — g

0 D,

Figure 5: Deterministic component of D.

An upward (downward) bifurcation of (B, X) corresponds to a positive (negative)

bifurcation of D: a time after which D remains positive (negative) for some long period.

if By r <Q(Xy_7)and kr(1 — X, ;) if By_r > Q(Xy—r). U B, - =Q(X,_+), Xy — Xy, can take
any value in [—k7X, ., k7(1 — X, ;)|
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The smaller is the é-neighborhood that X must reach, the longer D must remain positive
(or negative) for a bifurcation to occur. The reasoning behind Theorems 1 and 2 is that
by taking é to be very small, we can ignore what happens in the distant future after X
reaches a é6-neighborhood of zero or one. We will approximate this case of small ¢ by
considering the probabilities that [ will stay positive or negative forever.

We first need to explain why the bifurcation occurs almost instantly. Intuitively,
after spending any time on one side of 0 the deterministic trend will take D a positive
distance from 0. But as the random jumps shrink, so does the chance that a reverse
movement in [ will take us back to 0. This means that a increasingly short stay on one
side of 0 suffices to make bifurcation very likely. Hence, the bifurcation must happen
quickly.

To compute the odds of a positive vs. a negative bifurcation, we use several ap-
proximations. First, since X changes little before the bifurcation, the trends A\r and
Az can be treated as a fixed constant (k|Q'(X;)|) times the constants 1 — X; and X,
respectively. Moreover, since 7 is taken to zero before the other limits, we can treat
D as moving in a continuous way. With this last approximation, DD can be said to
bifurcate at time v if D, = 0 and Ds #£ 0 for all s > v.

Suppose that D; = 0. Let P' be the probability of a positive bifurcation of D
occurring at any time after t. Let P! be the probability of a negative bifurcation. For
any constant v > 0, let PVT and Pvl, respectively, be the probabilities of a positive and
negative bifurcation occurring at some time v € [t,¢ + v]. We claim that, the ratio
PT /Pl of bifurcation probabilities equals the ratio PVT/P#. Why? Let P, = PJ + Pvl.
If there is no bifurcation in the interval [¢,¢ + 7], then D must equal 0 at some time
v >t + . As of time v, the probability of an upwards bifurcation is once again P’.
Thus, P" = P] + (1 — P,)P". This shows that P = P/P,. Likewise, P* = P;/P,.
Therefore, P'/P* = P] /P!,

Since this equality holds for all 7y, it also holds as v goes to zero. This limit turns out
to be easy to compute. For an upwards bifurcation to occur in [, ¢+ ], two things must
happen. First, D must be positive at time ¢4 . Second, DD must remain positive forever

after. Where is D at ¢t + 7 Since D; = 0, the value of D at time ¢ 4 7 is dominated by
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the noise in B. This is because the standard deviation of B, — B, is proportional to
/7> while the linear trends Az and Ay (coming from changes in X') produce a change
of order only . For small v, \/7/7 is arbitrarily large. So for small v we can treat the
distribution W, of D;,, as approximately symmetric around zero. (In particular, it is
approximately normal with mean 0 and standard deviation Uﬁ).zl

Given that D is positive at ¢ + vy, what is the probability that it remains so forever
after? If D, = z and z is small, this probability is approximately proportional to the
distance z times the trend Ar. This relies only on the fact that a random walk has
ii.d. increments. To see why, let p be this probability, and consider what happens if
Dy, starts twice as far away, at 2z. What is the probability that D never hits zero?
It is the probability p that D never hits z, plus the probability 1 — p that D hits 2
times the probability p that, from 2z, D never reaches zero. This is p+ (1 — p)p, which is
approximately 2p since, for small z, 1 —p is close to one. This shows that the probability
that D never hits zero if it starts at z is approximately proportional to z for small z.

Why is this probability also approximately proportional to Ag? Let us multiply the
time scale by 4 and the space scale by 2, giving a new process Dy = 2Dy4. As long as

D and D remain positive, both have constant trends, so they have the same variance:
Var(Dy, — Dy) = Var(2D,, 4 — 2D,4) = 40° (w/4 — v/4) = 0*(w — v) = Var(D,, — D,)

The new process D begins at 2z. Since the time scale is stretched by twice the space
scale, the trend of D is Ar/2, half the trend of D. But a change in the scaling cannot
affect the probability of never hitting zero, which must still be p after doubling the
initial distance z and halving the trend Ag. Since the probability that [ never hits zero
is linear in z, it must also be linear in Ag.

Hence, if D, = z and z is small, the probability that D), remains positive for all
v > 1 + 7y is proportional to zAg. Since most of the weight of the c.d.f. W, of z is close

to zero, the probability PVT is approximately proportional to

/ T ARdVL(2) = Ag / T v (2)
z=0 z=0

2IThis property of Brownian motions, that the noise swamps any linear trend over short intervals, is

an implication of independent increments. See note 26 in section 5.1.
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The probability PVl that D has a negative bifurcation in [t,f + 7] is approximately

proportional to

/ OOO 2Ped () ~ [ OOO AW (2) = g OOO 2d W (2)

because W, is approximately symmetric. Therefore, the ratio PVT/PVl equals Ag/\j as
goes to zero. This ratio is approximately (1 — X;)/X;. This explains why the relative
probability of bifurcating up vs. down converges to (1 — X;)/X; as 7 and then o and p
shrink to zero.

Lemma 1 follows from Lemma 2 by a change of variables. We stretch the time scale
by replacing B; with Et = By, and X, with Xt = Xy/r. In the new time coordinates,
the rate of change of X is fixed while the variance o/k and trend p/k of B shrink to

zero, so Lemma 2 can be applied.

4 Relation to the Literature

This paper is related to two research programs. The first studies how connections among
“nearby” games can determine how rational players will behave in a given game. The

second is the literature on dynamic population models.

Connections Among Nearby Games

Our framework is closely related to that of Carlsson and van Damme [6] (henceforth,
CvD).?2 That paper studies a one-shot 2 x 2 game whose payoffs are not common knowl-
edge. Rather, each player receives a slightly noisy signal of the true payoffs. The space of
possible payoffs includes regions where each action is strictly dominant. Iterative strict
dominance gives rise to a contagion effect that starts from these regions and determines
how players will play throughout the space of possible payoffs. For small enough noise
in the signals, the players must play the risk-dominant equilibrium of the true game.

There is an analogy between CvD’s game and our own. Since CvD’s game has
incomplete information, a player must consider what opponents of different types will

do. (In CvD, a player’s type is her signal.) The correlation between the two players’

#2Gee also Morris, Rob and Shin [19].
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signals leads players to focus on opponents whose types are close to their own. This
(together with the dominance regions) is what causes the contagion effect. In our model,
payoffs change randomly. Thus, a player who wishes to predict what players will choose
after her must consider a distribution of possible “types”, each seeing different payoffs.
The persistence of the random walk plays a role similar to that of correlation in CvD:
most of these players will choose actions at states that are close to that at which the
given player chooses her action.

However, there is a fundamental difference. In our model, when a player chooses her
action, half of her future opponents have already chosen theirs. Any reasoning she does
about what different types of players must do can relate only to the half who haven’t
chosen their actions yet. This contrasts with CvD, where a player’s conclusions from
tracing other players’ decision problems apply to all of her potential opponents.

Indeed, trying to apply CvD’s technique directly to our model (i.e., doing iterative
dominance on the payoff parameter alone) establishes only a weaker result: that an
action must be played if it is better than 1/4-dominant. No prediction can be reached
if B, is greater than B3/* but less than B'/*. Formally, doing iterative dominance on
B; alone is equivalent to iterating with vertical lines. Suppose that such an iterative
process starting from the region where R is strictly dominant ends at B; = b. Consider
a player who picks actions at X; = 0 with B, slightly greater than 6. We know that
she is willing to play R. With small frictions, she cares only about the very near future,
when the random walk is equally likely to be above or below b. Therefore, she expects
that half of the new players will play R and half L.. Since all old players are playing L,
she expects just quarter of her opponents to play R. Hence, B, must be B'/%. Similarly,
iterating from the left also stops short of BY/2 at B3/,

The key to our stronger result is observing that the new and old players offset each
other. The reason is that once the population starts shifting towards a given action, the
speed at which this occurs is proportional to the size of the population currently playing

the other action. On the curve F', these speeds govern the bifurcation probabilities.?*

Z3This follows from our assumption that payoffs change frequently (i.e., that 7 tends to zero faster

than anything else). This point is discussed further in section 5.1.
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Hence, when the proportion X; of old players playing R is low, the chance 1— X, that the
new players will play R is high. When the payoff weight on the two groups is equal (i.e.,
when frictions are small or players are patient), this leads to a strong selection result:
X; plays no role at all in a player’s decision. When old players receive more weight (i.e.,
when frictions are large and players are impatient), there is history dependence since
the new players only partially offset the old.

To see more clearly the difference between our model and a static model of incomplete
information game, it is instructive to look at the model of Matsui [17]. His also has a
payoff parameter that changes randomly in each period. There is a sequence of players,
each of whom chooses one action. Unlike in our model, each player’s payoff comes
only from her interaction with the player who chooses after her. Matsui shows that his
model is isomorphic to a static incomplete information game like that of CvD. Such an
isomorphism cannot be found with our model, since the actions of past players (captured
by the state variable X;) are payoff-relevant. The lack of such an isomorphism is most

obvious in the case of small noise and large frictions, where we find history dependence.

Dynamic Population Models

There is an extensive literature that studies models in which players in a large popu-
lation are randomly matched, from time to time, to play some normal-form game. With
less than fully rational players and mutations, these models can yield equilibrium selec-
tion in the form of a long-run ergodic distribution with most of its weight on a given
equilibrium.?*

Our model, which assumes fully rational players, is most related to that of Matsui
and Matsuyama [18] (henceforth, MM). The essential difference between the two models
is that payoffs in MM are fixed. In our model this corresponds to taking B, as a constant

parameter. Figure 6 illustrates what happens with constant By, in the case of small

frictions (which is the case on which MM focus).

2 Examples include Foster and Young [8], Fudenberg and Harris [11], Kandori, Mailath and Rob [15],
and Young [21]. Models of bounded rationality with local interaction yield faster convergence; see, for

example, Ellison [7] and Blume [2].
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X =0 B! B1/2 RO B,

Figure 6: Case of constant B, corresponding to MM.

To the left of ¢1, only L can be selected in any rational expectations equilibrium. R

must be chosen to the right of /,.2°

Between the curves, there are multiple equilibria,
including one in which players always select R and another in which they always choose
L. However, MM find support for the prediction that the risk-dominant equilibrium of
the static game is more likely to be played, since it is ‘globally accessible’” and ‘uniquely
absorbing.” Suppose, e.g., that By > BY2. Since the initial state must be to the right of
/4, it is an equilibrium for all players to choose R for any initial value Xy: R is ‘globally
accessible.” Moreover, if Xj is large enough, the initial state lies above /5, so all players
must choose R. Hence, R is also ‘uniquely absorbing.’

Our model shows that with stochastic payoff changes, the area between ¢, and /,
splits into two regions. The part to the left of B'/? joins the area where players must

choose L, while the part to the right of B2 joins the area where they must choose R.

Moreover, the changes in payoffs make the model dominance-solvable.

5 Concluding Remarks

5.1 The Assumption of Frequent Jumps in the Random Walk

For all of our results we take the time 7 between jumps of the random walk to be small
given the other key parameters of the model, k and . Without this, there could be
regions with multiple equilibria. To see why, consider the group of players who choose

actions simultaneously in a given period. This group constitutes a proportion k7 of the

25These curves correspond roughly to g° and f° in Figure 1. In the limit as frictions vanish, this

correspondence is exact.
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players. If they all choose the action a, their relative payoff to playing a is increased,
and this might justify their choice.

The group’s choice affects their relative payoff in two ways. First, members of the
group may play each other. To make this effect negligible, we take 7 small given k, so
that k7 is small. An analogous issue emerges in the static incomplete information game
of CvD [6]. There, multiple equilibria might arise if the probability that the two players
see the same signal of the true payoff parameter is large. CvD make this probability
zero by assuming a continuous signal distribution.

A second consideration, which has no analogue in CvD’s model, comes from the
dynamic structure of our model: if the k7 others pick R, X will rise, possibly moving
the state into a region where yet more players will pick R. Taking 7 small given £ and o
eliminates this possibility by ensuring that the effect of the players’ simultaneous action

choices, which is of order k7, is swamped by the random jumps in B, which are of size

o\/T.%

5.2 Extensions

The Stochastic Process

We assume that payoffs change according to a random walk. However, our re-
sults remain valid if payoffs follow any discrete process with independent, stationary
increments.?” For example, the jump in each period might be normally distributed. Or
the waiting times between jumps might themselves be random. As 7 shrinks, all such
processes behave in essentially the same way and share the properties of a random walk
that we use. Our results also hold when 7 equals zero, so that B is a Brownian mo-

tion and time is continuous (see Burdzy, Frankel, and Pauzner [4]). Hence, there is

%The property that the noise /7 is proportional to the square root of the time 7 between jumps
is a consequence of the random walk having independent increments. The change in B over a given
interval of length, say, 1, is the sum of 1/7 independent jumps. The only way this sum can retain a

nontrivial variance as 7 shrinks is if the size of each jump is of order /7.

2TStationarity means that the distribution of increments over a given time interval can depend only

on its length.
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continuity at the limit.

The assumption of independent, stationary increments can also be weakened. B
may be any strictly increasing, continuously differentiable function of a random walk,
as long as it can reach values at which either action is strictly dominant.?® This lets
B represent bounded processes such as prices or temperatures. Our results also hold if
the trend parameter, rather than being constant, is any bounded Lipschitz function of ¢
and B;. For instance, the trend may have a seasonal component or be mean-reverting.
Our results may be of greater interest with mean-reverting processes. This is because
a random walk tends to wander away from B'/? to regions where one action is strictly
dominant; a mean reverting process with mean close to B'/? spends a positive fraction
of its time in the area where the static game has multiple equilibria.

In the case we study (small 7), the stochastic process changes almost continuously
over time. For some applications, it may be more natural to assume that in addition to
its small frequent jumps, B also has large infrequent jumps at random times. Theorem
1 holds for any such process, since during a player’s shrinking lock-in period the chance
of a large jump becomes very small. For Theorem 2, the noise can become small in
two ways: the large jumps may become less and less frequent, or they may retain their
frequency but become smaller and smaller. Theorem 2 holds in both cases. The reason
is that the bifurcation occurs earlier and earlier, so that the probability that a random
jump will precede the bifurcation goes to zero; hence, infrequent jumps have almost no

effect on the dynamics of X.

Dominance Regions and Monotonicity

We assume that extreme values of B, make either action strictly dominant and that
the relative payoff to R against either action is strictly increasing in B;. The first
assumption gives the contagion argument a place to start. The second guarantees that
the iterations starting from the two dominance regions will meet.

If these assumptions do not hold, the following weaker version of Theorem 1 can still

28This is because any such transformation of B is equivalent to a change in the utility function:

instead of u(a, a’, B;) where B, = g(B,), we use the utility function @(a,a’, By) = u(a,a’,g(By)).
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be proved. Assume only that the game has strategic complementarities (A(R, By) >
A(L, By)) and that A(a, B;) is continuously differentiable in B,. Let b be any value of
By at which R is strictly dominant. Let (b, b) be the largest (potentially infinite) interval
that includes b, such that R is risk-dominant (and L is not) throughout the interval. In
the limit as 7 — 0 and then & — oo, R must be played at all points in this interval. An

analogous result can be proved for L.

Different Revision Rates

Our model assumes that a player’s rate of action revision opportunities is independent
of the action she is currently playing. With differing revision rates, players still choose
the risk-dominant action in the case of small frictions (Theorem 1). To see why, let k,
be the revision rate of a player currently locked into action a. We compute the relative
payoff of player ‘A’ (p. 11) to playing R vs. L by first conditioning on bifurcations in each
direction. If A knew that the bifurcation would be upward, she would play R from now
on. By picking L rather than R, she loses utility only until her next revision opportunity,
when she will switch to R. These opportunities arrive at rate ky, which equals the rate
at which other players change actions (since only L players switch). Hence, her expected
numbers of new and old opponents while she is locked into L are still equal.?® X, of
the old players and all of the new players play R, so the expected number of R players
is approximately 1/2 4+ X;/2. The expected lock-in time is 1/k;. Hence, her relative
payoff from playing R is é {%LA(R, By) + 52A(L, Bt)} . Similarly, conditional on a
downward bifurcation, the relative payoff from R is é {%A(R, By) + (%ﬁ) A(L, Bt)]
The probabilities of upward and downward bifurcations are proportional to the speeds

at which X moves up and down, k(1 — X;) and kg X;. Therefore, the (unconditional)

relative payoff to choosing R is proportional to

kL(l - Xt),lgi {1 thA(Rv Bt) + L- XtA(LvBt)}
L
11X 2 X
+/<;Rth— TtA(R, By) + ( t> A(L,Bt)}
R

2 More precisely, since R players never change their actions in an upward bifurcation, their revision
rate is irrelevant. So for the purposes of computation, we can assume that the R players also have the

revision rate k7, and hence that the expected numbers of new and old opponents are equal.
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_ %[A(R, By) + A(L, By))

Thus, the division line is again vertical at B'/2.

In the case of small noise, the weight on old players depends on the revision rate
corresponding to each direction of bifurcation. Hence, the revision rates do not cancel
out in the computation. The result is qualitatively the same as in Theorem 2, but the

division line now depends on the two revision rates, kg and k.

Homogeneity of Players

We assume all players have the same payoff function. Suppose instead that the
payoff of player ¢ € [0,1] is u(a, d’, By + 6;). Assume that most of the players have taste
parameters §; in the range [0, 6']: no more than e are below 6, while no more than &’
are above #'. A modification of our argument shows that as frictions vanish, at least
1 — & of the players choose R when B, > B'/?7</2 — § and at least 1 — &’ choose L, when
B, < BY/?+¢'/2 _ ¢’ This shows that there is continuity: when most of the players have

very similar tastes, our results hold approximately.
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A  Proofs

Proof of Theorem 1

We show that R must be played for B, > B'/? 4 ; the proof that L must be played
for By < BY? — ¢ is analogous. Let q_1(z) = co. For n > 0, let g,(z) = —e2/3 + \,
where A, is the smallest constant such that at all states (B, X;) to the right of ¢, (i.e.,
satisfying B; > ¢,(X;)), R is a strict best response if all other players are expected
to choose R whenever the state is to the right of ¢, ; and L otherwise. Since R is
strictly dominant for large enough By, ¢,(x) must be finite for all n > 0. By strategic
complementarities, ¢,(z) < g,_1(z). Moreover, by the existence of a dominance region
for L, the sequence (g,(7))n>_1 is bounded below. Hence Q(x) = lim,, . g,(x) exists
and is finite.

All players must choose R when the state is to the right of ). Since the iterative
process stops at ), there must also be states arbitrarily close to (or on) ¢ at which
a player is willing to choose L if she thinks that all others will choose R when to the
right of () and L otherwise. Let ‘A’ denote a player with these beliefs who observes
such a state (b, z) and then chooses an action at time t. (Note that b, z, and @) are all

functions of k and 7.) We can assume that (b, x) is within one horizontal jump of Q.

Let 7() be small enough that this implies b — Q(z) < £/3.3° By (2),

0>E| Y mr(l—kr)Te "I X,A(R, By + (1 — X,)A(L, B,)]

v=t,t+T,...

Taking 7 to zero for any given k, the right hand side converges to

P |:/oo e Frr)w—1) [X,A(R, By) + (1 — X,)A(L, By)] dv}
v=t

r_t

. . t Ch(u . . . . .
since lim, ,o(1 — k7)™ = e *~ Since A is a continuous function, as k — oo this

converges to

/ Oot me” IO E(X)A(R, D) + (1 — E(X,)A(L, b)] dv (6)

0Since b — Q(x) < o/ + |p| T, we must have b — Q(z) < ¢/3 if 7 < min {6/3(7, [5/30]2}, which we

can guarantee by choosing 7(¢) to be smaller than min {6/3(7, [6/3(7]2}.
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By Lemma 1, for any é € (0, min(z,1 — x)), in the limit as first 7 — 0 and then
k — oo player A expects a é-bifurcation to happen almost instantaneously relative to
her expected lock-in time, 1/k. The probability that the é-bifurcation will be upwards
is 1 —x. Since § can be arbitrarily small, £(X,) converges to (1 —z)(1 — (1 —z)e *) +
w(re ™) = 1 —x + (20 — 1)e *. Therefore, the (nonpositive) relative payoff from

choosing R converges to

/: me FIE (1 — 2 (22— e ™)ARY) | (2 — (20 — e ™)AL, b)) d

m  |rx+k re +k
T Etr [kaA(R’b)* <1_ 2/<;+r)A(L’b)]

As k — oo the expression in square brackets converges to %A(R, b) + %A(L,b). But
%A(R,Bl/z) + %A(L,Bl/z) = 0. So for any € > 0, if k is sufficiently large and 7 is
small enough given k, then b must be less than BY? + /3. Since dQ(z)/dz = —=/3,
b — Q(x)| < £/3, and R must be played to the right of @), it follows that R must be
played whenever B, > B2 1. Q.E.D.

Proof of Theorem 2

The proof follows the lines of the proof of Theorem 1, so we simply sketch the
differences. Instead of doing the iterations with lines of a fixed slope, we use translations

of BM®) where h(z) = giiﬁ (It is straightforward to check that B™®) is strictly

decreasing and continuously differentiable in x.) Suppose player A is willing to choose
L at a state (b, z) satisfying |b — Q(x)| < £/2 on the belief that others will play according
to Q. By Lemma 2, in the limit as 7 — 0 and then o, — 0, player A expects an
instantaneous bifurcation, with the probability 1 — x that it will be upwards. As in the
proof of Theorem 1, her (nonpositive) relative payoff from choosing R is proportional to

re +k
2k +r

re +k
2k +r

A(R,b) + <1 - ) A(L,b)

in the limit. This expression is zero precisely when b = BM®) . Hence, we can choose

o and p sufficiently small, and 7 small enough given ¢ and p, so that b < BM®) 1 £/2,
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Since |b — Q(z)| < £/2, @ must be within € of B"0. But R must be played to the right
of Q. The proof that L must be played whenever B, < B"X9) — ¢ is analogous. Q.E.D.

Proof of Lemma 2
Time of Bifurcation
Let D, = B, — Q(X;). Claim 1 says that a bifurcation is virtually guaranteed if D,

reaches a distance of order o2 from 0.

Claim 1 There are ¢ < oo, > 0, and 7,(-) > 0 such that for any o, if || < p and
T < 1y(0) then once |D| exceeds co?, the probability exceeds 1 — /2 that X will reach a

§-neighborhood of 0 or 1 without the state (B, X) ever again being ‘close to Q3!

Proof Let Q' and Q' be (strictly positive and finite) upper and lower bounds on |Q)'(z)|.
These bounds exist because ()’ is strictly negative and continuous over the compact
interval [0,1]. When on one side of (), the mean of |D,| changes at a rate no less than
A = kQ'6—|p], since min(1—X;, X;) > 6. Let p — kQ'6/2, so that \ is strictly positive if
|| < p. Then if |Dy| = co?, the chance of hitting @ before X reaches a §-neighborhood
of 0 or 1 is less than ¢ 2 in the limit as 7 — 0 (see Karlin and Taylor [16, p. 362]).%2
So letting ¢ = In(2/e)/(kQ'6), once |Dy| equals co?, the probability exceeds 1 —&/2 that
the state will reach a é-neighborhood of 0 or 1 without ever again being ‘close to @)’
Q.E.D.(craim 1)

We now show that for small 6%, | D| reaches co? quickly with high probability. Claim
2 shows that independently of the state at time ¢, by time ¢ + o2 the noise in B takes
us on the order of 02 away from @ with positive probability:
Claim 2 There are constants p; > 0 and ¢; > 0, and a function 7,(-) > 0, such that for
any 02, p, By and Xy, if T < 7,(0) then the probability that | By . — Q(Xii102)| > c10?

18 greater than p;.

31For brevity, Claim 1 only addresses the case in which X, is not 0 or 1. Otherwise, the same proof
guarantees a bifurcation only if D reaches +d (in the case X; = 0) or —d (in the case X; = 1). This
is not a problem since in Part 2 we will show that the probability of reaching the ‘correct’ d is nearly 1

in the limit.

32This uses the fact, from Billingsley [1], that as 7 — 0, B converges to a Brownian motion with

variance o2 and drift .
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Proof

Pr([Brior = Q(Xpio2) > 10%) > Pr(|Broe — QX)) = [Q(X102) — QX)) > c10?)
> Pr(|Bro — QX)) > (e1 + kQ)o?)

since |Q(Xyi02) — Q(X,)| < kQ'02. But the probability that the difference between a

random variable B, .2 and a given number Q(X,) exceeds some number (¢; + k@ )o? is

at least the probability that the difference between the random variable and its mean

exceeds this number. Thus,

Pr (|Biror = Q(X0)| > (1 + kQ)0?) > Pr (|Brios — (B2 |By)| > (c1 + £Q')o?)
As 7 shrinks the increment By, 2 — F/(By.,2|B;) becomes normal with standard deviation
Vo2 o2 = o2 (by the central limit theorem). Hence, the last term exceeds some fixed
probability p; if 7 is sufficiently small. Q.E.D.(c1aim 2)

Once the state is a distance of order ¢? from ), there is some chance that it will
reach co? in time of order o2, at which point a bifurcation is almost guaranteed by Claim
1. Claim 3 shows that this probability is independent of o2.

Claim 3 For any c > 0, there are positive constants ps and co, independent of o, and
a function T5(-) > 0, such that if |D,| = c10% and T < 1,(0), then the probability that
|Dyyo2| > co? exceeds ps.

Proof The given probability exceeds the probability that |D,. ..2| > co? and that
D is never close to zero between the times v and v + cy0?. While D remains on one
side of zero, |D| is a random walk with a strictly positive trend. Let D be a random

walk with the same variance as D but with zero trend, and assume EU = cy0%. The

2 exceeds the probability that D exceeds co? at time

probability that |D,..,.2| > co
v + cp0? and is never close to zero between the two times. This probability is ap-
proximately Pr (5U+CQU4 > 002) — Pr (5U+CQU4 < —002), since for small 7 the reflection
principle can be used. But 5U+0204 is approximately normal for small 7, so this prob-
ability is close to Pr(N(ci0?, cy0®) > co?) — Pr(N(ci0?, c0*) < —co?), which equals
Pr (C\/;CC_Q]- < N(0,1) < %), where N(a,b) denotes a normal random variable with mean
a and variance b. This is a positive constant that does not depend on o. Q.E.D.(c1aim 3)

Let the times sg, s1,... be given by s; = t +i(0? + c30?). The chance that the state

reaches a horizontal distance co? from @Q at or before time s; is at least 1 — (1 — pip2)°.
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This holds because conditional on not reaching co? before time s;, the probability of
reaching co? by time s;, is at least pypo. Why? Regardless of the state’s position
at time s;, at time s; + 02 the probability that horizontal distance between the state

2 is greater than p;. Given that this happens, the probability that

and () exceeds c;0
horizontal distance between the state and @ exceeds co? at time s; + 02 + cp0? is greater
than po.

As o shrinks, we reach times s; for arbitrarily large ¢ before time t + . Hence, we
can find ¢ small enough that the probability of reaching co? before time ¢ + < is at least
1—¢/2if 0 < g and 7 < min{7,(0),75(0)}. If, additionally, ;| < g, and 7 < 74(0)
then by Claim 1 the chance of a é-bifurcation before time ¢ + £ must be at least 1 — &.

We have shown that for any € > 0 and any large enough ¢,* there are ¢ > 0, 7(-) > 0,
and p > 0 such that if 0 < g, 7 < 7(0), and |u| < p, then |D| reaches a distance co®

with probability 1 —e/2 within time £, and once it reaches this distance, a §-bifurcation

has occurred with probability at least 1 —e/2. This proves part 1.

Direction of Bifurcation

Since for ¢ large enough, a bifurcation occurs with probability 1 —e/2 once a distance
co? from () is reached, it suffices to compute the ratio of probabilities of reaching +co?
first vs. reaching —co? first. For any &' > 0 we can choose o, u, and 7 small enough
that the distance co? is reached with probability 1 — &’/2 within time £’. During this
time, X can change by no more than ke’ (taking 7 to be small). Hence, the absolute
value of the trend in D, is bounded between two constants Ap < Ag when D is positive
and two other constants \; < A; when it is negative, where these bounds converge to
Ar = k(1 — X)|Q'(Xy)| + 1 and A, = kX |Q'(Xy)| — i, respectively, as £ shrinks. The
ratio of bifurcation probabilities lies between the ratio corresponding to constant trends
Mr and Az and the ratio that comes from Mg and A;. This is because more positive
trends make D higher for any given realization of the random component of B (i.e.,
given any sequence of signs of B’s jumps). Hence, &’ shrinks, the ratio of bifurcation

probabilities converges to that computed using the constant absolute trends Az and

#3By the proof of claim 1, ¢ is ‘large enough’ if it exceeds In(2/¢)/(kQ'6).
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Ar. For the remainder of the proof we will assume constant trends and show that for
large enough ¢, the ratio of the probabilities is approximately Ag/Ap, which converges
to (1 — X;)/ X, as u shrinks.

Claim 4 shows that for small 7, the relative probability of reaching +co? first vs.
reaching —co? first depends little on the precise value of D, as long as it is ‘close to 0.
Let PT and P*, respectively, be the probabilities of reaching +co? first and —co? first
on the assumption that D, equals 0.

Claim 4 For any £ > 0 there is a = > 0 such that if T < T then whenever D, €
[—o\/T + pr, +o+/T + utl, the probability of reaching +co? (—ca?) first is within €' of
Pt (P).

Proof For any D; in the given range and for any small v > 0, the c.d.f. I' of Dy, is
between two bounds. The lower bound is the time ¢ + v c.d.f. I' of a random walk that
starts at —o\/7 — || 7 and has the constant trend —\;. The upper bound is the time
t +v cdf. T of a random walk that starts at o+/7 + || 7 and has the trend Az. When
7 is small, these two bounds are approximately normal with means —o+/7 — |u| T — Apv
and o+/T + |p| T + Agv, respectively, and common standard deviation o+/r. For small
v, \/v/v is arbitrarily large, so the two bounds converge to each other (as v and T
shrink, with 7 sufficiently small given /). Let P'(z) be the probability of an upwards
bifurcation when D;,, = z. Then the probability of an upward bifurcation is between
2 PN(2)dL(z) and [ P'(2)dl(z). Since P'(z) is always between 0 and 1, the
two integrals converge to each other (see Royden (20, p. 232]). Q.E.D.(craim 4

The next claim shows that to compute the probability ratio P'/P* we can focus on
what happens in an arbitrarily short time interval after time . Given any n > 0, let PJ
and Pnl, respectively, be the probabilities of an upward and downward co?-bifurcation
occurring at some time v € [t,¢ + 7)), on the assumption that D; equals 0. (A ‘co?-
bifurcation’ occurs at the last time at which D is close to zero before reaching 4=co?.)
Claim 5 For anyn > 0 and &’ > 0, there is a T > 0 such that if T < T, then PT/P" is
within €' of P} /Py
Proof Let P, = P + Pr. If there is no co®-bifurcation in the interval [t, 1 7), then

we must have D, close to 0 for some s > t +n. By Claim 4, for any ¢ > 0, if 7 is
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small enough the probability of an upward co?-bifurcation following time s is in the range

[P"—e, PT4e]. Thus, Pl is between P]+(1—F,;)(P'—¢) and B +(1—P,)(P"+¢). This

T e(1- (1 L1
shows that PT is between w and W. Likewise, P' is between w
n n n
L 1 [ [N
and W. Therefore, P'/P! is between P”L UPo) and P”ﬁg(l P Bug given
n Pl+e(1-Py) Pl—e(1-Py)

n, we can take 7 small enough that e is negligible relative to the sum P, — PnT + Pnl.
Q.E.D.(craim 5)

By Claim 5, lim,_o PT/P* = lim,_g PJ/PWl for any n > 0. Thus, lim,_, PT/P*
equals lim, ,olim,_,o PnT/Pnl, which we now compute. For a co?-bifurcation to occur in
[t,t +n), two things must happen. First, D must not be ‘close to zero’ at time ¢ + 7.
Second, D subsequently must reach a distance co? while remaining not ‘close to zero.’
Let ®;; s denote the c.d.f. of a normally distributed random variable with mean M and

standard deviation S. By the law of large numbers,

lim Pr(Dyy < 2) € [@an0y7(2): B sy o ym(2) (7)

since D; = 0 by assumption. Claim 6 states that, for almost all values of D;.,, the
probability P(D,,) that D reaches a distance co? before once again being close to zero
is approximately proportional to the initial level D,,, times the trend (which is Ag if
Dy, is positive and A, if negative). This approximation becomes exact as the constant

¢ in co? grows.

Pla/m)

Claim 6 There is a cg > 0 such that for any a > 0, lim,_,, lim, o lim, o a P 1
: : : P(-am) _
and lim,_, lim, o lim,_,g Wﬁ% =1.

Proof We will show the first equality; the second follows analogously. In the given

limit, a,/n becomes arbitrarily large relative to the jumps in D) and arbitrarily small

2

relative to co®. Suppose Dy, = a,/n and let a’ € (0,a). To reach zero, D must

first reach a’\/n. Since D has stationary increments as long as it remains positive,

. . P(a/n) o . . .
lim, o lim; g N S AN eI 1. But lim, ¢ lim,_q P(a’\/ﬁ) =
lim, o lim, o P(la — a']\/n) = 0, so lim, lim, P([afaf\(/(%\)/f;(a,ﬁ) — 1. Since this

holds for any a' € (0,a), P(a,/n) must become proportional to a,/n. As for Ag, as long

as ) remains positive, it is simply a random walk with constant trend Agz. For any
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¢ > 1, consider the process D, = %D@U. In the limit as 7 — 0,

. 1 1 1
Var(Dy = Dy) = Var(3 Dz = 5 Diy) = 550° (Fw = 00) = 0*(w—v) = Var(Dy, — Dy)

By the change of variables, P(a,/7) equals the probability that, given that ﬁgz(t+n) =
aym/t, D subsequently reaches co? /¢ before zero. The trend of Dis ). But

lim lim lim Pr(D reaches co? before 0| D starts at co?/f) =

c—o0 n—07—0

lim lim lim Pr(D reaches fco® before 0| D starts at co®) = 1

c—o0n—0T7—0

since the probability in the second line is greater than the probability that D will never
return to zero if it starts at co?, which converges to 1 — e ?**% as 7 — 0 (see Karlin and

Taylor [16]). So

Pr(D reaches co? before 0 | ﬁgz(t+n) =ayn/t)

Jim, Ling iy Plavy/m) L
But by prior arguments,
— ) o, B
T b D et 8 s O By~
so that
lim lim lim £ Playi) —1

c—00n—07-0 Pr(ﬁ reaches co? before 0 | Dgz(Hn) = a/n)
Since D has the variance of D but trend {Ar, P(a,/n) must become proportional to the
trend as well. Q.E.D.(claim 6)

By Claim 6,

p] > p AU
hm hm llm _nl — hm hm hm fa*O (a\/ﬁ) W(a\/ﬁ)

0T Pl erren 07 [ P(—ay/m)dW,(—ay/)

where WU, is the c.d.f. of D,.,. Since lim, 4./7/n = oo and by (7), ¥, converges to

a c.d.f. of a normally distributed variable with mean 0 and standard deviation o,/7.
Hence, by Claim 6, lim, . lim, o lim; o PJ/PWl = Ar/Az, s0 lim, o lim, o PT/P' =
Ar/Ar. This shows that for ¢ large enough, the relative probability of reaching +co?
vs. —co? first with constant trends Ar and A is approximately Agp/A; for small 7.

Q-E~D~(Lemma 2)
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Proof of Lemma 1

We replace B; with Bt = By, and X; with Xt = Xy/k. The variance of B is 02//<:
and the trend is p/k.  Since these go to zero as k grows, the odds of an upward vs.
a downward bifurcation are as in Lemma 2. A bifurcation happens with probability
1 — € before time € in the new time units; in the original time units, it happens with
probability 1 — & before time £/k.  The time between periods is 7k in the new time
units. To apply the prior argument we require 7k < 7™ 2(¢) (where 7™ 2 denotes
the 7 of Lemma 2), so we can let 7(k) = 7™ 2(¢) /k. Since o is fixed in Lemma 2, 7(k)

is a function of k£ alone.
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