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This appendix contains proofs that were eliminated from the body of the paper for
brevity’s sake. These proofs will be provided to interested readers upon request.

We start by providing a few formal definitions that are needed for the proofs. We
denote byg* the stagee public signal, which is a continuous random variable, and denote
by 6" its realization. A historyhe of lengthk is a list of the realized actions and the
realizations of the public signals at previous stag@f’;a,o, a,i’) (51;a,l,a,§)

(5 “a a,'i‘l). A strategy prescribes to the player which mixed action to take at any
stagek, for any possible histor of lengthk and any realization oB*.

To show that the set of equilibrium payoffs (Nash or SP) is closed, we first show
that one can replace the continuous coordination devices by finitely valued ones.

Claim 1:

Given any SPEo, one can construct a SRE in which (1) the two players receive the
same expected payoff as dn and (2) each public sign&’, 8,... is a random variable
that takes one of only three values (with probabilities that may depend on history).
Proof:

We define o’ inductively, as follows. Let(x, y) be the expected continuation
payoffs fromo . The pair(x, y) is in the convex hull of all possible continuation payoffs
corresponding to possible realizations@f. By the Caratheodory theorefreference)

(x, y) is in the convex hull of at most 3 specific continuation payoffs. That is, there are
three possible realizations of°: 6°, 62 and 62, such that(x,y) is a convex
combination of the continuation payoffs af after 8°, 82 and 62. At the first stage, we
replace8° with a correlation device that generates the sigAls6? and 62 with the
appropriate probabilities. At the first stage we detinég®) = o(6°).



A2

Assume that we have already defined up to stagd, such that after any history
shorter thark, the correlation device generates only three signals. Hence, there are only
finitely many histories of lengtk. After every such historkk, we replace (using again the
Caratheodory theorem) the correlating deviewith a (history dependent) correlating
device 6™ that generates only three signa®, 6 and 6/, (with probabilities that
may depend ohy). We define ¢'(h,,6™)=o(h,8%). (Notice that the set of histories
over whicho is defined is a superset of the set of histories over which defined).

We continue this process inductively and obtain the pair of strategiedlote
that the continuation payoffs @f and g’ after any history over whicb’ is defined are
the same. In particular, the payoffs in the whole repeated gamedr@nd o' are the
same. Moreover, since there is no profitable one-stage deviationdrpithere is no
profitable one-stage deviation froal . This implies thato' is a SPE. Bciaim 1)

Claim 2:

Given any Nash equilibriunor, one can construct a Nash equilibriwrh in which (1) the

two players receive the same expected payoff as and (2) each public signéf, 6',...

is a random variable that takes one of only three values (with probabilities that may
depend on history).

Proof:

We defineg’ inductively as in Claim 1, but only for historigsthat are assigned a
positive probability after thé&-th step of the inductive process. Over other histories the
players minmax each other. More precisely, after a hisdtooy length k that is reached
with a positive probability undes” , we replace the correlating deviéé with a (history
dependent) correlating devi@* that generates only three signals. Note that since the
strategies induced by after (h 8*)is almost surely a Nash equilibrium, the signals
6", 6™ and 6/ can be chosen such that the strategies induced after (, 8 ) are
Nash equilibrium. After a history whose probability is zerag' instructs the players to
minmax their opponents. As in Claim 1, the continuation payoffs after any positive
probability history is the same under and ¢'. In particular, the payoffs in the whole
repeated game from andg' are the same.

To see thato' is a Nash equilibrium, assume that playeteviated from the
strategy prescribed i’ to the pure strategy. This deviation cannot be profitable. To
see why, lek be the first stage at which this deviation leads the players off the equilibrium
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path. From that stage on the players receive, at most, their IR payoffs. If the deviation was
profitable, playei must have had a profitable deviation fram playing according ts

until stagek, and securing her IR payoff thereafter. If, on the other hand, there is no stage
at whichs leads us off the equilibrium pat,cannot improve payoffs. To see why, note
that if playeri could gain by deviating te, she would already gain by deviatinggdor

the first K stages and then returning to her equilibrium strategy. But every history of
lengthK that is assigned positive probability undeis also assigned positive probability
under i's equilibrium strategy. Hence, no strategy can be more profitable than the
equilibrium strategy. Bciaim 2)

Claim 3:

For any Nash (SP) equilibriung that employs finitely valued and possibly history-
dependent randomizing devices, there exists a Nash (SP) equilitfianyields the same
payoffs and employs continuous and history-independent randomization devices.
Proof:

Let the randomization devices used by 8 (k=0,1,...), be all uniformly
distributed over [0,1] and i.i.d. We definanductively as follows. At the first stage, we
divide the unit interval into three intervalﬁ@f), I(5§) and I(5§), the length of each is
equal to the probability assigned 8, 69 and 62. We let 7(8°) = 0" (J(6°)), where
J(8°) =60 iff 8°01(6Y).

At the second stage, after the histdry= (6% a’, &), we divide the unit interval
according to probalties assigned by 8™ to 6", 6% and 8% and define
r(h,68")=1((6%a’,3%),0")=0'((JB°); " &), }@Y), where J" identifies 8" with
’éim according to whethef" is in the interval corresponding téf‘l. (Notice that the
random variabled™ is not history dependent. However, its interpretation by the players
does depend oh,). We continue this process inductively on the finite set of histories and
thereby obtaint. Clearlyt is an equilibrium (Nash or SP, asis). Mciaim 3)

Lemma A:
The sets of equilibrium payoffs (Nash or SP) are closed.
Proof:
Let (Xn,Yn):=l be a sequence of (Nash or SP) equilibrium payoffs that converges
to (X,Y). Let g, be the (Nash or SP) equilibrium thajpgorts the payoff pai(Xn,Yn).
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By Claims 1 and 2, we can assume that eacliitegum o, relies on public signals with a
finite number of states. We will construct a (Nash or SP) equilibauthat supports the
payoff pair (X, Y) .

We extract a converging subsequenoz,?;k (.- XI.e., given any history of actions
and signals, the actions prescribed and the probabilities of the correlating devices
converge.) We do so inductively on the set of histories: we extract a subsequence that
converges on the first history, from this subsequence we extract a subsequence that
converges on the second history, and so on. Finally, we pick the sequenis (siny a
diagonal technique. This can be done since the set of possible histories is countable: there
is a finite number of possible actions and of possible realizations of the public signals. We
let the strategy be the limit of the sequencefng w1} Since the repeated-game payoffs
are continuousg is an equilibbrium and, moreover, the expected payoffs to the players
from following o is the limit(X,Y).

Note that 0 employs history-dependent (and finitely valued) randomization
devices. By Claim 3, there exists an equilibritinwith the same payoffs, that employs
history-independent and continuous randomization devices. This proves that the limit
(X,Y) of the sequence of equilibrium payoffX,, Yn):=l is supported by an equilibrium.

[ |

Lemma B:
The sets of equilibrium payoffs (Nash or SP) are convex.
Proof:
Simply notice that the players can use the first public sighfalto also jointly mix
between equilibria of the repeated game. This means that the sets of equilibrium payoffs

are convex. W

Remark: As mentioned in the paper, the use of a correlating device is not essential to
obtaining our results. Without a correlating device the equilibrium payoffs set is "almost”
convex: The distance between the equilibrium set and its convex hull converges to zero as

A goesto O.
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Lemma 2:

For anye > 0, there existd) > 0 such that any payoff path, along which all continuation payoffs
are inIR?, can beextended to a subgame perfect equilibrium when A.

Proof of Lemma 2:

Denote player i's minmax action against playef by M,. That is,
ir, = max, g, M; a; ). LetL, =g (M, M,) be the payoff to playarwhen both players
are minmaxing each other and I, =max, . g @,a )- min, a 9 (@,a) be the
maximal difference between all of play&r stage payoffs.

Note that at each stadie the players can attain any payoffs paiVity playing
pure actions as a function of the stageignal 8. This implies that there is a path of
stage-actions that generates the given payoffs path, such that a deviation by any player
(from her prescribed pure action) can always be detected by her opponent. To extend this
path to a SP equilibrium, we need to specify what players do after a deviation.

Assume that playei has deviated at stade The players enter a punishment
phase, during which both players are minmaxing each other and receive stage payoffs
L, <ir, and L, <ir,. The length of the punishment phase is random: after each stage
there is a probabilityp that the players will terminate the punishment phase and return to
stage k+1 of the original path (More precisely, the probability of terminating the
punishment phase depends on the actions taken by the players at that stage, but its
expectations isp - see below.) By choosing sufficiently small we can make the
(random) number of stages of punishment large enough, so that ijdagae stage gain
from the deviation (which is less thaH,) is washed away by the loss due to the
punishment phase (which is at leagter stage). By choosingy sufficiently small, we can
make the random duration of this phase (whose expected valueo arbitrarily short,
so that the expected continuation payoff at any stage of the punishment phase is IR.

If mixed actions were observable, possible deviations from the punishment phase
could be easily deterred (whén is sufficiently small). This can be done, e.g., by reducing
to 0 the probabilityp of ending the punishment phase at the stage that follows the
deviation. However, we assumed that ordglized actions are observed. Therefore, a
player’s deviation from her minmax action to any pure action in the support of the minmax
action cannot be detected. To make such a deviation nonprofitable, we make each player
indifferent betweenall her pure actions. We do this by letting the probability of
terminating punishment phase, depend on the actions taken by the players.
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More precisely, letW*(k) be playeri’s expected continuation payoff during the
punishment phase that follows a deviation from the equilibrium path a stage k. (Notice
that this payoff does not depend on how many stages of punishment has past, but does
depend on when the deviation has occurré(fj k) is the solution to

WA (K) = (1-88) 0, + 82 Mo LU (k+1) +(1- p) DA ( B)
where U*(k +1) isi’s continuation payoff of returning to the equilibrium path at stage
k+1. Let D*(k)=U”*(k)-W*(K >0 be thei's gain from terminating the punishment
phase. If the realized actions at some stage during the punishment phaseade, ,
the players return to the original path with probabifty, , a,) (rather thanp), where

(1—5?)@-. —g(@, M) + (1- 6€)mLP —gs(M, )
o7 D7 (k) 55 A (k) '

p(a,a)=p+

(Note thatp(a,,a,) is between 0 and 1 # is sufficiently small.) The two terms
added top exactly offset the difference between the payoff each player actually received
at that stage and her expected payoff had she used her minmax action. To see why, lets
consider the impatient player. The one-stage gain from playing g,(a, M,)— L, . Its
effect on I's continuation payoff is1€ 3¢ Dg( a( M. -)L .)On the other handa,
affects the probabilityo(a, , a,) through the second summand. (Note thatas no affect

on the third summand.) The effect of this incremental probability (the second summand)

: : -E(1—5|A)m|—| —9|(6L N'P))D A A .
on the continuation payoff iss o; D> (k)|. (The gain from
inuation payoft g7 os %ﬁ *(K)]. (The g

terminating the punishment phade; (k), is multiplied byd! since it occurs with a delay

of one stage). This exactly offsets the gain from playangather thanM, (Note that
since the expectation gd(a,,a,) when players play their minmax actiohd, is p, our
calculation ofW* (k) and D*(k) are correct.). An analogous argument shows that also

the patient player has no incentive to deviate from the punishment plse.

Proposition 2:

Let B be a convex polygon of feasible stage payoffs and denote the vertices on the Pareto
frontier of B as &, .y, )to (x,,y ), with x, >...> x (and thusy, <...<y, ). The Pareto
frontier of F°(B) is the graph of the functiod , (U, ):
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1 r-1
UP = ym +(Xm_ U I)F(S'n)T Wheneverum 2 UI 2l’lm+l M= Ol -
where
O r=220) oy
09(d5)

(M S, = z(x K2 y+1)fl

+1
i) Ho = Xpr ANy = Xy = SyEm—I™)ir m=0..1-
m+1 m
Proof:
To find the extreme point of °(B) in the direction ¢ 1, )a = 0, we solve:

Ma&x(t),y(mj':a(—|095|)5t| X(1)+ (= 1095, 0% Y(1) st (XD, X9 BI T[0 )

Clearly, ana -optimal path uses only Pareto-optimal vertice8of he a -optimal path
starts at some vertex ( vy, , faind goes through vertices with increasing indices until, at
the tail, it reaches the vertex, (y , . The optimal path is:

X, Y, 0<t<T,
me+l1ym+l) Thst< T,

(x(1), y(1) =0
B..

Hx,y) TS t<o
WhereT, is the solution to
a(-logd, )3/ x + (-logd, )aiy, = a(-logd, ¥; x,, + (- logd, B} .,
if the equation has a positive solution, and 0 otherwise. Thusm(a) is the first integer

X, — X . . .
such thator —™=—™ >1 and form<i<|-1,T, is the solution to

ym+1_ym
_)g+1
Iog[ar
) - X U D . .
Esim —qr 3 An le., T = Yir = Y form<i<I|-1,andT =0 fori<m.
05, O Yia ™ ¥ Iogép—logé,

We now calculate the players’ payoffs from this path:
:J’OTm(—Iogé, )3t x dt+J’m“( 1095, )5} X, dtr..+[ (- logs, B}  dt=

- xm6t,

m+1_ _)th

- Xm+15t

-1
- Xy(8T ~1) - xm+1(6Tm -5.Tm)----->q O =0)= %, + 3 87 (%1~ X)

I=m
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-1
Similarly, Up =y, + 5 85(¥ia = ¥)-

I=m

Notice that form<i<|-1

o log(ar/-s;) Loﬂ %r
o = onsplogs, = i Ea P _)MEIL , and
D yi+1_y|:|
o log(ar/-s) %r
61; _ eI 95P|ogdp—logdI — Ea r X — X Ell .
U Yau—-y0o
Thus
U, = +|_1Earx| X+1Ell7f(x ) (a r)li I—1(y|+1 I)rl(X _ ) and
DA s Vs L z X = X A
l
O x — X1 e y
U = Ynt or— i+ —m+arl_ i+ -1 . ) =
y 2 F ym—yiD (yl Y)=Yn+(am Z(i x+) (Vs = ¥)
roi- . iLXi_ X,
+(ar)(“r)l_z(yl Ay L (Y~ Y) =
X+1 y|+1 i

i

ot @n(@nt 5 (e y')fl(x - %)
Thisyields aparametric representation of the Pareto frontier,

" (U @Ue @) = Xy ynw))+(—1ar)0(a) O<a <

where C(a) = (ar)l‘Z(y'” on =y - x.,), and

I +1

We proceed towards deriving the explicit frontier formula(U,). From (*), we

have C(a) = X,,, — U, (a). DenotingS, = Z(y'” )r T(x - %,,), we get,
1_7r I
x —U (a)dr
¢ o= iBie "U@F"

rg Zm(a) U

Thus, the ranges:s,,,/r = a > -s,/rfor which m(a) = m, translate into
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mU,)=0when x> U > x—(- Ql%f >,,and

m(U,) = mwhen x, - (- rﬁl)l%r dm12 Y>> x-(- n$1rj2m’ m=1.1-1.
From (*), we also have

Up(a) = Yi(ay +(ar)C(a) = Yita) +(a r)(xmja) - U (a))

pluggingar from (**) yields the formula:

Up(U)) = Ymu,) +(Xn'(U|) - Ul):(Zm(u,))rr_l,

where
g o
|j) XOZUI >X0—(—$))1—r ZO
U . B
mu,) = X~ (-8) T2 U, > x ~(-$) 3,
0..
O B B
H_l Xi-2 —(—s_z)l—r 21,2 U > )?—1_(_ *?‘—1)1_r 211 = X
[ |
Theorem 2

interior(W) O SPEO EOJ W
where W = convexhufl B(Vn IR IRn E( W B IR F( )

Figure 1 illustrates how to apply Theorem 2 to find the shape of the limit
equilibrium sets in different games. The bold lines delineétesd the grey areas are the

(limit) equilibrium sets:

Patient

Impatient Impatient
IRp
IR

Patient

Patient

Impatient
IRp IRp
IR|

Patient

Patient Patient
Impatient Impatient Impatient Impatient
IRp IRp V IRp Rp
R R IR IRy

Figure 1

IR|
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Proof:

The proof uses the technique of Theorem 2. Notice that Lemma 1 already applies
to directionsa in all quadrants. However, we need some extension of Lemma 3 that
covers the southeast quadrant:

Lemma 4

Suppose thata, >0, a, <0, and that the path ¥ k( ¥ K )}, OV" maximizes
a,Ur0)+a,Us(0 s.t. 0Ok, U (K) = ir, ,UZ (k)= ir, . If (U2(0),U5(0) is not strictly
Pareto optimal (subject to the same constraints), thEnK( Y(k), {,)gan be chosen so
that Uk, Y(K) = ir,.

Proof of Lemma 4:

Observe first that along the optimal path, all stage payoffs must be either on the
north-eastern (Pareto) frontier 9f or on its southeastern frontier, since otherwise the
impatient player's payoff can be increased keeping the patient player's payoff fixed,
without violating any constraints.

Assume now that there are some stalgewhere Y(k) < ir,. If for all suchk,
(X(k),Y(K) is on the Pareto frontier o¥, the path would be Pareto optimal,
contradicting the assumption. Thus, assume that theke vsth (X (k),Y(K)) on the
southeastern frontier of and Y(k) < ir,. As in Lemma 3, we find somi, such that
Y(ky) < ir, andY(k, +1) > Y( k).

There may be two cases. ¥(k, +1) > X(k,), we reach a contradiction using the
same modification as in Lemma 3. IfX(k,+1)< X(k,), then the point
(X(k, +1), Y(k + 1) must be on the Pareto frontier\dfThis case splits into two:

Case (a): K k )Y & )jand X &, +1).Y (k +1)) are on a vertical facet &f In
this case, W K, +2 )5 K, +2 ))must be also on the same facet, since otherwise it
must be thaty ®(k, +2) < X(k,+ 1), which implies that 5 (k, +2) > Y(k, + 1) . In such a
case, an exchange of payoffs between stkgeand k, +1 can improve on the optimal
solution without violating the IR constraint. Thug) {(k, ¢ 2 U}J, k, # 2 i§)indeed on
the same facet. Therefore, all the payoffs frimon can be replaced by a constant path
which consists of one point on this vertical facet. Specifically, all the patient player’'s
payoffs fromk, on are abovér.. Applying the same method again, if necessary, we can
find a solution such that all her payoffs are abioye as needed for the lemma.

Case (b): There exists some point \ [1Y, located to the right of the segment

connecting K k, )Y & ))and X &k, +1)Y(k +1)) le., Y(k+1)>y>¥Yk) and
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X2 X(k,+1D, X(k) with at least one inequality strict. Consider the following
modification of the path:

(X(K)L,Y(R)=(X(B, X R for ke & e+l

(X(ko +1, Yk +D) = (1-e)( X k+ 3 X+ P+e( xy

(X(ko), Y(k)) = (1= ) X(Kk), X K)+e'( x Y
where, as in Lemma &, > 0 is small enough to prevent violation of the IR constraints at
stage k, +1) &'=¢d; Yoty

y = Y(k)

is increased, in contradiction to theoptimality of the original path. B cmma)

, SO as to keep); (0) unchanged. TriviallyU: (0)

Lemma S
Suppose thatr, >0, a, <0. Everya-optimal point inE* which is not strictly Pareto-
optimal, isa -dominated by a point ifrs:(V n IR) .

Proof of Lemma 5:
By Lemma 4, ana-optimal point inE® is a-dominated by a point supported by a
pathsatisfying [k, Y(Kk) = ir,. By Lemma 3, this path also satisfiek, Y(K) = ir, . Bemma)

We return to thgroof of Theorem 2 Denote,
(e, D) = convexhul( P(Vh IR), IBn E(Vh IR, IRn £ y)
By definition, W = ¢(0,0) . By Proposition IW° O U .50 ¢(€,4) .
To prove the theorem, we need to show that, .., ¢(¢,4) O SPEO EO ¢(0,0).

Part 1: U,.o 00 ®(€,A) O SPE

Every payoff inF(V n IR?) is supported by a path where every tail payoffis
strongly individually rational for both players. By Lemma 1, this is also the case for
payoffs inIR; n Fi-(V n IR)) and inIR® n FY, (V). Using the technique of Theorem 1,
such paths can be extended into subgame perfect equilibrid femall enough. The
inclusion of the full convex hull holds becauS®E is convex, noticing thatF*: is
included inF*: whenA, / A, is integer.

Part 2: E U ¢(0,0)

We need to show that for anfy JE®, A>0 and any directioro = (o, ,a,)
there is a poink J@(0,0) whicha -dominated (i.e., a k= a [ ).

Case 1(a >>0): By Theorem 1, every point i&" is Pareto dominated by some
pointin IR, n F&(V n IR,). By Proposition 1, this set is containedg0,0) .
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Case 2(a, <0,a, >0): There are two possibilities. If the Pareto frontieNof
intersects the boundary dR,, then the intersection point muet-dominate any point
f JE® (otherwise, there is a poirft JE* that Pareto dominates the intersection point,
in contradiction with Theorem 1). If it does not, th#n F3, (V) is not empty. In this
case, every point ife® is o-dominated by thex-optimal point inF5, (V) if that point is
in IR, or otherwise by the intersection &, (V) with the boundary ofR. Again, by
proposition 1,F%, (V) is contained inp(0,0) .

Case 3(a, >0,a, <0): Similarly to case 2, if the Pareto frontier\6intersects
the boundary ofR,, the intersection point oF ;. (V n IR,) and IR, must a-dominate
any f OE® (again, otherwise there is a poirft JE® that Pareto dominates the
intersection point, in contradiction with Theorem 1). If, on the other hdrithes not
intersect the boundary dR,,, consider arwr-optimal point inE* . If this point is Pareto-
optimal, it is clearlya -dominated by a point ifF&(V n IR) - the lowest point on the
(weak) Pareto-frontier which is still IR. If it is not Pareto-optimal, then by Lemma 5, it is
alsoa -dominated by a point ifrs-(V n IR) . By Proposition 1 the proof is complete.

Case 4(a << 0): Notice first thatv must have at least one point in the southwest
of (ir, jr,), obtained when both players are minmaxing each other. If the poimt,.( , )
is inV, we are done. Otherwise \iflies above i(, i, ) any f OE* is a-dominated by
the intersection point between the southeast fronti& afid the boundary ofR, . That
point is in F°(V n IR). Similarly, if V lies below i, ir, ) the intersection point between
the northwest frontier of and the boundary dR, does the job.

Case 5(a, =0 or a, =0): The inclusion in this case follows from the four
previous cases since the §t is convex. W



