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1 Prudence
Here we make an assumption on the properties of u(c): That u′′′ > 0 (u′ is
convex). This means that given a stochastic process with mean ȳ, if we increase
its variance (i.e increase the measure of uncertainty) but maintain the mean,
the individual will still want to increase his savings. In other words, inducing a
mean preserving transformation on yt affects the individual’s savings.

Under PIH a mean preserving transformation wouldn’t have any effect since
we saw that PIH satisfies certainy equivalence: We can see that ct is only de-
pendent on the expectancy of yt, which doesn’t change under a mean preserving
transformation.

Assumptions:

• We assume for simplicity that there are only two periods T = 2.

• u′(c) > 0

• Parameters: β, r

• c0, c1: Consumption in both periods.

• y0: Exegenous deterministic income at time t = 0.

• ỹ1 : Exogenous stochastic income at time t = 1.

• a1: Asset bought at time t = 0 and realized at time t = 1. This is the
same type of asset as before, i.e non-contigent on the realized state (yields
the same payoff in every possible state).

The HH problem is:

maxc0,c1,a1 [u(c0) + βu(c1)]
s.t :
c1 = ỹ1 + a1(1 + r)

c0 + a1 = y0

Reformulated (we denote R = (1 + r))

maxa1 [u(y0 − a1) + βu(ỹ1 + a1R)]

FOC w.r.t a1:
u′(y0 − a1) = βR · E(u′(ỹ1 + a1R)) (8)

The solution to the FOC yields the equilibrium a∗1.
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1.1 Analysis
Lets assume that there are two possible values for the second period income

ỹ1 =
{
yL, p

yH , 1− p

And then we get that:

E(u′(ỹ1 + a1R)) = E(u′(C1)) = p · u′(CL1 ) + (1− p)u′(CH1 )

We look at this graphically:

The downard sloping black curve is u′, which we know is convex by assumption
of Prudence. We can see that the RHS in (8) is equivalent to βR · E(u′(C1)).
If we increase the uncertainty of ỹ1but preserve the means (i.e increase the dis-
tance between CL1 and CH1 as shown in the orange lines, but in such a way that
yields the same mean), then we get a higher value for the RHS of (8). From
(8) we then get that u′(c0) ↑ which means that c0 ↓ which in turn by the RC
increases savings a1 ↑ (since y0 is unchanged).

Summarizing:

Uncertainty ↑→ E(u′(C1)) ↑→ RHS ↑→ LHS ↑→ u′(c0) ↑→ c0 ↓→ a1 ↑

So we see that applying a mean preserving transformation (increasing the risk)
changes the level of savings (increases savings). The intuition for this is that
a greater level of uncertainty makes the Prudent indvididual more sensitive to
the risks, even if the expected payoff is the same.
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2 Measures of Risk Aversion
DEFINITION: The Arrow-Pratt measure of absolute risk aversion (ARA) for a
given utility function u(c):

α := −u
′′(c)
u′(c)

DEFINITION: The Arrow-Pratt measure of realtive risk aversion (RRA) for a
given utility function u(c):

αR := c · α = −c · u
′′(c)

u′(c)

Intuitively, this measures the percent of the subjective income that is being
risked.

We look at different types of ARAs and RRAs and the utility functions that
yield them:

• CRRA: Constant relative risk aversion (α′R = 0)

u(c) =
{
c1−σ

1−σ , σ 6= 1
log(c), σ = 1

Here we get

αR =

−
−σc−σ−1

c−σ · c = σ
c · c = σ, σ 6= 1

−
−1
c2
1
c

· c = 1·c
c = 1, σ = 1

= σ ≡ const→ α′R = 0

This means that the level of relative risk aversion is independent of the
level of consumption, i.e the level of income. We note that σ is considered
to be the coefficient of risk aversion in the utility function, and we can see
that when σ ↑→ αR ↑.

• DARA: Decreasing absolute risk aversion (α′ < 0)
This means that the level of absolute risk aversion is dependent on the
level of consumption, i.e the level of income. Specifically, greater income
implies lower risk aversion.
We are interested in this case because it reflects the data, so we want to
derive a condition for it:

0 > α′ = −u
′′′ · u′ − (u′′)2

(u′)2 ⇔ u′′′ >
(u′′)2

u′
> 0⇔ u′′′ > 0

This is exactly the condition satisfied by Prudence, i.e Prudence→DARA.
Moreover, DARA=CRRA+α′ < 0.
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• CARA: Constant absolute risk aversion (a′ = 0)

u(c) = e−k·c

Here we get:

α = − e
−k·c · k2

e−k·c · −k
= k ≡ const→ α′ = 0

DEFINITION: Intertemporal Elasticity of Substution (IES) for any given utility
function u(c):

IES = − ∂c

∂u′
· u
′

c

This measures how much the individual cares about changes in the consumption
between today an tomorrow (as opposed to ARA and RRA which measure how
much he cares about risking a certain amount, given the fact that he is at a
certain level of consumption c).

Looking at CRRA, we see that:

IES|CRRA = − 1
∂u′

∂c

· u
′

c
= − 1

∂c−σ

∂c

· c
−σ

c
= − 1

σc−σ−1 ·
c−σ

c
= 1
σ

This means that σ ↑→ IES ↓→ −∆c ≈ more∆u′ → −∆c ≈ more −∆u, i.e a
negative change in c has a greater negative effect on utility than before.
So, σ has a double effect, not only does σ ↑→ αR ↑ but also σ ↑→greater
aversion from change in consumption.

In theory, we wan’t utility functions in which σ doesn’t have this double
effect. Specifically, we wish to be able to increase αR without affecting IES,
since this is what the data shows. There are such functions.

Note: The general definition of IES is:

IES =
d log( ct+1

ct
)

dr

We usually assume ‘separability’ of the utility function, i.e. U({ct}∞t=0) =∑
βtu(ct) →FOC u′(c) = βRu′(c′). Taking the log and a linear expansion

around R = 1 we get:

log(u′(c)) = log(β) + log(R) + log(u′(c′)) ≈ log(β) +R− 1 + log(u′(c′))
= log(β) + r + log(u′(c′))

→ r = log(u′(c))− log(u′(c′))− log(β) = log( u
′(c)

u′(c′) )− log(β)

= −log(u
′(c′)
u′(c) )− log(β)

→ dr = −d log(u
′(c′)
u′(c) )
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Now we use the general definition of IES to get the definition which we used:

IES =
d log( ct+1

ct
)

dr
=

d log( c
′

c )
−d log(u′(c′)u′(c) )

= −
d c
′

c
c′

c

·
(u
′(c′)
u′(c) )

d (u′(c′)u′(c) )

=continuous time −dc
c
· u
′(c)

d u′(c) = − ∂c

∂u′
· u
′

c
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