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1 Introduction
Before we saw the optimization problem of a single unemployed agent who
searched for a job by drawing from an exogenous wage offer distribution. In
this model there is a continuum of agents who interact across a large number of
spatially separated labor markets.

1.1 Setup
• There is a large number of islands, and each one has a labor market with
an aggregate production function of θf(n). n is the island employment
level and θ > 0 is an idiosyncractic (specific to each island) production
shock.

• The production funciton satisfies:

f ′ > 0, f ′′ < 0, limn→0f
′(n) =∞ (28.2.1)

• The productivity shock takes on m possible values, θ1 < ... < θm, and
is goverened by strictly positive transition probabilities: π(θ, θ′) > 0, and
the CDF satisfies: Pr(θ′ ≤ θk|θ) =

∑k
i=1 π(θ, θi) and is decreasing in θ.

This means 1. That a shock will happen (a move from θ to θ′) and that
the higher the original θ is, the higher the probability to reach an even
higher θ′ in the next period.

1.2 Dynamic
• At the beggining of each period the agents are distributed in some way
over the islands.

• After observing the productivity shock (in each island - complete informa-
tion) the agents decide whether or not to move to another island - meaning
Ai = {move,work}.

• A mover gives up his labor earnings in the period of the move. His choice
maximizes the expected present value of his earnings stream.

• Wages are determined competitively so that each island’s labor market
clears with a wage rate equal to the marginal product of labor: Fn = w.
The labor force which enters into production is the one minus those who
left, but without those who are on the way.

1.3 A Single Market
Market State = (x, θ), where x is the beggining period labor force. In equilib-
rium there will be two mappings from the market state to the employment level
n(θ, x) and wage rate w(θ, x). These equation must satisfy the market clearing
conditions:
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The wage is equal to the marginal product of labor, given the current amount
of employment n: w(θ, x) = ∂

∂n (θf(n)) = θf ′(n(θ, x)).
The amount of employment must not exceed the labor force: n(θ, x) ≤ x. There
is an inequality since at this period some agents may choose to leave the market.
If none do, then n = x.

• v(θ, x) is the value of the optimization problem for an agent in market
(θ, x) at the beggning of a period.

• vu is the expected value obtained in next period by an agent leaving the
market (this is the present discounted value of being out of work this
period and beggining the next period at the island the agent is moving to.
We assume for now that such a value exists and is exogenous, and that
at equilibrium this value is the same for all agents in all islands looking
to move to any other island). Because this value relates to the beggining
of next period, in this period it is valued at βvu. The agent’s bellman
equation is given by:

v(θ, x) = max{move,work} = max{βvu, w(θ, x) + βE[v(θ′, x′)|θ, x]}
(28.2.2)

Where θ′, x′ are the market state of the island in the next period.

1.4 No Agents Leave
If no agents choose to leave the market, then we get n(θ, x) = x, and then
w(θ, x) = θf ′(x). We look at two cases:

1.5 Case 1: Some additional agents arrive next period
This means that the expected value of working at this island in the next period
must satisfy βE[v(θ′, x′)|θ, x] = βvu. If it was less than this, then no new agent’s
would choose to move to this island, and if it was more than this, more agents
would choose to move to this island until the value of working there was driven
down to βvu. Therefore the resulting bellman equation (from choosing to stay)
is:

v(θ, x) = θf ′(x) + βvu

1.6 Case 2: No additional agents arrive next period
If no agents arrive and all stay then x′ = x. The lack of arrivals implies that
E[v(θ′, x′|θ, x)]≤βvu. So we get that the current bellman equation (from choos-
ing to stay) is:

v(θ, x) = θf ′(x) + βE[v(θ′, x′)|θ, x] ≤ θf ′(x) + βvu
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1.7 General Case:
The combination of both cases give the bellman equation in general:

v(θ, x) = max{βvu, θf
′(x) +min{βvu, βE[v(θ′, x′)|θ, x]}} (28.2.3)

In evaluating the stay option, the agent checks if E[v(θ′, x′)|θ, x] is greater
than βvu or not. After checking he picks the worst case, since he knows thats
what will govern the payoff: If it is less than βvu then noone will arrive and that
will be the payoff, and if it is greater than βvu then enough agents will arrive
to equal the next period payoff to βvu exactly. He then maximizes, given that
worst case payoff, is it better to move or work. Given a value for vu this is a
well behaved function with a unique solution v(θ, x) which is nondecreasing in
θ (having a better production shock in the current island can’t hurt the payoff
the agent) of and nonincreasing in x (having a larger labor force means that
there are possibly more workers, meaning a lower wage, which can either hurt
or not affect the agent’s payoff).

2 General evolution of island’s labor force
2.1 Case 1: Some agents leave
If agents leave then E[v(θ′, x′)|θ, x] ≤ βvu and so no additional agents will arive
next period, and therefore there will be no new wokers next period: x′ = n. In
equilibrium we get that whoever chooses to work (meaning to stay) receives the
same payoff as those who chose to leave:

θf ′(x′) + βE[v(θ′, x′)|θ, x] = βvu (28.2.4)

This means that given βvu and the fact that agents choose to leave, we
can derive a bound for the labor force, x+(θ). Agents will leave this period,
reducing x (which will actually be x′) until the expected payoff from staying
to work equals βvu, which can be restated as until x equals some bound. We
denote this bound by x+(θ) . If x ≥ x+(θ) then at the next period x′ = x+(θ),
since agents will be leaving and lowering the labor force until it reaches the
bound.

2.2 Case 2: All agents remain, and some workers arrive
next period

The arriving workers expect to get the payoff vu next period. This has to hold,
therefore, for anyone expecting to work next period at this island. Therefore x′
must satisfy

E[v(θ′, x′)|θ, x] = vu (28.2.5)

Like before, we can derive from this equation another bound on the labor
force, x−(θ). Agents will be arriving this period and increasing the labor force
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x (which will actually be x′) until the payoff reaches vu, or until x = x−(θ). So,
if x ≤ x−(θ) then x′ = x−(θ) .

It can be seen that x−(θ) < x+(θ).

2.3 Case 3: All agents remain, no additional workers ar-
rive next period

This actually means that x−(θ) < x < x+(θ): Noone wants to leave so E[v(θ′, x′)|θ, x] >
βvu and so x < x+(θ). Noone wants to move to this island, so E[v(θ′, x′)|θ, x] <
vu and so x−(θ) < x. Obviously, in this case x = x′.

3 Solving the model for 2 islands (equilibrium)
We assume that there are two islands, and we look at two different shocks
θ1 < θ2:

In general, we know that x−(θ1) < x+(θ1), x−(θ2) < x+(θ2). We also notice
that if θ ↑ then v ↑, and so x+ ↑, since it is derived by lowering x until the
expected value reaches βvu (so since the epected value is higher, the x that
satisfies it is also higher), and so we get x+(θ2) ≥ x+(θ1). Similarly, we get that
x−(θ2) ≥ x−(θ1). From this we can also trivially derive that x+(θ2) ≥ x−(θ1).
The unknown is what is the relationship between x−(θ2) and x+(θ1). We look
for an equilibrium solution, meaning a range R which satisfies x ∈ R→ x′ = x.
We know that given a value for θ, if x ∈ [x−(θ), x+(θ)] then x′ = x if θ were
to stay the same (θ′ = θ). So we extrapolate from this to the case that θ′ 6= θ.
Again, we look at the case θ1 < θ2.

3.1 Case 1 x+(θ1) > x−(θ2):
In this case we have look at the nonempty interval I := [x−(θ1), x+(θ1)] ∩
[x−(θ2), x+(θ2)] = [x−(θ2), x+(θ1)]. If x ∈ I then x′ = x. Otherwise the result
depends on the direction of the move in θ, i.e. it won’t always be the case that
x′ = x and so these intervals don’t work:

Assume x < x−2 : If θ1 → θ2 then x ↑ x−2 (so x′ 6= x).
Assume x > x+

1 : If θ2 → θ1 then x ↓ x+
1 (so x′ 6= x).

3.2 Case 2 x+(θ1) < x−(θ2):
In this case I = ∅. However, we look at the nonempty interval J = [x+(θ1), x−(θ2)].
For an x ∈ J , if θ1 → θ2 then ∀x′ ∈ J : x′ = x−(θ2), and if θ2 → θ1then
∀x′ ∈ J : x′ = x+(θ1), meaning that all x values in this interval result in one of
these two points. Therefore, only if x ∈ {x+(θ1), x−(θ2)} we get that x′ = x.
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4 Solving the model for general θ:
We can summarize the equilibrium modes for general θ. Assume like before that
the θvalues are ordered {θ1, ..., θm}. So we get:

x =
{
{x ∈ {x−(θi), x+(θi)|x+(θ1) ≤ x ≤ x−(θm)}} if x+(θ1) ≤ x−(θm)
{x ∈ [x−(θm), x+(θ1)]} otherwise
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