Macro Theory B

Search, Matching and Unemployment

Ofer Setty*

The Eitan Berglas School of Economics - Tel Aviv University
March 19, 2015

1 Math preliminaries

1.1 Expectancy

Assume that p is a random variable with CDF: $F(P)=\operatorname{Pr}(p \leq P)$. We assume that $F(0)=0$ and that there exists a B s.t: $F(B)=1$.

1. $E(p)=\int_{0}^{B} p \cdot d F(p):=\int_{0}^{B} p \cdot f(p) d p$, where $f(p)=F^{\prime}(p)$ is the Pdf of p .
2. $\int_{0}^{B} 1 \cdot d F(p)=1$. This can be seen either from the expectency formula $(p=1)$ or from the fact that $\int_{0}^{B} 1 \cdot d F(p)=\int_{0}^{B} 1 \cdot f(p) d p=\int_{0}^{B} \operatorname{Pr}(p=$ $P) d p=1$ (integral over all probabilities).
3. $E(p)=B-\int_{0}^{B} F(p) d p \rightarrow \int_{0}^{B} F(p) d p=B-E(p)$. This is obtained using integration by parts on the expression $\int_{0}^{B}[1-F(p)] d p$.

1.2 Mean preserving spreads

This is a convenient way to characterize the riskiness of two distributions with the same mean (and with the same support, in our case $[0, B]$. A condition from two distrbutions F_{1}, F_{2} to be mean preserving can be gained from 3 in the last section: $\int_{0}^{B} F_{1}(p) d p=\int_{0}^{B} F_{2}(p) d p$.

Assume there are two different distributions with the same means and same support F_{1}, F_{2}. We want to look at the case where F_{2} is riskier than F_{1}. Look at this diagram (F_{1} here looks like the normal distribution and F_{2} is the 45 degree line).

[^0]

We can see that they satisfy:

$$
\int_{0}^{y} F_{2} d p \geq \int_{0}^{y} F_{1} d p \forall y \in[0, B]
$$

This is apparent, for example, by seeing that before the intersection the under F_{2} is obviously greater, and after the intersecting the integral of F_{2} is always carrying the 'extra' space between the curves from before the intersection. This space is only fully gained by F_{1} at the point B.
Looking at $F_{1}^{\prime}=f_{1}, F_{2}^{\prime}=f_{2}$, we can see that at the edges of the box $f_{2}>f_{1}$, and this means that F_{2} gives higher probabilities to the edges than does F_{1}. This is was makes F_{2} riskier than F_{1}. If the agent is risk averse, than F_{1} dominates F_{2}.

2 McCall's model of intertemporal job search

At every period an umemployed worker randomly selects a job offer with wage w iid from a distribution $F(w)$ with support $[0, B]$. The worker's utility function is $U=\sum_{t=0}^{\infty} \beta^{t} y_{t}$. This is a stationary problem, meaning that at every time the problem facing the worker is the same (until he accepts a job, at which point the model ends).

Assumptions:

- Once the worker is accepts a job he is is employed forever.
- The worker can't quit is job.
- The worker can't go back to a previously offered wage w.
- The value of leisure is c. This represents unemployment wage etc.

Important assumptions:

- The distribution $F(w)$ is known to all. Either way, there is already incentive for the worker to decline an offer - that he may get a better one next period. If $F(w)$ were unknown, there would be another incentive - to wait and learn about $F(w)$.
- w is revealing. This means that the worth of the job is totally encompassed by w (like the type of boss, the atmosphere, etc).

The maximization problem of the worker then is:

$$
\begin{equation*}
v(w)=\underset{\text { accept,reject }}{\max \left\{\frac{w}{1-\beta}, c+\beta \int_{0}^{B} v\left(w^{\prime}\right) d F\left(w^{\prime}\right)\right\}} \tag{6.3.1}
\end{equation*}
$$

- w is the wage offer given at the current time.
- $\frac{w}{1-\beta}$ is the present discounted value of getting w for infinity (the result from accept).
- $\int_{0}^{B} v\left(w^{\prime}\right) d F\left(w^{\prime}\right)=E\left(v\left(w^{\prime}\right)\right)$. In effect, the reject result is simply $c+$ $\beta E\left(v\left(w^{\prime}\right)\right)$ - meaning recieve c this period and get value the expected value of $v\left(w^{\prime}\right)$ next period (since the worker faces the same problem every period).

Remarks:

- $\frac{w}{1-\beta}$ is increasing in w.
- $c+\beta \int_{0}^{B} v\left(w^{\prime}\right) d F\left(w^{\prime}\right)$ is not dependent on w and is therefore a constant.

We therefore get the following dynamic:
We denote by \bar{w} the intersection:

$$
\frac{\bar{w}}{1-\beta}=c+\beta \int_{0}^{B} v\left(w^{\prime}\right) d F\left(w^{\prime}\right)
$$

Reject the offer Accept the offer
Figure 6.3.1: The function $v(w)=\max \{w /(1-\beta), c+$ $\left.\beta \int_{0}^{B} v\left(w^{\prime}\right) d F\left(w^{\prime}\right)\right\}$. The reservation wage $\bar{w}=(1-\beta)[c+$ $\left.\beta \int_{0}^{B} v\left(w^{\prime}\right) d F\left(w^{\prime}\right)\right]$.

From this equation we can derive the reservation wage, meaning the wage below which no worker will accept the offer: $\bar{w}=(1-\beta)\left(c+\beta \int_{0}^{B} v\left(w^{\prime}\right) d F\left(w^{\prime}\right)\right)$ From this we can figure out what $v(w)$ is:

$$
v(w)= \begin{cases}\frac{\bar{w}}{1-\beta}=c+\beta \int_{0}^{B} v\left(w^{\prime}\right) d F\left(w^{\prime}\right) & w \leq \bar{w} \tag{6.3.2}\\ \frac{w}{1-\beta} & w \geq \bar{w}\end{cases}
$$

Looking at (6.3.2), we can split the integral into two intervals:
$\frac{\bar{w}}{1-\beta}=c+\beta \int_{0}^{\bar{w}} v\left(w^{\prime}\right) d F\left(w^{\prime}\right)+\beta \int_{\bar{w}}^{B} v\left(w^{\prime}\right) d F\left(w^{\prime}\right)$
And then using (6.3.1) replace $v\left(w^{\prime}\right)$ with the corresponding value:
$\frac{\bar{w}}{1-\beta}=c+\beta \int_{0}^{\bar{w}} \frac{\bar{w}}{1-\beta} d F\left(w^{\prime}\right)+\beta \int_{\bar{w}}^{B} \frac{w^{\prime}}{1-\beta} d F\left(w^{\prime}\right)$
We multiply the LHS by $1=\int_{0}^{B} d F\left(w^{\prime}\right)$ and get:
$\frac{\bar{w}}{1-\beta} \int_{0}^{\bar{w}} d F\left(w^{\prime}\right)+\frac{\bar{w}}{1-\beta} \int_{\bar{w}}^{B} d F\left(w^{\prime}\right)=c+\beta \int_{0}^{\bar{w}} \frac{\bar{w}}{1-\beta} d F\left(w^{\prime}\right)+\beta \int_{\bar{w}}^{B} \frac{w^{\prime}}{1-\beta} d F\left(w^{\prime}\right)$
We then conbine integrals with matching intervals and get:
$\bar{w} \int_{0}^{\bar{w}} d F\left(w^{\prime}\right)-c=\frac{1}{1-\beta} \int_{\bar{w}}^{B}\left(\beta w^{\prime}-\bar{w}\right) d F\left(w^{\prime}\right)$
Adding $\bar{w} \int_{\bar{w}}^{B} d F\left(w^{\prime}\right)$ to both sides gives:

$$
\begin{equation*}
(\bar{w}-c)=\frac{\beta}{1-\beta} \int_{\bar{w}}^{B}\left(w^{\prime}-\bar{w}\right) d F\left(w^{\prime}\right) \tag{6.3.3}
\end{equation*}
$$

Remarks:

- $\bar{w}-c$ is the cost of searching again given the fact that I drew \bar{w} (i.e what I have to give up if I reject a job offer of value \bar{w}).
- $\mathrm{RHS}=\frac{\beta}{1-\beta} \int_{\bar{w}}^{B}\left(w^{\prime}-\bar{w}\right) d F\left(w^{\prime}\right)=\frac{\beta}{1-\beta} E\left(w^{\prime}-\bar{w}\right)$: means how much I gain if I search for a new job gien the fact that I drew \bar{w}. Notice the interval begins only at \bar{w} since that for any $w<\bar{w}$ I can choose to take c instead. If I choose some $w^{\prime} \geq \bar{w}$ in the next period (hence the β) I get w^{\prime} for infinity (hence the $\frac{1}{1-\beta}$).

We can choose to look at both sides as function of w instead of \bar{w}. We then get:

$$
\begin{equation*}
R H S=h(w)=\frac{\beta}{1-\beta} \int_{w}^{B}\left(w^{\prime}-w\right) d F\left(w^{\prime}\right) \tag{6.3.4}
\end{equation*}
$$

Properties of $h(w)$:

- $h(0)=\frac{\beta}{1-\beta} \int_{0}^{B}\left(w^{\prime}-0\right) d F\left(w^{\prime}\right)=\frac{\beta}{1-\beta} E(w)$
- $h(B)=0$
- $h^{\prime}(w)=-\frac{\beta}{1-\beta}[1-F(w)]<0$
- $h^{\prime \prime}(w)=\frac{\beta}{1-\beta} F^{\prime}(w)>0$

For computing $h^{\prime}(w)$ we use Leibniz's rule on equation (6.3.4). The rule is: Let $\phi(t)=\int_{\alpha(t)}^{\beta(t)} f(x, t) d x$ for $t \in[c, d]$. Assume that f and f_{t} are continuous and that α, β are differentiable on $[c, d]$. Then the rule asserts that $\phi(t)$ is differentiable on $[c, d]$ and

$$
\phi^{\prime}(t)=f[\beta(t), t] \beta^{\prime}(t)-f[\alpha(t), t] \alpha^{\prime}(t)+\int_{\alpha(t)}^{\beta(t)} f_{t}(x, t) d x
$$

To apply this formula to $h(w)$ we make the following replacments:

ϕ	t	f	x	$\alpha(t)$	$\alpha^{\prime}(t)$	$\beta(t)$	$\beta^{\prime}(t)$	f_{t}
h	w	$w^{\prime}-w$	w^{\prime}	w	1	B	0	-1
So we get.								

$h^{\prime}(w)=(B-w) \cdot 0-\left(w-w^{\prime}\right) \cdot 1+\frac{\beta}{1-\beta} \int_{w}^{B}(-1) d F\left(w^{\prime}\right)=-\frac{\beta}{1-\beta} \int_{w}^{B} d F\left(w^{\prime}\right)$
$=-\frac{\beta}{1-\beta} \int_{w}^{B} f\left(w^{\prime}\right) d w^{\prime}=-\frac{\beta}{1-\beta}[F(B)-F(w)]=-\frac{\beta}{1-\beta}[1-F(w)]<0$

Figure 6.3.2: The reservation wage, \bar{w}, that satisfies $\bar{w}-c=$ $[\beta /(1-\beta)] \int_{\bar{w}}^{B}\left(w^{\prime}-\bar{w}\right) d F\left(w^{\prime}\right) \equiv h(\bar{w})$.

2.1 Comparitive statics

2.1.0.1 Moving c

Assume that $c \uparrow$. We get that $\bar{w} \uparrow$.

2.1.0.2 Moving $\mathbf{E}(w)$

Assume that $E(w) \uparrow$. We get that $\bar{w} \uparrow$.

2.1.0.3 Moving β

Assume that $\beta \uparrow$. We get that $\bar{w} \uparrow$.

2.1.0.4 Mean preserving spreads

We want to know how the movement from a distribution F_{1} to a more risky distribution F_{2} affects \bar{w}. We work on equation (6.3.3) and complete the intergral expression on the whole interval (add and remove it):

$$
\begin{gathered}
\bar{w}-c=\frac{\beta}{1-\beta} \int_{\bar{w}}^{B}\left(w^{\prime}-\bar{w}\right) d F\left(w^{\prime}\right)+\frac{\beta}{1-\beta} \int_{0}^{\bar{w}}\left(w^{\prime}-\bar{w}\right) d F\left(w^{\prime}\right)-\frac{\beta}{1-\beta} \int_{0}^{\bar{w}}\left(w^{\prime}-\bar{w}\right) d F\left(w^{\prime}\right)= \\
=\frac{\beta}{1-\beta} E(w)-\frac{\beta}{1-\beta} \bar{w}-\frac{\beta}{1-\beta} \int_{0}^{\bar{w}}\left(w^{\prime}-\bar{w}\right) d F\left(w^{\prime}\right)
\end{gathered}
$$

eventually we get:

$$
\bar{w}-(1-\beta) c=\beta E(w)-\beta \int_{0}^{\bar{w}}\left(w^{\prime}-\bar{w}\right) d F\left(w^{\prime}\right)
$$

After integration by parts we get:

$$
\begin{equation*}
\bar{w}-c=\beta(E(w)-c)+\beta \int_{0}^{\bar{w}} F\left(w^{\prime}\right) d w^{\prime} \tag{6.3.5}
\end{equation*}
$$

Now we define

$$
\begin{equation*}
g(s)=\int_{0}^{s} F(p) d p \tag{6.3.6}
\end{equation*}
$$

Note that $g(0)=0, g^{\prime}(s)=\beta F(s)>0$.

Figure 6.3.3: The reservation wage, \bar{w}, that satisfies $\bar{w}-c=$ $\beta(E w-c)+\beta \int_{0}^{\bar{w}} F\left(w^{\prime}\right) d w^{\prime} \equiv \beta(E w-c)+\beta g(\bar{w})$.
We look at: $g_{1}(s), g_{2}(s)$. Since we assume that $F_{2}(s)$ is riskier than $F_{1}(s)$ then result is that, we can see (via the math preliminaries) that $g_{2}(w)>g_{1}(w)$.

Figure 6.3.3: The reservation wage, \bar{w}, that satisfies $\bar{w}-c=$ $\beta(E w-c)+\beta \int_{0}^{\bar{w}} F\left(w^{\prime}\right) d w^{\prime} \equiv \beta(E w-c)+\beta g(\bar{w})$.

We can see that the result is $\bar{w}_{2}>\bar{w}_{1}$, which means that when the distribution is riskier the player actually raises his reservation wage. This is counter intuitive, since we usually assume that a riskier distribution leads to worse results, but here this happens because: Under F_{1} the agent ignored any $w<\bar{w}_{1}$. Under F_{2}, there is a higher probability in the ends ("tails") of $[0, B]$. So now the agent has more chance of being better off, $w>\bar{w}_{1}$, and being worse off, $w<\bar{w}_{1}$. But, since he ignores the latter part anyway, he has only gained, since he can be in the first part with greater pobability. And so he raises his reservation wage to \bar{w}_{2}.

[^0]: *This set of notes was prepared by Ido Shlomo, an MA student in the course in 2014.

