
Macro Theory B

Dynamic Programming

Ofer Setty∗

The Eitan Berglas School of Economics - Tel Aviv University

March 12, 2015

1 Dynamic optimization with finite horizon

The economy has a social planner whose horizon is finite, T.

The planner’s problem is:

Max{ct,kt+1}Tt=0U(c0, c1...cT ) =
T∑
t=0

βtu(ct), 0 < β < 1,

subject to ct + kt+1 ≤ f(kt) + (1− δ)kt,

k0 given,

ct ≥ 0, t = 0, 1, ..., T,

kt+1 ≥ 0, t = 0, 1, ..., T.

We assume:

1. Time-separability of preferences - so, for example, there are no habits or durable

goods.
∗This set of notes is based on those of Zvi Hercowitz in Semester Bet 2010.

1



2. u1(c) > 0, u11 < 0, limc→∞ u1(c) = 0, limc→0 u1(c) = ∞. The latter assumption

implies that c will never be zero. Hence the non-negativity constraint for consumption

will never bind and can be omitted.

3. f1(k) > 0, f11 < 0, limk→∞ f1(k) = 0, limk→0 f1(k) = ∞. The latter assumption

implies that kt > 0, t = 1, ...T, and hence the restriction for t = 1, ..T − 1 can be omitted.

However, we still need the restriction kT+1 ≥ 0, otherwise, the planner will let kT+1 go to

−∞. We expect kT+1 to be 0.

4. There are no financial assets, only physical investment. This corresponds to a

planning problem in a closed economy.

The Lagrangian function is:

L =
T∑
t=0

βt {u(ct) + λt [f(kt) + (1− δ)kt − ct − kt+1]}+ µTβ
TkT+1,

See below for the interpretation of µT .

The first-order conditions are:

∂L

∂ct
= βt [u1(ct)− λt] = 0, t = 0, 1, ..., T, (1)

∂L

∂kt+1
= −βtλt + βt+1λt+1 [f1(kt+1) + 1− δ] = 0, t = 0, 1..., T − 1, (2)

∂L

∂kT+1
= βT (−λT + µT ) = 0. (3)

Optimality conditions formulated as Kuhn-Tucker conditions. These are a generaliza-

tion of the Lagrange multipliers method for nonlinear restrictions which may not bind.

2



The Kuhn-Tucker conditions are the conditions above plus:

λt [f(kt) + (1− δ)kt − ct − kt+1] = 0, t = 0, 1, ..., T,

λt ≥ 0, t = 0, 1, ..., T,

µTβ
TkT+1 = 0,

µT ≥ 0.

Discussion of the solution: Given that

u1(ct) > 0, t = 0, 1, ..., T,

λt > 0, t = 0, 1, ..., T

from (1). This implies two things: first, the resource constraints bind at all times, and

second, from (3), µT > 0, which in turn implies that kT+1 = 0. Using (1) and (2), and

replacing (1) into (2), the dynamic behavior is the solution to the system

0 = −u1(f(kt) + (1− δ)kt − kt+1)

+ βu1(f(kt+1) + (1− δ)kt+1 − kt+2) [f1(kt+1) + 1− δ] ,

for t = 0, 1, ..., T − 1,

k0 = given,

0 = βTµTkT+1

The first is called the “Euler Equation,”the second is the initial condition, and the third

is the “transversality”condition, or final condition.

3



Interpretation of µT : In general the constraint would be:

kT+1 − χ ≥ 0, χ ≥ 0.

Hence, µT represents the marginal utility of lowering χ. I.e., how much we lose if we are

required to leave some capital behind.

The system is a second-order difference equation in k. These are T + 2 equations

with T + 2 unknowns: k0, k1, ...kT+1. The two equations for the initial and the terminal

conditions directly solve for 2 of the unknowns, remaining the T Euler equations with T

unknowns.

Interpretation of the Euler equation:

u1(ct) = βu1(ct+1) [f1(kt+1) + 1− δ] .

Marginal utility cost of investment– in terms of forgone utility from consumption– equals

discounted value of the physical return next period translated in utility terms.

2 Dynamic optimization with infinite horizon

The main reason for considering the infinite horizon is intergenerational altruism: parents

care about their children, and know that they will care about their children, and so on.

Max{ct,kt+1}∞t=0 =
∞∑
t=0

βtu(ct), 0 < β < 1,

subject to ct + kt+1 ≤ f(kt) + (1− δ)kt,

k0 given,

lim
T→∞

βTu1(cT )kT = 0.

4



The last equation is the “transversality condition”; a counterpart to the final condition

in the finite-horizon case. In that case the final condition was βTu1 (cT ) kT+1 = 0.

The solution to the problem is the decision rule

kt+1 = g (kt) ,

An optimal decision rule is a mapping of a state to decisions that maximizes some function.

I.e., the optimal choice for any possible value of the state.

We need to compute g(·) which solves the optimization problem.

The Euler equation, as seen previously, is

−u1 (f (k) + (1− δ)k − k′) + βu1 (f (k
′) + (1− δ)k′ − k′′) (f1 (k′) + (1− δ)) = 0.

A prime indicates one period ahead, and a double prime two periods ahead.

As mentioned earlier, this is a second order non-linear difference equation in k. Because

of the infinite number of periods, the solution method used previously, solution of a set

of equations with an equal number of unknowns, is not applicable now. Here, we solve

the problem using a Dynamic Programming procedure.

2.1 The Bellman equation

Solution of the problem (decision rule):

k′ = g (k) .

Infinite-horizon Dynamic Programming logic:

First, because of the infinite horizon, the planning horizon is constant over time, and

5



hence the decision rule is also constant over time. In particular, the decision rule this

period is the same as the decision rule next period.

Second. The feature above turns the dynamic problem– where the current decision

depends on the future decision– into a functional equation in one functional unknown.

Define the “value”function V (·) as the solution to our problem given the initial con-

dition:

V (k0) =Max

∞∑
t=0

βtu(f(kt) + (1− δ)kt − kt+1).

The Bellman (Richard E.Bellman (1920—1984)) functional equation is

V (k) =Maxk′ [u(f (k) + (1− δ)k − k′) + βV (k′)] . (4)

V (k) is the solution to this equation. The first-order condition is:

− u1(f (k) + (1− δ)k − k′) + βV1(k
′) = 0. (5)

This equation is implicitly k′ = g (k) . If we knew the function V we could solve for g.

The only problem is that we’ll know V only when the problem is solved.

Note that V (k0) is the value function and that V (k) =Maxk′ [u(f (k) + (1− δ)k − k′) + βV (k′)]

is the Bellman equation. Do not mix the two.

2.2 The Envelope theorem and first order conditions

Note that (5) should be identical to the original Euler equation. This can be shown as

follows:

Given (4), (the envelope theorem), V1(k) becomes

V1(k) = u1(c) [f1 (k) + (1− δ)]

6



Iterating forward and substituting into (5) yields:

−u1(c) + βu1(c
′) [f1 (k

′) + (1− δ)] = 0,

which is the Euler equation in the original form.

2.3 Solution methods

2.3.1 Value function iteration

If we have no educated guess for the functional form of the value function then we start

with any value. Under some regularity conditions a contraction mapping is guaranteed

and we will end up with the optimal value.

Practically, to solve the functional equation we conjecture a form for the function

V (k), say V 1(k), compute V 1
1 (k

′), substitute into (5)

−u1 (f (k) + (1− δ)k − k′) + βV 1
1 (k

′) = 0

This is one equation in k′. The solution:

k′ = g1 (k) .

Substitute this into the Bellman equation to get the resulting value function:

V 2(k) = u(f (k) + (1− δ)k − g1 (k)) + βV 1(g1 (k)).

If V 1 = V 2, done. Otherwise, numerical methods can be used to approximate V by

successive iterations until convergence. Note that convergence of V involves convergence

of g.

7



This example with δ = 1, f (k) = ka and u (c) = ln c can be actually solved by hand.

V (k) =Maxk′ [ln(k
a − k′) + βV (k′)] . (6)

Guess : V 1(k) = 0. In this case choose optimally k′ = 0. Then:

V (k) = ln(ka) = α ln (k) (7)

Therefore: V 2(k) = α ln (k) .

V (k) =Maxk′ [ln(k
a − k′) + βα ln (k′)] . (8)

The FOC is:

1

ka − k′ =
βα

k′

k′ = βαka − βαk′

k′ =
βα

1 + βα
ka

V 3(k) = ln(ka − k′) + βα ln (k′)

= ln(ka − βα

1 + βα
ka) + βα ln

(
βα

1 + βα
ka
)

= ln (ka) + ln

(
1− βα

1 + βα

)
+ βα ln (ka) + βα ln

(
βα

1 + βα

)
= α (1 + αβ) ln (k) + ln

(
1

1 + βα

)
+ βα ln

(
βα

1 + βα

)
(9)

Continue till:

V (k) =
α

1− αβ ln (k) +
1

1− β
αβ

1− αβ ln (αβ) +
1

1− β ln (1− αβ) (10)

8



2.3.2 Guess and verify

Since we already know the solution we will guess the functional form and find the para-

meters:

V (k) = E + F ln (k)

V (k) = Maxk′ [ln(k
a − k′) + β (E + F ln (k′))]

From the FOC:

k′ =
βFka

1 + βF

Substitute into the Bellman equation to get:

F =
α

1− βα

E =
ln (1− βα) + αβ

1−βα ln (αβ)

1− β

2.3.3 Policy function iteration (Euler equation solution)

The Euler equation can be written as

u1 (f (k) + (1− δ)k − k′) = βu1 (f (k
′) + (1− δ)k′ − g (k′)) [f1 (k′) + (1− δ)] ,

which also an implicitly k′ = g (k) . It also can be expressed as functional equation in g(.),

similarly as the Bellman equation is in V (.):

u1 (f (k) + (1− δ)k − g (k)) = βu1 (f (k
′) + (1− δ)k′ − g (k′)) [f1 (k′) + (1− δ)] .

9



Practically, we conjecture the solution g1 (k):

u1 (f (k) + (1− δ)k − k′) = βu1
(
f (k′) + (1− δ)k′ − g1 (k′)

)
[f1 (k

′) + (1− δ)]

This is one equation in k′. The solution is:

k′ = g2 (k)

If g1 = g2, done. Otherwise, numerical methods can be used to approximate g by succes-

sive iterations until convergence.

10


	Dynamic optimization with finite horizon
	Dynamic optimization with infinite horizon
	The Bellman equation
	The Envelope theorem and first order conditions
	Solution methods
	Value function iteration
	Guess and verify
	Policy function iteration (Euler equation solution)



