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S1. Crystalline Polytypes of Multilayer Graphene 

 

The term polytype refers to any of a number of forms of a crystalline substance, the arrangement of 

which differs only along one of the unit-cell dimensions. In bilayer graphene, given that the fully 

eclipsed high-symmetry AA stacking configuration is unstable, there is one polytype with two 

equivalent stacking configurations, namely AB and BA. The same logic follows for N-layered 

graphitic stacks, where only a part of the possible 2𝑁−1  high-symmetry stacking configurations 

accessible through layer sliding exhibit distinct dispersion relations. 

To count the number of distinguishable crystals and to identify the polarization properties of each 

polytype, it is instructive to classify them according to their inversion (I) (x→-x, y→-y, z→-z) and 

mirror (M) (z→-z) symmetries. If a point in space exists for which (I) results in the same structure, 

the system is non-polar. If I is broken, permanent in-plane polarization may emerge for M-symmetric 

structures. Additional out-of-plane polarization may be found if the M symmetry is also broken. 

We note that for AB/BA stacking: 

a. Polytypes with no I and no M symmetry have four equivalent stacking configurations, obtained 

from one polytype by applying I, M, or I and M operations. 
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b. Polytypes with either I or M have two degenerate stacking configurations, obtained from one 

polytype by applying the I or M operation. 

c. There are no polytypes with both I and M.  

For example, in tri-layers N=3 and there are 23-1=4 possible stacking configurations, but only two 

distinct polytypes: B (M symmetric) and R (I symmetric). In tetra layers, N=4, the B and R polytypes 

are I symmetric (and therefore each is counted twice according to the above rules), while the P 

polytype breaks both I and M and hence is counted four times. Subtracting the over-counted 

configuration degeneracies out of the total of 24-1=8 configurations, we find that there remain only 

8-1-1-3=3 unique polytypes: B, R, and P. 

We further note that if the number of layers N is even, then no polytypes are M symmetric due to the 

shift at the middle interfacial plane, and 2(N-2)/2 polytypes are I symmetric. To see this, consider fixing 

the inversion point between the eclipsed atoms of the two middle layers (see Fig. 1b,c in the main 

text) and only counting the number of stacking options above the middle plane. The stacking 

configurations below the middle plane are then fixed to conserve I. Hence, they do not add new 

configurations to the count. If the number of layers N is odd, then 2(N-3)/2 polytypes are M symmetric, 

and 2(N-3)/2 polytypes are I symmetric. To see this, consider fixing the inversion point between the two 

atoms of the middle layer and counting the number of stacking options above it only. The stacking 

configuration below is then fixed to either conserve I or conserve M and hence does not introduce 

new polytypes to the count. 

To summarize, for even/odd N: 

a.  2(N-2)/2 / 2(N-3)/2 polytypes are I symmetric (and must break M symmetry). These polytypes are not 

polar. 

b. 0 / 2(N-3)/2 polytypes break I symmetry but conserve M symmetry. These polytypes are polar in 

plane only. 

c. All remaining polytypes, the number of which is 
1

4
(2(N-1) - 2×2(N-2)/2) /  

1

4
 (2(N-1) - 2×2×2(N-3)/2), break 

both I and M symmetries and can be polar both in and out of the plane. 

Table 1 summarizes the above combinatorial count for N =2 to 20. For example, it shows that there 

are 136 distinct polytypes for ten layers and 131,328 distinct polytypes for 20 layers. As also shown 

in the Table, most of these configurations exhibit broken I and M symmetry and therefore support 

out-of-plane polarization. 
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S2. Measurements 
Details 

 

S2.1 Raman microscopy 

 

Raman measurements are performed in a commercial WITEC alpha300 Apyron confocal microscope 

equipped with a UHTS 300 mm focal length spectrometer. We use a 532 nm laser focused down to a 

spot size of ~300 nm, with a 300 lines/mm grating corresponding to a spectral range of ~3800 cm-1 

and a spectral resolution of ~ 4 cm-1. The G (~1580 cm-1) and 2D (~2700 cm-1) peaks are taken in a 

single scan (Fig. 2b). The raster scans are obtained by using a step size of 200 nm, an average power 

of ~4 mW, and integration times shorter than 1 sec to avoid laser-induced heating. 

To construct the Raman maps (Fig 2, Fig S1) we integrate the photon counts in a specific range that 

optimizes the contrast between polytypes. The filter range of the maps is shown in panel b and c next 

to it. We note that no damage or boundary wall movements are observed during the scans. 

 

 

S2.2 AFM measurements 

 

The topography and KPFM measurements are performed using two separate microscopes: (i) PARK 

Table S1 Combinatorial count of graphene polytypes 

obeying I Symmetry (no polarization), vertical M 

symmetry (in-plane polarization only), or no symmetry 

(in- and out-of-plane polarization) 
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NX-10 in ambient conditions, and (ii) PARK NX-HIVAC in a nitrogen gas environment at a pressure 

of 100 mbar. We use a PPP-EFM metal-coated tip with a mechanical resonance frequency of ~75 kHz 

and a spring constant of 3 N/m. The cantilever amplitude at the non-contact modes ranged between 

10 and 30 nm. The topography and KPFM signals are obtained separately using a two-pass 

measurement. The first pass records the topography. In the second pass, the KPFM (DC) potential is 

recorded by lifting the tip an extra 7 nm and repeating the topography profile of the first pass under 

a bias voltage of 1.5V AC: 1.5-3 kHz. The side-band KPFM mode is used to obtain a better-defined 

local potential. We have verified that the surface potentials do not depend on the tip height in the 

range of 4 to 40 nm above the surface. 

We find variations of ~ 200 mV in the average flake potential across different samples, microscopes, 

and tips. We attribute these variations to different environmental conditions, the charging of the 

substrate, and tip contaminations. Our conclusions, however, rely only on local surface potential 

differences between adjacent polytypes, which we find to be independent of all the above-mentioned 

factors.  

We further note that there is a slight potential gradient within each map (a nearly linear variation of a 

couple of mV over a 10 µm scale), which we attribute to non-local interactions with the macroscopic 

cantilever. This low-frequency variation is eliminated by standard image processing tools (Gwyddion 

software). 

While clearly detected in line cuts (Fig. 2e, Fig S1), the surface potential above each polytype is 

quantified more accurately by considering the potential of all the relevant pixels in each polytype 

region. Indeed, plotting the potential histogram of the adjacent polytypes (after masking out regions 

of local contaminations) allows us to detect the mean surface potential of a polytype to within ~1 mV. 

 

S3. Additional experimental results 

 

S3.1 Polarization measurements in adjacent polytypes 

 

In total, we identified and characterized nine different tetra-layer graphene flakes, each containing 

one or more polar polytypes. We note that only a small fraction of the exfoliated flakes, ~ 5%, include 

a polar polytype. Altogether, these nine flakes included 19 polar polytypes (ten domains pointing up 

and nine pointing down).  Within each flake the different polytypes P, R and B exhibit consistent 

surface potential differences: (VKP(P↑) - VKP(P↓))/2 = 6±1mV, VKP(R) - VKP(B)= 19±1mV, VKP(R) - 

VKP(P↑) = 5±1mV, as discussed in the main text.  

The polytypes are distinguished by filtering the Raman counts near the 2D or G peaks, as shown in 

Fig. S1; Interestingly, the region marked by a solid line frame in the figure, which is presented with 

high resolution in panel (c), contains the two oppositely polarized domains separated by a single 

domain wall. 
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Figure S1| Additional samples 

demonstrating polar domains of 

opposite polarization. a. Optical image, 

Raman map, and a surface potential map 

of a selected tetralayer flake. The Raman 

map is constructed using a filter near the 

2D peak as shown in panel (c). b/c. Zoom-

in maps on the region framed with a 

dashed/solid line in both the Raman and 

surface potential maps of (a). The zoomed-

in Raman map is constructed using a filter 

near the G or 2D peak, noted by a gray bar 

in the panels. The two domains of the polar 

polytype (blue arrows) appear in the same 

color in the Raman maps, but show distinct 

colors in the surface potential maps. The 

normalized histogram of the number of 

pixels per a given surface potential, for 

each of the polytypes, is fitted with a 

gaussian curve. Curves of opposite P 

polytypes are separated by 13  mV in both 

frames. A further potential line-cut is 

shown in (c) across the adjacent oppositely 

polarized domains.  
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S3.2 Polarization measurements as a function of doping 
In the doping-dependent measurements, we apply a gate voltage between the bottom silicon electrode 

and the graphene, as shown in Figure 2 of the main text. We estimate the charge density from the 

planar plate capacitance as 𝑛/𝑉𝑔 =
𝜖0∙𝜖𝐾

𝑒∙𝑑
= 2.3 × 1011 𝑐𝑚−2𝑉−1. In all 9 samples  we measured the 

intrinsic doping to be less than 5×1011 𝑐𝑚−2 as expected for freshly exfoliated flakes a clean SiO2 

surface, that experience no polymers nor solvents, and measured under inert conditions. This was 

confirmed by measuring the VKP gate dependence, which has an antisymmetric response around n=01, 

and the Raman shape and position of the G and 2D peak2–4. While several flakes had a 

monolayer/bilayer sections for which the asymmetric KPFM and the Ramman shift are more 

pronounced with doping allowing us accurate measurement of the intrinsic doping, for flakes with 

only thick structure we are limited to an error of Δn= ±5×1011 𝑐𝑚−2. In figure S2, for example, the 

antisymmetric KPFM signal indicates and intrinsic hole doping of 5×1011 𝑐𝑚−2. 

 

As expected, the potential atop the silicon surface changes according to the applied voltage (in the 

range of ±10 V), while above the tetra-layer graphenes, VKP changes by ±15 mV over the same Vg 

range (Figure S2). We attribute the latter potential shift observed in all polytypes to the density-

dependent Fermi energy and its impact on the work function. The polarization magnitude as a function 

of Vg and n is extracted from the potential difference between oppositely polarized domains (of 

otherwise the same material and work function). 

 

 

 
 

Figure S2| Surface potential variations as a function of gate voltage for the rhombohedral (R), Bernal 

(B), and two oppositely polarized polar domains (P) tetra-layer polytypes at room temperature. 
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S4 Theoretical modeling 

 

S4.1 DFT 

S4.1.1 Calculation of potential profiles in graphene polytypes 
 

Computational details 

The laterally integrated electrostatic potential profiles along the normal direction of three polytypes 

of four-layered graphene are shown in Fig. 3b of the main text. To obtain the profiles, we used the 

Perdew-Burke-Ernzerhof (PBE) generalized-gradient exchange-correlation density functional 

approximation5, augmented by the Grimme-D3 dispersion correction using Becke-Johnson (BJ) 

damping6, as implemented in the Vienna Ab-initio Simulation Package (VASP)7. A plane wave energy 

cutoff of 900 eV and a k-point mesh of 90 × 90 × 1 were used, with a vertical vacuum size of 5 nm 

to avoid interactions between adjacent images. The core electrons of the carbon atoms were treated 

via the projector augmented wave (PAW) approach. 

 

The polytypes have been constructed by stacking four relaxed monolayers in the B, R, and P 

configurations, and further relaxing the entire stack using the conjugated gradients algorithm with a 

force threshold of 10-3 eV/Å. Single-point electron density calculations were then performed on the 

relaxed structure using a Gaussian smearing of 25.8 meV, to enhance the convergence of the self-

consistent cycle. 

 

Consistency and convergence tests 

To evaluate the vertical polarization, a dipole moment correction was employed8. For validation 

purposes, double supercell calculations were also performed (see Fig. S3a), where the supercell 

consists of two opposing mirror images of each graphene stack with a 6 nm inter-image vacuum 

region with enhanced cutoff and vacuum settings of 1000 eV and 10 nm, respectively, was used. The 

same enhanced settings were used in Figs. S5 and S6 below. Fig. S3b shows that the dipole correction 

and double supercell methods yield nearly identical potential profiles with an overall electrostatic 

potential drop of 6.7 meV. 

 

Convergence tests of the VASP calculations (Fig. S4) indicate that our choice of parameters leads to 

electrostatic potential differences convergence to within ~0.1-0.2 meV with respect to the number of 

k-points, energy cut-off, and vacuum size. The same figure shows that even with a relatively dense 

mesh of 721 k-points the result is only converged to ~0.26 meV, namely, in this case the overall 

convergence is limited by the k-point sampling.  
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Figure S3. Potential profiles for a P polytype tetra-layered graphene stack. (a) Difference between 

the laterally averaged potential profile obtained for the four-layered graphene stack double supercell 

and that obtained from a superposition of the corresponding non-interacting monolayers. (b) 

Comparison between the potential profiles obtained using the dipole correction (blue), and the double 

supercell method (red), in the dashed-red rectangular region denoted in panel (a). The black dashed 

lines represent the vertical locations of the four layers. The origin of the horizontal axis is set to the 

bottom layer. 

 

 

 
 

 

Figure S4. VASP calculations convergence tests. Convergence tests of the binding energy (black 

curve, left vertical axes) and electrostatic potential difference across the entire structure (red curve, 

right vertical axes) for the P polytype of a four-layered graphene stack with respect to: (a) number of 

k-points along each one of the two laterally periodic directions; (b) energy cutoff, and (c) vacuum 

size. 

 

 

Charge redistribution analysis 

The origin of the observed vertical polarization can be traced back to charge redistribution in the non-

centrosymmetric polytypes. This is demonstrated in Fig. S5, where charge redistribution and potential 

difference maps for a 2d cross-sectional cut along the armchair direction ((110) surface) of three 

polytypes is presented. The variation map is obtained from the difference between the charge density 
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of the four-layered stack and the super-imposed densities of the corresponding isolated monolayers. 

The charge density difference map of the P polytype is clearly non-centrosymmetric (Fig. S5a), 

demonstrating a relatively pronounced in-plane dipolar pattern on the third layer with opposite weaker 

patterns on the first and fourth layers. Similar but centrosymmetric patterns are found for the R (Fig. 

S5b) and B (Fig. S5c) polytypes, where the dipolar structure of the former is mainly localized at the 

edge layers and that of the latter is more pronounced on the middle layers. The corresponding 

electrostatic potential differences also manifest the broken symmetry of the P polytype (Fig. S5d), 

and the centrosymmetry of R (Fig. S5e) and B (Fig. S5f) polytypes. 

 

 
Fig. S5. Charge redistribution and potential difference maps. A two-dimensional cross section 

through the (a)-(c) charge density differences (with respect to the individual monolayers) and (d)-(f) 

potential difference along the (110) crystallographic plane of the P (a, d), R (b, e) and B (c, f) four-

layered graphene polytypes. The scale-bar units for the charge density and potential difference maps 

are e/nm3 and meV, respectively. The gray spheres appearing in the upper panels represent the 

positions of the carbon atoms. 

 

Band structures of the B and R phases 

In Fig. 3 of the main text we provide the calculated band-structure of the P polytype to analyze the 

origin of the observed vertical polarization. For completeness, we present in Fig. S6 the corresponding 

band structures of the B and R polytypes calculated at the level of theory described above.  
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Fig. S6. Band structures. Calculated band structures of the (a) B, and (b) R, four-layered graphene 

polytypes. A zoom-in on the energy range near the Fermi energy is given in panels (c) and (d), 

respectively.   

 

S4.1.2 Calculation of doping dependence of polarization in P polytype graphene 

 

Doping calculations of P polytype four-layered graphene were performed using the fractional nuclear 

charge pseudoatom approach9, allowing for simulating doping densities in the experimentally 

relevant range. To this end, we use pseudopotentials (PPs) generated for atoms with fractional nuclear 

charge. These calculations were performed using the open-source plane-wave Quantum Espresso 

package10 (instead of VASP that was used to perform the calculations described in section S2), 

allowing us to construct appropriate PPs. We first generated Rappe-Rabe-Kaxiras-Joannopoulos 

(RRKJ)11 PPs using the ld1.x program10 12, while setting the nuclear charge of the carbon pseudoatom 

to 𝑍 = 6 ± |휀| , the original charge of the neutral element plus a small fractional charge |휀| . The 

valence electronic charge was changed accordingly to maintain neutrality of the unit-cell, with an 

electron configuration given by [He]2𝑠22𝑝2±𝜀 . A set of PPs were generated by setting 휀 =

10−9, 10−8, … , 10−4  for all C atoms in the system, corresponding to doping densities of Δ𝑛2D =

1.5 × 107, 1.5 × 108, … , 1.5 × 1012 cm−2, respectively. 

 

Single point calculations were performed using the generated PPs to obtain the electron density and 

the corresponding electrostatic potential profiles. To this end, we employed the PBE generalized-

gradient density functional approximation5 and the Grimme-D3 dispersion correction with BJ 

damping6, as implemented in Quantum Espresso. A plane wave energy cutoff of 55 Ry was used with 

a k-mesh of 90 × 90 × 1, and a vertical vacuum size of 4 nm was set to avoid interactions between 

adjacent bilayer images. Fermi-Dirac smearing with an effective temperature of ~300 K was used to 
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enhance the convergence of the self-consistent cycle. To obtain converged electrostatic potential 

profiles, a dipole correction was used8. Similar to section S4.1.1, we also compared the results against 

calculations using a double supercell, confirming the consistency of our results (see Fig. S7). As 

above, enhanced settings of 60 Ry cutoff and 10 nm vacuum were used here and in Figs. S9-S10 

below. 
 

As in the procedure discussed in section S4.1.1, undoped P polytype graphene was first constructed 

and optimized using the Quantum Espresso package, yielding an electrostatic potential drop of 5.4 

meV. This value is somewhat smaller than the value of 6.7 meV obtained using VASP (see section 

S4.1.1), likely reflecting the different pseudopotentials used and other differences in numerical 

settings. Note, however, that the difference is of the order of 1 meV, which would normally have been 

considered as very small and only somewhat stands out because the overall dipole is small.  

 
Figure S7. Quantum Espresso potential profiles for a P polytype tetra-layered graphene stack. 

(a) Difference between the laterally averaged potential profile obtained for the four-layered graphene 

stack double supercell and that obtained from a superposition of the corresponding non-interacting 

monolayers. (b) Comparison between the potential profiles obtained using the dipole correction (blue), 

and the double supercell method(red), in the dashed-red rectangular region denoted in panel (a). The 

black dashed lines represent the vertical locations of the four layers. The origin of the horizontal axis 

is set to the bottom layer. 

 

 
Figure S8. Quantum Espresso calculations convergence tests. Convergence tests of the binding 

energy (black curve, left vertical axes) and electrostatic potential difference (red curve, right vertical 

axes) for the P polytype of a four-layered graphene stack with respect to: (a) number of k-points along 

each one of the two laterally periodic directions ; (b) energy cutoff, and (c) vacuum size. 
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Convergence tests of the Quantum Espresso calculations (Fig. S8) indicate that overall convergence 

to within ~0.2 meV is obtained also for these calculations.  

 

 
Figure S9. Effect of doping on the band structure and potential drop. (a) The band structures of 

undoped (black) and 1.5 × 1012 cm−2 n-(red) and p-(blue) doped P polytype graphene. The origin of 

the vertical axis is set to the topmost K-point valence band energy. (b) Potential drop as a function of 

electron (𝑛, red) and hole (𝑝, blue) doping densities, calculated using the dipole correction (solid 

curves, squares) and the double supercell (dashed curves, circles) methods. 

 

We note that the fractional nuclear charge pseudoatom doping approach11 adopted in this study 

remains valid as long as variations in the calculated band-structure, induced by the nuclear pseudo 

charging, are negligible. To confirm that our calculations satisfy this condition, we compare the band-

structures of the undoped and doped cases up to the highest doping density considered (see Fig. S9a). 

Our results clearly demonstrate merely minor deviations of the band-structures of the doped systems 

from those of the undoped counterparts. The energy difference between the topmost K and Γ valence 

band points for the doped and undoped systems (< 0.1 meV) is sufficiently small to be neglected. 

Upon doping, the polarization remains mostly unaffected up to a threshold value of ~1010 cm-2, above 

which a polarization decrease (increase) is clearly seen for n-(p-)doping (see Fig. S9b). Notably, the 

dipole correction and the double supercell approaches generate nearly identical doping induced 

polarization profiles, indicating the reliability of our results.  
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Figure S10. Doping-induced charge and potential variations. (a) Laterally averaged vertical 

potential profiles obtained at p- (solid lines) and n- (dashed lines) doping densities of 

1.5 × 1010cm−2  (red), 7.6 × 1011cm−2  (blue), and 1.5 × 1012cm−2  (yellow) after subtracting the 

superposition of potential profiles of the corresponding monolayers. (b) Doping induced variation of 

the vertical potential profiles. (c) Doping induced variations of the laterally averaged charge density.  

 

In the main text, we explore the origin of the doping induced polarization variations in terms of the 

projection of the electronic density of states on the different layers. For completeness, we discuss 

below how the corresponding potential profile variations are manifested in the charge density 

redistribution. Fig. S10a shows the laterally-averaged vertical potential profiles (after subtracting the 

potential profiles of the corresponding non-interacting monolayers) for doping densities near and 

above the threshold value, demonstrating a somewhat different response of the various layers. A 

clearer picture is obtained when subtracting the profile of the undoped system (Fig. S10b) showing a 

strong positive response of the first and third layers, a strong negative response of the fourth layer 

and a weaker negative response of the second layer. This asymmetric response is also manifested in 

the laterally averaged charge density difference profiles (Fig. S10c), demonstrating somewhat larger 

charge variations on the first and third layers, as compared to the second and fourth layers above the 

threshold doping value.  
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S4.2 Tight Binding 
 

The tight-binding model of the few-layer 

graphene is based on a single-particle  �⃗�  -

dependent tight-binding Hamiltonian with a 

unit cell comprised of two sites per layer, one 

for the A-sublattice and one for the B-sublattice 

of single-layer graphene, giving eight total sites 

for tetralayer graphene (see Fig. S11). The in-

plane carbon-carbon and inter-layer distances 

are taken as 𝑎 = 1.42 Å  and 𝑐 = 3.4 Å , 

respectively.  

We include on-site potential terms Δ , Δ′  on 

single (e.g. A2) and doubly (e.g. A3) eclipsed 

sites, respectively. Hopping parameters 𝛾0 

through 𝛾5, defined in Fig. 1d of the main text, are taken into account. An in-plane next-nearest-

neighbor hopping parameter, 𝑡′ , has also been considered. However, it does not involve inter-

sublattice mixing and was found to have a minor effect on the polarization. Thus, although it is present 

in the form of the Hamiltonian given below, practically it was set to zero. 

 

The explicit �⃗� -dependent Hamiltonian matrix for the four-layer polar configuration is given by: 

(

 
 
 
 
 
 
 
 
 

𝑡′𝑇(�⃗� ) 𝛾0𝑆(�⃗� ) 𝛾4𝑆(�⃗� ) 𝛾3𝑆
∗(�⃗� ) 0 𝛾2,𝑅 0 0

𝛾0𝑆
∗(�⃗� ) Δ + 𝑡′𝑇(�⃗� ) 𝛾1 𝛾4𝑆(�⃗� ) 0 0 0 0

𝛾4𝑆
∗(�⃗� ) 𝛾1 Δ + 𝑡′𝑇(�⃗� ) 𝛾0𝑆(�⃗� ) 𝛾4𝑆(�⃗� ) 𝛾3𝑆

∗(�⃗� ) 𝛾2,𝐵 0

𝛾3𝑆(�⃗� ) 𝛾4𝑆
∗(�⃗� ) 𝛾0𝑆

∗(�⃗� ) Δ + 𝑡′𝑇(�⃗� ) 𝛾1 𝛾4𝑆(�⃗� ) 0 𝛾5

0 0 𝛾4𝑆
∗(�⃗� ) 𝛾1 Δ′ + 𝑡′𝑇(�⃗� ) 𝛾0𝑆(�⃗� ) 𝛾4𝑆

∗(�⃗� ) 𝛾1

𝛾2,𝑅 0 𝛾3𝑆(�⃗� ) 𝛾4𝑆
∗(�⃗� ) 𝛾0𝑆

∗(�⃗� ) 𝑡′𝑇(�⃗� ) 𝛾3𝑆(�⃗� ) 𝛾4𝑆
∗(�⃗� )

0 0 𝛾2,𝐵 0 𝛾4𝑆(�⃗� ) 𝛾3𝑆
∗(�⃗� ) 𝑡′𝑇(�⃗� ) 𝛾0𝑆(�⃗� )

0 0 0 𝛾5 𝛾1 𝛾4𝑆(�⃗� ) 𝛾0𝑆
∗(�⃗� ) Δ + 𝑡′𝑇(�⃗� ))

 
 
 
 
 
 
 
 
 

, 

where 𝑆(�⃗� ) and 𝑇(�⃗� ) are given by: 

𝑆(�⃗� ) = 2𝑒𝑖𝑎
𝑘𝑥
2
 cos (

√3

2
𝑎𝑘𝑦) + 𝑒

−𝑖𝑎𝑘𝑥 

𝑇(�⃗� ) = 2 cos(√3𝑎𝑘𝑦) + 4 cos (
3

2
𝑎𝑘𝑥) cos (

√3

2
𝑎𝑘𝑦) 

 

Parameter  Δ Δ’ 𝛾0 𝛾1 𝛾2,R 𝛾2,B 𝛾3 𝛾4 𝛾5 t' 

Value (eV) -0.008 -0.016 3.16 0.39 -0.02 -0.02 0.315 0.044 0.038 0 

Table S2| Numerical values of parameters used in the tight-binding model based on Ref. 13. 

 

 

Figure S11| Layout of the tight-binding model.  
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The Hamiltonian is then diagonalized to calculate the energy and the electron distribution across the 

unit cell sites of each state. In order to calculate the overall polarization for a given chemical potential 

and temperature, the different states are populated according to a Fermi-Dirac distribution. The 

electron distribution is then numerically integrated across the entire Brillouin Zone and all bands 

(accounting for spin degeneracy) to obtain the total electron occupation of each site. The polarization 

voltage in the out-of-plane direction is extracted by weighing each site occupancy by the 

corresponding vertical position from the center of the structure, assuming point-like orbitals.  

 

 

Self-consistent treatment of the Coulomb Interaction 

In order to account for the electrostatic interactions resulting from the non-uniform distribution of 

charge, a self-consistent approach is employed. Given a total charge distribution, it is possible to 

calculate the electrostatic potential differences between the different sites of the unit-cell. These 

potential differences may then be re-inserted into the single-particle Hamiltonian as on-site potentials. 

Since only potential differences have physical meaning, the inserted on-site potentials are always 

shifted such that they sum up to zero. The modified Hamiltonian is then solved to extract an updated 

charge distribution, with corresponding electrostatic potential differences. Using a nonlinear solver, 

a self-consistent set of potentials is found. 

In general, the on-site potentials arising from the charge distribution can be expressed as 𝑉𝑖 =

∑ 𝐺𝑖𝑗𝑛𝑗𝑗 , where 𝑉𝑖 is the on-site potential at site 𝑖 = 𝐴1,⋯ , 𝐵4 (and similarly for 𝑗, see Fig. S11), 𝑛𝑖 

is the corresponding excess charge, and 𝐺𝑖𝑗 is an interaction matrix. Two different models were tested 

for the purpose of calculating the interaction matrix: A plate capacitor model and an Ewald summation 

model. Let us describe each in turn. 

 

Plate capacitor model: 

In the plate capacitor model, the overall charge of each layer, including the positive ions, is calculated 

based on the electron distribution. Each layer is treated as a uniformly charged capacitor plate of 

infinite dimensions, with a charge density equal to the total charge of a unit cell divided by its area. 

The potential differences between the different layers is then readily calculated. Explicitly, the 

interaction matrix for this model is given by: 

𝐺𝑖𝑗 = −|𝑙(𝑖) − 𝑙(𝑗)|
𝑐

2휀0𝐴
, 

where 휀0 is the permittivity of free space, 𝐴 =
3√3

2
𝑎2 is the unit-cell area, and 𝑙(𝑖) = 1,⋯ ,4 is the 

layer index of lattice site 𝑖. 

 

Ewald Summation model: 

In this approach, the two-dimensional Ewald summation approach14 is used to calculate the potentials 

in each lattice site, as generated by the net charge of all other sites in the infinite two-dimensional 

lattice, assuming point-like orbitals. The value of the cutoff parameter14 was chosen to be 𝜉 = 0.4√𝐴 , 

with 𝐴  being the unit cell area. We note, however, that different choices of this parameter had a 

negligible effect on the result. 
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Because Ewald summation is only valid when the net-charge of the unit cell is zero, any net charge 

of the distribution must be counteracted by uniformly adjusting the charge of the carbon ions such 

that the net charge is zero, as done also in the DFT calculations. We have verified that modelling the 

effect of the gate electrode by means of placing the extra charge on an external gate layer did not 

modify the results in any significant way. 

 

Because the Ewald summation does not account for self-interaction energy within a lattice site, the 

chemical hardness of carbon15 was modelled by adding a fixed value of 𝜂 = 10.0 𝑒𝑉 15 on top of the 

electrostatic potential generated by all other lattice sites. Explicitly, the interaction matrix for this 

model is then given by: 

𝐺𝑖𝑗 = 𝐺𝑖𝑗
0 + 𝜂𝛿𝑖𝑗, 

where 𝛿𝑖𝑗 is the Kronecker delta and the numerical values of 𝐺𝑖𝑗
0  are given (in units of [V/e]) by: 

(

 
 
 
 
 

−24.65 −9.02 −58.67 −58.67 −117.33 −117.33 −176.00 −176.00
−9.02 −24.65 −58.67 −58.67 −117.33 −117.33 −176.00 −176.00
−58.67 −58.67 −24.65 −9.02 −58.67 −58.67 −117.33 −117.33
−58.67 −58.67 −9.02 −24.65 −58.67 −58.67 −117.33 −117.33
−117.33 −117.33 −58.67 −58.67 −24.65 −9.02 −58.67 −58.67
−117.33 −117.33 −58.67 −58.67 −9.02 −24.65 −58.67 −58.67
−176.00 −176.00 −117.33 −117.33 −58.67 −58.67 −24.65 −9.02
−176.00 −176.00 −117.33 −117.33 −58.67 −58.67 −9.02 −24.65 )

 
 
 
 
 

. 

 

For sites in different layers the values are very similar to the corresponding plate-capacitor ones. The 

main difference between the two models is in the intra-layer interactions, as discussed further below. 

 

Results and discussion 

In Figure S12 we compare the results of the different models for introducing a self-consistent 

electrostatic potential to the TB Hamiltonian: (i) none; (ii) plate capacitor model; and (iii) Ewald 

summation. When the self-consistent potential is neglected the polarization tends to be rather large. 

The self-consistent inclusion of the interaction strongly reduces the polarization value and may even 

flip its sign. The main difference between the plate capacitor and Ewald models is in the behavior of 

the polarization of the flat bands. Those bands, inherited from the Rhombohedral bottom 3 layers, 

reside mainly at the sites A1 and B3 16. At the K point and without the self-consistent potentials, only 

the 𝛾2,𝑅 hopping amplitude is important, leading to bonding and antibonding eigenstates, the mean 

vertical position of which is close to layer 2. This behaviour holds also in the plate capacitor model. 

Only with Ewald summation, which allows for intra-layer potential difference, can the onsite 

potentials difference between A1 and B3 become sufficiently large with respect to 𝛾2,𝑅. This then 

cause the eigenstates to reside mainly at one site or the other, as in the DFT calculation, which is 

important for obtaining both the right value of the polarization at charge neutrality and its doping 

dependence. Note that the trigonal warping caused by 𝛾3,4 leads to the gap between these two bands 

nearly closing away from the K point, a feature not seen in the DFT calculations, though without 

much effect on the polarization. 

As for the low-energy Dirac bands, these are borne out of the Bernal top 3 layers. One of them mainly 

resides at site A4 and the other at an anti-bonding combination of B4 and B2 16. Their location and 
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separation are thus determined by the combined effect of 𝛾5, Δ, and the self-consistent electrostatic 

potential, and hence are quite sensitive to the parameter values. Only the Ewald model gives rise to a 

relatively symmetric bandstructure that is reminiscent of the DFT results. 

 

Figure S12| Comparison of the different models of including electrostatic interactions in the TB 

calculation. (a) Doping dependence of the polarization at room temperature. (b)-(d) near Fermi-level 

band structures, around the K point as in Fig. 3 of the main text. (b) No electrostatic interaction, (c) 

plate capacitor model, (d) Ewald summation model. 
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