
1 

 

Supplemental Material for “Shape-Dependent Friction Scaling Laws  

in Twisted Layered Material Interfaces” 

Weidong Yan,1# Xiang Gao,2# Wengen Ouyang,1,3,* Ze Liu,1,3,* Oded Hod2 and Michael Urbakh2 

1Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China 

2

School of Chemistry and The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, 

Tel Aviv 6997801, Israel 

3
State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, 

China 

 

#: These authors contribute equally to this work. 

*Corresponding authors. Email: w.g.ouyang@whu.edu.cn, ze.liu@whu.edu.cn 

 

This supporting information contains the following sections: 

1. Static friction force definition 

2. Effect of sliding direction 

3. Effect of flexibility 

4. Registry index calculations for twisted bilayer graphene 

5. Scaling transition from polygonal to circular flakes 

6. Irregular shaped flakes 

7. Additional information on the analytical model for the static friction of graphene/h-BN 

polygonal contacts 

8. A summary of scaling results  

mailto:w.g.ouyang@whu.edu.cn
mailto:ze.liu@whu.edu.cn;w.g.ouyang@whu.edu.cn


2 

 

1 Static friction force definition 

In the main text, we reported the contact size scaling of the static friction force for twisted rigid flakes 

of different shapes. Here, we show how we extract the sliding energy barriers and the corresponding 

static friction force from the sliding force traces of various flakes. In our atomistic calculation model 

(Fig. 1 in the main text), the top flake (graphene) is initially placed with its geometric center (appearing 

at the middle of its central hexagonal ring) located above one of the atoms of the underlying graphene 

or h-BN substrate. The flake is then shifted along the armchair direction of the corresponding substrate 

and the interlayer potential energy and the force acting on the flake are recorded. 

 

 

Fig. S1. The interlayer potential energy and corresponding resistive force experienced by a twisted 

square flake (of side length of 𝐿 = 14.5 nm) along the scanline. (a) Schematic of the square flake 

model, where 𝜃 and 𝛼 define the twist angle and sliding direction of the flake with respect to the 

zigzag direction of the substrate, respectively. Interlayer potential energy profiles (b, c) and the 

corresponding resistive force traces (d, e) are plotted for 𝜃 = 5°, 𝛼 = 90° (b, d) and 𝜃 = 10°, 𝛼 =

15° (c, e), respectively. Here, the resistive force is defined as the positive derivative of the potential 

energy trace along the sliding direction, corresponding to the external force required to move the slider. 

The maximal local potential energy barrier, sliding period, and the maximal resistive force are denoted 

by ΔEmax, Ts, and Fs, respectively. 

 

For example, Fig. S1a illustrates a twisted square graphene flake, of twist angle 𝜃 and side length L, 

sliding along the 𝛼 direction with respect to the zigzag axis of the substrate (𝛼 = 90° corresponds to 
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the chosen armchair sliding direction). And panels (b, c) show the atomistic calculation results of the 

interlayer potential energy as a function of sliding distance for such square flakes of side length L=14.5 

nm and twist angle and sliding direction of (b) 𝜃 = 5°, 𝛼 = 90° and (c) 𝜃 = 10°, 𝛼 = 15°. Panels (d) 

and (e) present the corresponding resistive force traces, where the static friction force (denoted by Fs) 

is defined as the maximal resistive force along the scanline period. 
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2 Effect of sliding direction 

In the main text, we have presented results for various flakes sliding along the armchair direction of 

the substrate. To verify that this does not limit the generality of our conclusions, we compare in Fig. 

S2 the size dependence of the static friction force of 5°  and 10°  twisted square graphene flakes 

sliding along the armchair direction of the substrate (𝛼 = 90°) and the 𝛼 = 15° direction. As long 

as the flake sides are not aligned with the moiré superlattice, the qualitative behavior of the size 

dependent static friction is found to be similar for both sliding directions considered, with some 

apparent quantitative differences. 

 

 

Fig. S2. Size dependence of the static friction force of square 5°  (a) and 10°  (b) twisted rigid 

graphene flakes sliding atop a fixed graphene substrate along the 𝛼 = 90° (armchair, blue) and 𝛼 =

15° (red) directions.  
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3 Effect of flexibility  

In the main text we presented atomistic calculations performed using rigid flake model systems. This 

protocol neglects elasticity effects, which may influence friction. To evaluate the importance of such 

effect at the contact dimensions considered herein we refer to Ref. (Sharp et al., 2016), where it was 

suggested that a system can be considered as rigid when its dimensions are smaller than the 

characteristic length scale for elastic dislocations 𝑏core = (𝑑 ∙ 𝐺) 𝜏max⁄  , where 𝑑  is the lattice 

constant, 𝐺 is the shear modulus, and 𝜏max is the maximum lateral shear stress experienced by an 

atom on the surface potential. To estimate 𝑏core in our case, we consider the interlayer shear modulus 

of graphene 𝐺 = ~4.5 GPa (Bosak et al., 2007; Shen et al., 2012), its lattice constant of 𝑑 = 2.46 

Å, and the shear stress of twisted bilayer graphene and twisted/aligned graphene/h-BN interfaces, 

which are of the order of 𝜏max = 0.01 -0.1  MPa (Koren et al., 2015; Song et al., 2018), yielding 

𝑏core ≈10-100 μm, which is 1-2 orders of magnitude larger than the typical dimensions considered in 

most relevant experiments. This indicates that elasticity effects are expected to kick-in only at the 

microscale and beyond. 

As further verification of the rigid flake assumption, we performed dynamic friction calculations using 

flexible contact models. To this end, we constructed a six-layer graphene/h-BN system, where a three-

layer graphene flake slides atop a three-layer h-BN substrate. The top flake layer is set to be rigid and 

moves along the armchair direction of the substrate with a constant velocity of 5 m/s. The bottom h-

BN layer is kept rigidly fixed at its initial position. The zero-temperature and zero normal load 

dynamics of the atoms in all other layers is described using the REBO (Brenner et al., 2002) and Tersoff 

(Tersoff, 1988) intralayer and registry-dependent interlayer potentials (Leven et al., 2016b; Ouyang et 

al., 2018). To remove the heat generated during sliding, viscous damping with a damping coefficient 

of 1 ps-1 is applied to the middle flake layer and the middle h-BN layer, with minor effect on the 

dynamics of the shear interface. A similar simulation protocol was previously used successfully to 

describe the frictional properties of homogeneous and heterogeneous layered material interfaces (Gao 

et al., 2021a; Gao et al., 2021b). 

First, to verify that our choice of sliding velocity provides converged results we compare in Fig. S3 

the lateral force traces experienced by a 38.3 × 38.3  nm2 graphene flake sliding on h-BN in the 

aligned configuration obtained with sliding velocities of 2 m/s and 5 m/s, as well as quasistatic 

simulation force traces representing the low velocity limit. For the latter, consecutive steps of 

displacing the top flake layer and optimizing the geometry using the FIRE algorithm (Bitzek et al., 

2006; Guénolé et al., 2020), with a force convergence criterion of 2×10-4 eV/Å, have been performed. 

The results presented in Fig. S3 demonstrate that indeed a sliding velocity of 5 m/s provides well 
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converged results. Furthermore, the static friction values extracted from the dynamical simulations 

agree well with the result obtained from the rigid shift calculation. 

  

Fig. S3. Lateral force traces for a 38.3 × 38.3 nm2 graphene flake sliding on h-BN in the aligned 

configuration obtained using the rigid flake model (red) and flexible flake models at different velocities 

(quasistatic – blue, 2 m/s black, and 5 m/s – green). The quasi-static trace corresponds to the low 

velocity limit. 

 

Comparison of the size dependence of the static friction force obtained using rigid and flexible contact 

models appears in Fig. S4 for square shaped flakes in the aligned or 1° twisted configurations. For the 

aligned configuration (Fig. S4a), the static friction obtained via the flexible model simulations agrees 

well with the rigid calculations and the model predictions both in terms of the periodic variations and 

in terms of the size scaling of the upper envelope. Some small differences are found for the local 

minima, where the flexible simulations predict higher values that grow with contact size, mainly due 

to elasticity effects at the corners and edges of the square flakes, which results in imperfect 

compensation of incomplete moiré tiles along the edges. For the 1° twist square contact (Fig. S4b), the 

oscillatory behavior of static friction as a function of contact size is somewhat altered. For squares of 

sides smaller than ~ 50 nm the static friction force obtained in this case is up to twice as large as that 

of the rigid contacts. For larger flakes, the static friction force of the two protocols become comparable, 

where both do not exhibit any notable scaling with system size up to the largest contacts considered. 

These results thus justify the usage of rigid model calculations, which are highly computationally 

efficient, to study the static friction characteristics of large-scale layered interfaces. 
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Fig. S4. Comparison of the size dependence of the static friction force obtained using rigid (red circles) 

and flexible (blue diamonds) square contact models sliding atop an h-BN substrate in (a) the aligned 

and (b) the 1° twisted configurations. Model predictions (Eqs. (A.7) and (A.11)) are shown by the 

black lines. 
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4 Registry index calculations for twisted bilayer graphene 

The registry index is a simple geometric measure to evaluate the degree of commensurability between 

interfacing lattices (Hod, 2010), which effectively reflects the interlayer sliding potential of 2D 

materials (Hod, 2012). This measure is used in the main text to demonstrate the geometric origin of 

the double-periodicity in the static friction force dependence on contact size and the asymptotic scaling 

(or lack of). 

To perform local registry index calculations (LRI) we adopted the protocol detailed in Ref. (Leven et 

al., 2016a), where the projected overlaps between circles placed around each atomic position in 

adjacent layers are averaged over the three nearest neighboring atoms to yield a local registry score. 

Since in the present study we focus on scaling laws with contact dimensions, the definition of the 

global registry index (GRI) had to be modified to account for the overall contact size as follows: 

 GRI =
𝑆(𝜃)

𝑆0(𝜃)
, (S4.1) 

where 𝑆(𝜃) = ∑ ∑ 𝑆𝑖𝑗
𝑀
𝑗=1

𝑁
𝑖=1 , 𝑆𝑖𝑗 is the projected overlap between the circles positioned around atom 

𝑖 in one layer and atom 𝑗 in its adjacent layer, and the sum runs over all 𝑁 atoms of the given layer 

and 𝑀  atoms of its adjacent layer. The twist angle dependent normalization factor, 𝑆0(𝜃) , is the 

summation of circle overlaps over the area of one moiré superlattice. This normalization procedure, 

different than previous definitions (Hod, 2010), allows the registry index to encode also the size-

scaling of the static friction force. 

Fig. S5 compares the interlayer potential (Ouyang et al., 2018) variation (black curve) of a 5° twisted 

square graphene flake of side length 1 nm rigidly sliding atop a fixed graphene surface and the 

corresponding GRI profile (red curve), showing good agreement between the two approaches. 

 

Fig. S5. Comparison between the interlayer potential variation (black curve) of a 5° twisted square 

graphene flake of side length of 1 nm, rigidly sliding atop a fixed graphene surface, and the 

corresponding GRI profile (red curve). 
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This demonstrates the intimate relation between the interlayer registry and the sliding potential energy 

landscape and allows for efficient evaluation of the interlayer energy for large interfaces. Fig. S6 

compares the size dependence of the sliding energy barrier obtained using atomistic calculations (black 

dashed lines) and the GRI approach (red circles), respectively, for different flake shapes and twist 

angles. In all cases considered, good agreement is obtained between the two approaches indicating the 

geometric origin of the double-periodic dependence of the static friction force on contact size and the 

asymptotic scaling (or lack of). 

 

 

Fig. S6. Size dependence of the sliding potential energy barrier (black dashed lines) and the 

corresponding variations of the global registry index corrugation (ΔGRI, red circles) of graphene flakes 

of various shapes, rigidly sliding atop a fixed graphene surface with different twist angles. On the 

horizontal axes 𝐿 is the side length (or circle radius) and 𝑎𝑚 is the moiré superlattice period. 
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5 Scaling transition from polygonal to circular flakes 

In the main text we have demonstrated that circular and polygonal flakes exhibit different scaling laws 

of the static friction with flake dimensions. Since a circular flake can be described as a polygonal flake 

in the limit of infinite number of sides, one would expect to obtain a smooth transition between the 

circular and polygonal flake scaling laws. To demonstrate this, we performed additional calculations 

for polygonal flakes with 12 and 50 sides twisted by 5° from the underlying lattice. For clarity, we plot 

the static friction force as a function of √𝐴 (rather than 𝐿), where 𝐴 is the surface area of the flake. 

As shown in Fig. S7, the long periodicity (√𝐴𝑙)  of the static friction grows with increasing side 

number as √𝐴𝑙 = √
𝑁

tan(𝜋 𝑁⁄ )

𝑎𝐿

2
≈

𝑁𝑎𝐿

2√𝜋
 , approaching infinity at the circular limit (𝑁 → ∞) . This is 

manifested by the fact that the envelope of the N = 50 curve (blue) matches the curve of the circular 

flake (magenta). 

 

 

Fig. S7. Static friction scaling with the square root of the contact area for polygons of different number 

of sides 𝑁 = 6 (black), 12 (green), and 50 (blue). The full lines mark the envelopes of the numerical 

solutions (dashed lines) obtained by numerical solution of the model presented in the main text. The 

analytical result obtained for the circular flake is presented in magenta. 
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6 Irregular shaped flakes 

In the main text, the static friction forces of perfect polygonal or circular graphene flakes sliding atop 

a graphene or h-BN substrate are presented. These are rationalized by the compensation of incomplete 

moiré tiles along the flake sides. Questions arise whether the long-periodicity and absence of scaling 

with flake size associated with this effect prevail also in irregular shaped flakes, where efficient edge 

compensation of incomplete moiré tiles is jeopardized. 

To answer these questions, we calculated the static friction force for four irregular-shaped 5° twisted 

rigid graphene flakes sliding on a fixed graphene substrate (see inset of Fig. S8 for the shape 

illustrations). Fig. S8 shows the static friction force dependence on contact size, demonstrating that 

the longer-period oscillations are manifested also for irregular shaped flakes that encompass either 

straight edges (Fig. S8a and c) or curved edges, the curvature of which does not vary with flake size 

(Fig. S8d). For the oval shaped flake (Fig. S8b) the double periodicity is much less pronounced, due 

to the variation of edge curvature with flake size, reminiscent of the case of circular flakes. Due to the 

less effective moiré tile compensation in curved flake sides, asymptotic increase of static friction with 

contact dimensions occurs when the edge curvature varies with flake size (see Fig. S8b and c), where 

a scaling exponent of ¼, similar to that observed for circular flakes, is found. We note that when the 

edge curvature approaches atomic spacing, the agreement between the continuum model and atomistic 

calculations results reduces (see Fig. S8e). 
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Fig. S8. Static friction force as a function of contact size for four irregular shaped rigid graphene flakes 

(see insets) sliding atop a fixed graphene substrate. Red circles and black dashed-lines represent 

atomistic calculation results and theoretical predictions, respectively. 𝐿 , 𝐼0  and 𝑇0  are defined as 

depicted in the panel insets. 

 

Another type of flakes, interpolating between equilateral square and circular flakes, are round-edged 

square flakes (see Fig. S9). In terms of edges, which are responsible for the complex frictional behavior 

discussed herein, these structures possess a combination of equilateral polygonal edges and perfect 

circular segments. The straight edges do not contribute to frictional scaling with edge size, due to the 

moiré tiles compensation effect. The circular sections, on the other hand, are expected to contribute to 

the scaling with an exponent of ¼. Nonetheless, since the four circular segments are shifted with 

respect to each other along the moiré superstructure, their contributions are not in phase, as in the case 

of a perfect circular flake so that the envelope behavior is less regular. 
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Fig. S9. Static friction force as a function of contact size for four rigid rounded-edged square graphene 

flakes. The circular fractions 𝛽 = 2𝑅0/𝐿 (see panel c) are (a) 0, (b) 0.25, (c) 0.75, and (d) 1, and the 

twist angle is chosen to be 𝜃 = 10°.  
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7 Additional information on the analytical model for the static friction 

of graphene/h-BN polygonal contacts 

The equations derived in the Appendix of the main text for the force experienced by generally twisted 

rigid polygonal graphene flakes as they slide atop a fixed h-BN surface have been used to derive 

simplified expressions for the case of aligned (𝜃 = 0°) polygonal interfaces. This corresponds to the 

situation where the moiré superstructure is aligned with the side of the flake. The various angles 

appearing in the corresponding static friction expressions of graphene/h-BN polygonal contacts and 

the corresponding reference frames are shown in Fig. S10. 

 

 

Fig. S10. Illustration of the moiré (𝑥, 𝑦) and flake (𝑥’, 𝑦’) reference frames plotted atop the potential 

energy density function (Eq. (4)) of a 𝜃 = 1° twisted square graphene flake sliding atop an h-BN 

surface. The reference frames are rotated with respect to each other by an angle of 𝜃1 = 𝜓 − 𝜃 =

43.9°. 

 

In fact, generally speaking, for polygonal shaped flakes with sides aligned with moiré superlattice 

directions, the static friction predicted by our model shows linear asymptotic scaling with the side 

length. The only exception we found is for square flakes sliding along the zigzag direction of the h-

BN substrate, where no asymptotic growth is obtained and the static friction force reads as follows: 

 𝐹s,sqr(𝐿) =
8√3𝑎𝑚

2 𝑈0

9𝜋𝑎sub
|sin (

𝜋𝐿

√3𝑎𝑚
) sin (

𝜋𝐿

𝑎𝑚
)|. (7.1) 

We note that for twisted heterojunctions, such as graphene/h-BN, due to the inherent lattice vectors 
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obtain Eqs. (A.8) and (A.9) break already at very small twist angles (~1°) and one has to resort to 

the full expression of Eq. (A.7) of the Appendix of the main text to describe the size scaling of the 

static friction (see Fig. S11). 

 

Fig. S11. Static friction force dependence on contact size for a 1° twisted square graphene flake rigidly 

sliding along the armchair direction of a fixed h-BN substrate. The blue line represents results obtained 

using the full expression of Eq. (A.7) and the red line shows the approximate results of Eq. (A.8).  



16 

 

8 A summary of scaling results 

The following table summarizes the various scaling laws predicted for different flake shapes. 

Table S1. Static friction scaling laws (Aγ) with respect to contact dimensions for different flake shapes 

Flake shape Potential energy surface Scaling exponent 

Circle 

 

𝛾 = 0.25 

Hexagon 

 

𝛾 = 0 (𝜃1 ≠ 0) 

𝛾 = 0.5 (𝜃1 = 0) (Koren et al., 

2016) 

Square 

 

𝛾 = 0 (𝜃1 ≠ 0) 

𝛾 = 0.5 (𝜃1 = 0) 

 

Triangle 

 

𝛾 = 0 (𝜃1 ≠ 0) 

𝛾 = 0.5 (𝜃1 = 0) 
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Irregular pentagon 

 

𝛾 = 0 (𝜃1 ≠ 0) 

𝛾 = 0.5 (𝜃1 = 0) 

Round-edged square 

 

𝛾 = 0.25 

Ellipse 

 

𝛾 = 0.25 

Window-shaped 

 

𝛾 = 0.25 

Square with sinusoidal edges 

of fixed period and amplitude 

 

𝛾 = 0 
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