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ABSTRACT

We present a systematic density functional theory study of the electronic properties, optical spectra, and relative thermodynamic stability of
semiconducting graphene nanoribbons. We consider ribbons with different edge nature including bare and hydrogen-terminated ribbons,
several crystallographic orientations, and widths up to 3 nm. Our results can be extrapolated to wider ribbons providing a qualitative way of
determining the electronic properties of ribbons with widths of practical significance. We predict that in order to produce materials with band
gaps similar to Ge or InN, the width of the ribbons must be between 2 and 3 nm. If larger bang gap ribbons are needed (like Si, InP, or GaAs),
their width must be reduced to 1 −2 nm. According to the extrapolated inverse power law obtained in this work, armchair carbon nanoribbons
of widths larger than 8 nm will present a maximum band gap of 0.3 eV, while for ribbons with a width of 80 nm the maximum possible band
gap is 0.05 eV. For chiral nanoribbons the band gap oscillations rapidly vanish as a function of the chiral angle indicating that a careful design
of their crystallographic nature is an essential ingredient for controlling their electronic properties. Optical excitations show important diff erences
between ribbons with and without hydrogen termination and are found to be sensitive to the carbon nanoribbon width. This should provide
a practical way of revealing information on their size and the nature of their edges.

Low-dimensional carbon structures have been the focus of
extensive research since the discovery of fullerenes1 and
carbon nanotubes2 (CNTs). These novel forms of carbon
present unique opportunities to study low-dimensional physi-
cal phenomena. The peculiar electronic properties of carbon
nanotubes arise from the characteristic band structure of
graphene (a single infinite sheet of graphite). Depending on
their chirality and diameter, CNTs present either a semicon-
ducting or metallic character.3 Due to their special electronic
and structural properties, such systems are considered as
promising candidates to build new technologies with ap-
plications ranging from nanoelectronics, nanosensors, pho-
tonic and nanomechanical devices to active material encap-
sulation, drug delivery, and surface functionalization, among
others.4

Recently, a related type of carbon based quasi-one-
dimensional systems, referred to as carbon nanoribbons
(CNRs), has been synthesized experimentally.5 Their syn-
thesis was followed by experimental evidence of coherent
electron transport on large length scales measured at
relatively high temperatures.6 These findings open exciting
opportunities for the design of novel electronic devices and
interconnects.

CNRs are basically elongated stripes of single layered
graphene with a finite width. Due to their structural resem-
blance to carbon nanotubes and to the quantum confinement
effect, CNRs are expected to present electronic properties
similar to those of CNTs. Nevertheless, recent experimental
progress5 indicates that CNRs can be produced in a highly

controllable manner offering the opportunity to take advan-
tage of the unique and well-understood electronic properties
of CNTs while circumventing their growth control problems
which have been one of the major obstacles toward their
wide commercial use.

Theoretical studies mainly based on tight-binding ap-
proximations have shown remarkable similitude between
nanoribbons and single-walled carbon nanotubes (SWNTs).7-10

Graphene nanoribbons can also be either metallic or semi-
conducting depending on the crystallographic direction of
the ribbon axis. Similar to armchair nanotubes, it has been
predicted that ribbons with zigzag edges are all metallic7 and
may present interesting magnetic properties.11,12 Band gap
oscillations have also been predicted for semiconducting
narrow armchair ribbons as a function of their width.13 These
oscillations introduce the possibility of tailoring their elec-
tronic structure.

A deep understanding of the physical parameters governing
the electronic structure and thermodynamic stability of CNRs
is necessary before considering them as building blocks in
the design of future nanodevices. Since the main difference
(apart from the strain energy) between CNTs and CNRs is
the existence of sharp edges in CNRs, the majority of the
current literature focuses on the edge effects on the electronic
and magnetic properties of CNRs.7-10 Furthermore, most of
these studies are based on tight-binding approximations
which are known to give qualitatively good results for the
electronic structure of CNTs but fail to quantitatively
reproduce experimental results.
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Some fundamental questions regarding several important
aspects of CNR systems remain open. These include the
ability to control the electronic structure of CNRs with
realistic widths (∼80 nm), the band gap dependence on the
crystallographic orientation of the CNR axis, the electronic
structure dependence on the nature of the edge passivation,
among other important issues such as the effect of structural
defects on the electronic and thermodynamic properties of
CNRs.

It is the purpose of the current study to offer an answer to
some of these questions by presenting a detailed analysis of
the electronic structure and thermodynamic stability of
semiconducting CNRs using density functional theory (DFT).
First, we systematically study the band gap dependence on
the width of CNRs, discussing the possibility of tailoring
their electronic properties. This is followed by a prediction
of some unique features in their optical spectra which may
be utilized as a characterization tool. A qualitative estimation
of the relative stability of free-standing CNRs with different
edge nature is given thereafter.

The CNRs considered in the present study are obtained
by “unfolding” infinite periodic CNTs and cutting (or
extending) the resulting sheet to the desired width, while
eliminating dangling bonds. We follow the notation used in
the literature in which a zigzag CNT unfolds into an armchair
CNR (i.e., a CNR with armchair edges). In Figure 1 we
present a set of typical hydrogen-terminated CNRs obtained
by unfolding CNTs of different chiralities. Two numbers are
assigned to each CNR, the chiral angleφ and the widthL.
The chiral angle is related to the corresponding CNT indices,
(n,m), via tan (φ) ) (31/2m/(2n + m)) and represents the
crystallographic direction of the axis of the CNR. To
calculate the width, the positions of all carbon atoms are
projected onto a line perpendicular to the CNR axis. The
width is taken as the maximum distance between any two
carbon atoms along this line.

Calculations reported in this paper have been carried out
using the development version of theGaussiansuite of

programs.14,15 Bloch functions are expanded in terms of
atomic Gaussian-type orbitals, and the Khon-Sham (KS)
equations are solved self-consistently in that basis set. The
optimized geometries and the electronic structure of each
ribbon have been obtained using the 6-31G* Gaussian basis
set16 and two different functionals, the PBE realization of
the generalized gradient approximation17,18and the screened
exchange hybrid density functional, HSE.19,20 The latter
functional has been tested in a wide set of materials and was
shown to accurately reproduce experimental band gaps.21,22

Furthermore, HSE has also proven to deliver accurate first
and second optical excitation energies in metallic and
semiconducting SWNTs.23,24

We start by studying the electronic properties of armchair
(φ ) 0°) CNRs. In Figure 2 we present our results for the
band gap dependence on the width of bare-edged (left panel)
and hydrogen-terminated (right panel) armchair CNRs as
calculated using the PBE and HSE functionals. Even though
a quantitative difference exists, as expected, between the band
gaps calculated by the two functionals, qualitatively, both
predict similar band gap oscillations as a function of the
CNR’s width. We find that hydrogen termination enhances
the amplitude of the band gap oscillations for narrow ribbons
(L < 1.5 nm) and that this enhancement vanishes for larger
widths. Similar band gap oscillations were previously
predicted using tight binding calculations.13 Nevertheless, a
major difference is identified. While in the tight-binding
calculations, at certain widths, armchair CNRs appear to
become metallic, similar to themod(3) rule4 for zigzag CNTs,
our DFT calculations predict all armchair CNRs studied to
be semiconducting.

The periodicity of 3 obtained for the band gap oscillations
as a function of the width of the system can be related to
the electronic properties of the corresponding CNT sys-
tems.13,25 A simple picture may rationalize the results as
follows. Consider the direction perpendicular to the periodic
axis of an armchair nanoribbon. One can imagine the addition
of oneC2 unit, defined in ref 7 as adding a single site to a

Figure 1. A representative set of semiconducting hydrogen-terminated CNRs, created by “unfolding” and “cutting” different types of
CNTs. (a) A CNR with a chiral angle ofφ ) 23.4° created by unfolding and cutting a (6,4) CNT. (b) A CNR with a chiral angle ofφ )
13.9° created by unfolding and cutting a (6,2) CNT. (c) A CNR with a chiral angle ofφ ) 8.9° created by unfolding and cutting a (20,4)
CNT. (d) A CNR with a chiral angle ofφ ) 4.7° created by unfolding and cutting a (10,1) CNT. (e) An armchair CNR (φ ) 0°) created
by unfolding and cutting a zigzag CNT.
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zigzag chain of carbon atoms in that direction. Since the
π system of the ribbon is composed of a contribution of a
single Pz electron from each atomic site, the Fermi wave-
length along this chain is approximately four atomic sites.
Therefore, the addition of three sites to such a chain
will add a full wavelength and result in a 3-fold periodic
pattern.

For the range of widths covered by our DFT calculations
(L < 3 nm) we do not observe a significant quenching of
the energy gap oscillations. However, CNRs are expected
to reach the graphene limit of zero band gap for sufficiently
large widths. Therefore, the question arises of how these
oscillations behave for widths larger than 3 nm. To study
this, we note that the armchair CNRs band gaps presented
in Figure 2 can be separated into three groups, namely, the
points forming the envelope of the maxima of the oscilla-
tions, those forming the envelope of the minima of the
oscillations, and the remaining intermediate points. It is
possible now to extrapolate the behavior of each of these
subgroups to larger widths. In Figure 3 such an extrapolation

is presented using an inverse power law with two fitting
parameters. This simple rule presents the correct asymptotic
behavior and provides qualitative information of the elec-
tronic structure of ribbons beyond the range of widths studied
by our first-principles calculations. Some points are worth
noting. The same type of inverse power law fits well all the
six different sets of data, including bare and H-terminated
CNRs. However, an important difference arises between
passivated and nonpassivated CNRs. While for the bare
CNRs (left panel of Figure 3) the intermediate set lies very
close to the lower envelope of the oscillations, the case for
the hydrogen-terminated CNRs (right panel of the figure) is
the opposite, and the intermediate set is found closer to the
upper envelope. This implies that if one considers CNRs of
width L ) 8 nm, for instance, produced in ultrahigh vacuum
(therefore having bare edges), we expect∼67% of them to
present a band gap of about 0.1 eV and∼33% a band gap
of 0.3 eV. For H-terminated ribbons,∼67% will present an
energy gap of 0.2 eV while∼33% of them will have a band
gap close to zero. If we consider ribbons ten times wider (L

Figure 2. Dependence of the band gap on the ribbon width for bare (left panel) and hydrogen-terminated (right panel) armchair CNRs.

Figure 3. Extrapolation of the envelope of the HSE/6-31G* band gap oscillation to large CNRs width for bare (left panel) and hydrogen-
terminated (right panel) CNRs. The inverse power law used for the extrapolation has two parametersa andb according toEg(L) ) aL-b.
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) 80 nm), the band gap is predicted to be smaller than 0.05
eV for both bare and hydrogen-terminated CNRs. Therefore,
to be able to obtain a CNR with a band gap comparable to
that of Ge (0.67 eV) or InN (0.7 eV), it will be necessary to
go to the range of 2< L < 3 nm. If a larger bang gap
material is needed (like Si (1.14 eV), InP (1.34 eV), or GaAs
(1.43 eV)), the width of the CNR must be reduced to as low
as 1-2 nm.

Another parameter that may help to control the electronic
properties of CNRs is the crystallographic direction of their
main axis. This has an equivalent rule as that of the chiral
angle in CNTs and is expected to be important in CNRs
electronic structure design. As a result of the complicated
nature of the edges formed when unrolling a chiral CNT
and due to the sensitivity of the electronic structure of CNRs
on the nature of the edges, this effect is expected to have
emphasized importance in the case of CNRs. In Figure 4
we present a plot of the band gap as a function of the width
of different chiral hydrogen-terminated CNRs. It is evident
that there is a progressive decrease of the amplitude of the
band gap oscillations as the chiral angle increases. This
finding is in accordance to the fact that at the limit ofφ )
30° (zigzag ribbons) all CNRs are predicted to be metallic.7

What is most surprising is that for a chiral angle as low as
φ ∼ 9° the band gap oscillations almost completely vanish.
This trend implies that in order to have control on the band
gap of the ribbons, it is necessary to control not only their
width but also their chiral angle. It is interesting to note that
the band gap minima do not occur at the same width for
different ribbon chiralities. This is in contrast to the band
gap commensuration with respect to different ribbon types
obtained by Ezawa.13

The predicted band gap oscillations and their strong
dependence on the edge nature and on the crystallographic

orientation of the CNR axis suggest that, similar to CNTs,26-29

optical spectra can be proven as a powerful characterization
tool for CNRs. We have thus calculated the optical spectra
of armchair CNRs employing the first-order noniterative
random phase approximation expression for the imaginary
part of the dielectric functionε.30

Here,ω is the excitation photon energy,p ) -ip∇ is the
linear momentum operator,ψo

k and ψu
k stand for occu-

pied and unoccupied Bloch orbitals with energiesεo
k and

εu
k, respectively, andk stands for the reciprocal space

vector.
In Figure 5 the first (E11) and second (E22) optical

excitation energies for armchair CNRs calculated at the
HSE/6-31G* level of theory are presented. As expected, we
observe that the first excitation energy,E11, presents oscil-
lations that correspond to the band gap oscillations dis-
cussed above. More surprising is the fact that the second
excitation energy,E22, presents width-dependent oscillations
as well.

An interesting point to notice is the fact that for ribbons
with hydrogen termination (right panel of Figure 5) there is
a phase shift ofπ between the oscillation of the first and
second optical transition energies such that the local maxima
of E11 coincide with the local minima ofE22 for the whole
range of widths studied. This is expected to give rise to a
doublet in the optical spectrum. A similar doublet is expected
to appear for bare CNRs withL < 1.2 nm (see the left panel
of the figure). Nevertheless, for larger widths, the band gap
oscillations of the first and second optical transition energies
of bare ribbons are in phase and the doublet is expected to
disappear.

The predicted optical spectra for three CNRs with con-
secutive widths corresponding to one period of the band gap
oscillations are presented in Figure 6. A doublet clearly
appears in the upper panel of the figure which corresponds
to the local maximum ofE11 (minimum of E22) for this
period. This holds true for both bare and hydrogen-terminated
CNRs.

It is interesting to further note that for the consecutive
CNRs series presented in Figure 6 the passivation pro-
duces a red shift of theE11 peak for a CNR width of
L ) 0.86 nm (lower panel of Figure 6) and a blue shift of
this peak at a width ofL ) 0.96 nm (middle panel of the
figure). In the upper panel one can see that the lower peak
of the doublet red shifts while the higher peak blue shifts,
causing a peak separation upon hydrogen passivation. It is
suggested that both the appearance of the doublet in the
optical spectra and the peak shifts upon passivation may
provide a means for experimentally determining the edge
nature of CNRs.

Up to now we have considered the effect of the edge nature
and the crystallographic construction of CNRs on their
electronic structure. Another important aspect is the influence

Figure 4. Dependence of the band gap on the width of hydrogen
passivated chiral CNRs. The different panels correspond to the
different CNRs presented in Figure 1.

Im(ε) )
1

ω2
∑

k
∑
o,u

|(ψo
k|p|ψu

k)|2δ(εo
k - εu

k - ω) (1)
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of the edge nature on the thermodynamic stability of such
systems. It is intuitively expected that upon “unfolding” a
CNT, the loss of the chemical bonds experienced by the
edges of the obtained CNR will cause it to be less
thermodynamically stable than the corresponding CNT.
Passivating the bare edges with proper termination groups
will stabilize the structure. To quantify these conjectures it
is necessary to evaluate the relative stability of CNRs with
and without edge passivation. As these ribbons have different
chemical compositions, the cohesive energy per atom does
not provide a suitable way to compare their relative stability.
Therefore, we adopt the approach customary used in binary
phase thermodynamics to account for chemical composition
and utilized previously to analyze the relative stability of
endohedral silicon nanowires.31 Within this approach one

defines a molar Gibbs free energy of formationδG for a
CNR as

where-E(x) is the cohesive energy per atom of the CNR,
xH is the molar fraction of hydrogen atoms, andµH andµC

are the chemical potentials of the constituents at a given state.
We chooseµH as the binding energy per atom of the H2

molecule andµC as the cohesive energy per atom of a single
graphene sheet. This definition allows for a direct energy
comparison between passivated and nonpassivated nanorib-
bons with different compositions.

In Figure 7 we present a plot of the relative stability of
different hydrocarbon systems as a function of the hydrogen
molar fraction. According to the definition given in eq 2,
stable structures with respect to the constituents present a
negative value ofδG while metastable structures present a
positive δG value. For bare armchair CNRs the relative
stability comparison is straightforward; the wider the ribbon
is, the more stable it becomes (lower cohesive energy)
approaching the calculated graphene limit of-7.70 eV, as
can be seen in the inset of the figure. For comparison
purposes we included the relative stability of a pristine5,5

SWNT which despite the considerable strain energy is still
more stable (Ec ) -7.51 eV) than any of the nonpassivated
armchair CNRs studied here. The situation changes upon
H-termination. As described above, the highly reactive edges
of the CNRs stabilize by chemically absorbing hydrogen
atoms, lowering their free energy. A striking feature is
evident where all hydrogen-passivated CNRs studied (arm-
chair and chirals) present Gibbs free energies lower than 0.05
eV. This indicates a thermodynamic stability higher than that
of nonpassivated CNRs and comparable to that of a graphene
sheet. The crystallographic direction of the ribbon axis has
little influence on their relative stability; in other words, chiral
and armchair-passivated CNRs are predicted to be equally
stable in our analysis. It should be noted that the relative

Figure 5. Dependence of the first (E11) and second (E22) optical transition energies on the width of bare (left panel) and hydrogen-
terminated (right panel) CNRs, obtained using eq 1, at the HSE/6-31G* level of theory.

Figure 6. Optical spectra of nanoribbons with three different widths
calculated at the HSE/6-31G* level of theory. Both bare (solid line)
and hydrogen-terminated (dashed-dotted line) predicted spectra are
presented.

δG(x) ) E(x) + xHµH + (1 - xH)µC (2)
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stability considerations we are presenting here are mainly
qualitative and that we are neglecting thermal effects, zero
point energy corrections, and substrate effects.

In summary, we have presented a detailed DFT analysis
of the electronic properties and relative stabilities of several
types of semiconducting carbon nanoribbons with and
without hydrogen termination and widths up to 3 nm. These
results can be extrapolated to wider ribbons providing a
qualitative way of determining the electronic properties of
ribbons with widths of practical significance. In order to
produce an armchair CNR with a band gap similar to that
of Ge or InN, we predict that its width should be between 2
and 3 nm. If a larger band gap material is needed, with a
gap comparable to that of to Si, InP, or GaAs, for example,
our calculations indicate that the width should be reduced
to as low as 1-2 nm. According to the extrapolated inverse
power law obtained in this work, CNRs with widths larger
than 8 nm will present a maximum band gap of 0.3 eV while
for ribbons withL ) 80 nm the maximum possible band
gap is 0.05 eV. For chiral CNRs, the band gap oscillations
rapidly vanish as a function of the chiral angle indicating
that a careful design of their crystallographic nature is an
essential ingredient in their electronic properties control. All
these features are identified as highly important for tailoring
the electronic properties of CNRs and for the design of future
nanoelectonic devices. It is suggested that edge termination
with other functional groups or chemical and physical
modification of the carbon network may serve as a further
control parameter for the amplitude and extent of the band
gap oscillations. Research in that direction is currently
underway. Optical excitations show important differences
between ribbons with and without hydrogen terminations and
are found to be sensitive to the CNR width. This should
provide a practical way of revealing information on the size
and the nature of the edge of CNRs. Finally, we have shown
that as free-standing materials, edge passivation is highly

important in terms of the thermodynamic stability of CNRs
and that the passivated chiral nanoribbons are predicted to
be as stable as the armchair CNRs.
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