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1. Lateral force measurements 

The lateral shear force was measured during the sliding process in order to verify that sliding is performed 

under superlubric conditions, thus ensuring the existence of an angular mismatch at the bilayer graphene 

interface
[1]

 (Fig. S1a). The shear force was evaluated using the relation      , applicable for small 

shear distances,
[1]

 where   is the mesa radius and               is the adhesion energy of graphite.
[1]

 

The measured lateral force oscillations were smaller than       indicating that sliding is indeed 

performed under superlubric conditions and that there is a rotational mismatch of        between the 

bottom and top graphene layers.
[1,2]

 

 

2. Interface conductivity  

A numerical fitting procedure was employed to obtain the current vs. sliding distance profile,  ( ), and to 

extract the corresponding resistance of the sheared interface,     , and its Edge (E) and Area (A) 

contributions (Fig S1b).  ( ) was calculated based on the equivalent electrical circuit depicted in the inset 

of Fig. S1b, i.e.  ( )  
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, where                is the applied voltage,     is the average 
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contribute as parallel conductors. 
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the circular mesa and the corresponding resistivities       and       serve as fitting parameters. 
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Figure S1: (a) Measured lateral force as a function of lateral displacement. Inset shows a schematic 

illustration of the sheared mesa from top view marking the overlap area (A) and edge (E) parts. (b) 

Measured current (red line) and corresponding numerical fit (black) based on the equivalent electrical 

circuit shown in the inset, which includes constant serial resistors (Rsys, 2x RGr) and two variable parallel 

resistors (    
         

    
) comprising the sheared interface. (c) Interface conductance (given in units of the 

conductance quantum   ) as a function of lateral interfacial shift. (d)    diagram of the numerical fit to 

the experimental data presented in panel (b) as a function of area and edge resistance values. The 

combination              and              (corresponding to the interface’s area and edge 

resistances at the fully eclipsed configuration, respectively) that produces the lowest    value is used to 

extract       and       that yield the black line fit appearing in panel (b). (e) Voltage drop across the 

twisted bilayer interface. (f) zoom-in on the last 10 nm region of (e). 
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The values of     and      are considered to be constant throughout the sliding. Figure 1Sc presents the 

interface conductance as a function of lateral distance in units of the conductance quantum   . The quality 

of the numerical fit is assessed based on a    test, where the average sum of the differences between fitted 

and measured current,    
 

 
∑ (  

   
   

    )
 

 
   , is plotted for a wide range of relevant edge and area 

resistances and the values minimizing    are chosen as the optimal fit (Fig 1Sd). Here,   
   

 and   
     are 

the     fitted and measured current datapoint, respectively and   is the total number of data points. The 

potential drop across the sheared interface (Fig. S1e,f) can be evaluated as the ratio of the total current 

(see Fig. S1b) and the interface conductance (Fig. S1c). 
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3. Calculation of Gaussian overlaps  

As stated in the main text, in order to rationalize the measured current oscillations with lateral interfacial 

shifts in terms of variations of the bilayer’s wave function, we constructed     twisted (with respect to the 

Bernal stacking) circular bilayer graphene models and described their electronic properties using a tight-

binding Hamiltonian. The Hamiltonian includes one    orbital per carbon atom, describing the   band of 

each flake and an exponentially decaying inter-layer hopping integral describing the inter-flake electronic 

coupling, as follows:
[3,4]
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| |    

  
3     { (

   

   
)
 

}                                         

           

   (S1) 

where          is the externally applied bias voltage;   – is the electron charge;          eV is the 

graphene intralayer nearest neighbors hopping integral;         eV is the interlayer hopping integral, 

| | and     are the absolute and lateral distances between atoms   and   residing on adjacent graphene 

layers (given in  ), respectively;             is the equilibrium interlayer distance in graphene;     

      and           are the lateral and vertical interlayer interaction decay lengths, respectively; and 

      . We note that in this treatment Coulomb addition energies, observed in narrow (< 50 nm) 

graphitic systems 
[5–7]

 are not account for. This approximation is well justified for the large graphitic 

contacts considered in our experiments (> 200 nm) and in light of previous convincing experimental 

evidence observing pronounced zigzag edge state in the vicinity (< 100 mV) of the Fermi energy 
[8,9]

. 

For each stacking configuration we first calculated the interlayer electronic transmittance probability, 

 ( ), using the non-equilibrium Green’s function formalism (see SI section 4 below)
[3,4]

 based on the 

above tight-binding Hamiltonian. Next, we calculated the molecular orbitals (MOs) of the full bilayer 

system by diagonalizing the corresponding Hamiltonian. The obtained MOs, *  +, are given by    

∑   
   
 

 , where   
  is the contribution of atomic orbital   

  to MO    (|  
 |
 
, represents the probability of an 

electron occupying MO    to be found on atomic site  , assuming orthogonal atomic orbitals), and the 

corresponding eigen-energies are denoted by *  +. Next, for each eigenstate,   , residing within the Fermi 

transport window (                      , where    is the Fermi energy of the entire bilayer 

flake and we assume, for simplicity, zero electronic temperature) we multiplied its absolute squared MO 
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expansion coefficients |  
 |
 
 by the transmittance probability evaluated at the corresponding eigenvalue 

energy,  (  ). This effectively weighs each MO according to its contribution to the transport process. 

Since the tight-binding Hamiltonian does not involve explicit atomic orbitals, in order to visualize the 

interlayer overlap between the transmittance-weighted MOs, we assigned each atomic site a two-

dimensional Gaussian of fixed height, centered around its position    (     ): 

   (    )   
 
|    |

 

   
 
  

 
(    )

 
 (    )

 

   
 

   (S2) 

whose standard deviation is set proportional to the sum of transmittance-weighted coefficients of all MOs 

within the bias window associated with this atom: 
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0∑ |  
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  (S3) 

where we choose          (where            is the C-C bond length) such that the typical 

Gaussians extent matches the lattice spacing and a relatively smooth Gaussian overlap curve is obtained 

(see Fig. S2). The square root appearing in Eq. (S3) sets the two-dimensional Gaussian typical area (rather 

than its standard deviation), used later in the overlap calculations, to be proportional to the transmittance-

weighted electronic contribution on each site. 

Finally, the overlap between the Gaussians associated with atomic position   in one layer and atomic 

position   in the other layer is given by: 

     ∫  
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. (S4) 

An example of the sum of Gaussian overlaps as a function of lateral inter-flake distance for three different 

FWHM values is presented in Fig. S2. 
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Fig. S2: Sum of overlaps between two-dimensional Gaussians representing transmittance-weighted MO 

contributions on the different atomic sites, normalized to the maximal value in the presented range, as a 

function of the lateral distance between two     twisted circular flakes of diameter      nm, using 

     
 

 
          ,                ,      

 

 
          . The Fermi window over 

which MOs are summed is set to         and the transmittance probability is evaluated using broadening 

factors of            eV (see SI section 4 below). 

 

4. Electronic transport calculations 

The calculation of the interlayer transport of the graphitic junction is described in details in the supporting 

information of Refs. 3,4, and given here as well for the sake of completeness. The model junction 

comprises of two finite circular graphene flakes. The current passing from the upper flake to the lower 

flake is evaluated via the Landauer scattering formalism
[10]

 that relates the current,  , to the transmittance 

probability of an electron through the system,  ( ) via: 

   
  

 
∫,  ( )    ( )- ( )    (S5) 

In Eq. (S5),   is the electron charge,   is Plank’s constant, and 

     ( )      (           )  [   
     (      )]

  
 (S6) 
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are the equilibrium electronic Fermi-Dirac distributions of the top/bottom leads. In Eq. (S6),      

(      )
  

 are the inverse electronic thermal energies of the top ( ) and bottom ( ) leads and      are 

the corresponding electronic temperatures. The chemical potentials of the leads are taken to be      

         , such that they evenly split the bias voltage,   , around the ground state Fermi energy of the 

entire finite model system,   . The factor of two appearing in Eq. (S5) accounts for spin degeneracy. In 

the present treatment, we neglect the effect of the electric field drop across the junction, due to the 

externally applied bias voltage, on the transmittance probability. However, we shift the onsite energies of 

the top and bottom lead atoms up or down, according to the corresponding lead chemical potential (see 

Eq. S1 in SI section 3 above). The transmittance probability  ( ) appearing in Eq. (S5), is calculated 

using the non-equilibrium Green’s function formalism, which for elastic electronic transport gives: 

  ( )    ,  
 ( )  ( )  

 ( )  ( )-  (S7) 

Here,     ( ) are the top and bottom broadening matrices described below, and   
   ( ) are the 

retarded ( ) and advanced ( ) Green’s function matrix representations of the junction given by: 

   
 ( )  ,        

 ( )    
 ( )-    (S8) 

and  

   
 ( )  ,  

 ( )-   (S9) 

where   is a unit matrix of dimensions of the system and    is the matrix representation of the device’s 

Hamiltonian given in the following block form: 

    (
     
     

)  (S10) 

In Eq. (S10),      are the Hamiltonian blocks of the top and bottom flakes given in the tight-binding 

atomic basis representation and        
 

 are their mutual coupling matrices. Note that in the tight-

binding representation the atomic orbitals are assumed to be orthogonal and the overlap matrix is the unit 

matrix of the full system dimensions. 

The leads self-energies are approximated under the wide band approximation as energy independent 

diagonal matrices providing the same lifetime,    , for each atomic site of the corresponding flake: 

   
     .

   
  

/     
     (

  
   

), (S11) 

and     
  (    

 )
 
. The broadening matrices in Eq. (S7) are given in terms of the self-energies as: 
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The broadening factor,         eV, is chosen to be sufficiently large to obtain a smooth density of 

states of the top and bottom flakes to mimic their periodic counterparts. The results are tested to be 

insensitive to this choice (see supporting information section 5 of Ref. 
[2]

). 

To reduce the computational time, we transform Eq. (S7) to the diagonal basis of the dressed Hamiltonian: 

   
       

    
 , (S13) 

such that the transformation matrix    transforms the complex symmetric matrix   
  to its diagonal 

representation  ̃ 
 : 

  ̃ 
       

  . (S14) 

By inserting        or its conjugate transpose between each pair of matrices in Eq. (S7) and using the 

cyclic property of the trace operation we obtain: 

 ( )   r,  
 (    )  (  
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 (    )   (  
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  ̃  ̃ 

  ̃ ]. (S15) 

In the new basis, the retarded and advanced Green’s functions matrices still obey the required relation 

 ̃ 
   ̃ 

  , and have diagonal representations: 

  ̃ 
  [    ̃ 

 ]
  

. (S16) 

This allows the evaluation of  ̃ 
 ( ) and  ̃ 

 ( ) at any value of   while avoiding repeated matrix 

inversions, at the expense of a single complex symmetric matrix diagonalization and a single evaluation of 

 ̃  and  ̃ . 

We note that, in the main text, all  ( ) calculations presented were performed over a window of         

around the Fermi energy of the entire bilayer model system. As can be seen in Fig. S1e,f, the experimental 

bias voltage drop across the twisted bilayer interface does not exceed     . Fig. S3 below, demonstrates 

that within the corresponding energy window of         around the Fermi energy, the major contribution 

arrives from a narrower region below        . Therefore, to reduce the computational burden, we opted 

to use this smaller energy window. 
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Fig. S3: Transmittance probability calculated for a 10 nm diameter     twisted circular bilayer graphene 

flake, over an extended energy window of       around the Fermi energy of the entire bilayer mode, for four 

lateral positions corresponding to an interlayer shift of        (black line),         (red line),         (green line), 

and         (blue line).  

 

5. Registry Index calculations 

The registry index (RI) is a dimensionless quantity that quantifies the interlayer commensurability 

between two rigid interfaces, and has been used to model the interlayer sliding energy surfaces of a variety 

of hexagonal layered materials.
[4,11–15]

 

In the original RI approach, developed for graphitic interfaces, each lattice atomic center is assigned a 

circle of radius   , which depends on the atomic identity.
[14]

 To obtained smoother and more physical 

registry surfaces, the circles have been replaced in more recent calculations by two-dimensional atomic-

centered Gaussian functions, whose standard deviations relate to the original circle radii as       , 

where   is chosen to reproduce reference sliding energy landscapes of graphitic interfaces and typically 

assumes a value of            
[15]

 The projected Gaussian overlaps between atomic centers belonging 

to adjacent graphene surfaces are calculated according to: 
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and summed to evaluate the degree of Pauli repulsive interactions,    
    ∑ ∑                            . This 

summation is then normalized to obtain the registry index: 

    
   
       

   

   
         

     )S18( 

that is bound to the values of      and     , obtained at the optimal (AB) and worst (AA) stacking 

modes, respectively. 

While in its original implementation the registry index approach was developed to describe the interlayer 

sliding potential in rigid layered materials, it was later on extended to evaluate the qualitative behavior of 

the interlayer transport in graphitic junctions based on the degree of overlap between    orbitals associated 

with atoms residing on adjacent layers.
[4]

 In the present study, we adopted this approach by setting 

          , where            is the carbon-carbon bond length in graphene. Aiming to focus on RI 

variations, we remove the slowly varying RI baseline obtained during lateral sliding, based on a 3
rd

 power 

polynomial fit to the calculations. 

 

6. Robustness against edge reconstruction 

To further confirm that the observed current oscillations, manifesting quantum mechanical interference of interlayer 

edge states, are robust against edge reconstruction, we have repeated some of our transport calculations using 

geometrically relaxed graphitic bilayer interfaces. To this end, we employed the FIRE energy minimization 

algorithm 
[16,17]

, as implemented in the LAMMPS
[18]

 software, with a force tolerance for convergence set to      on 

individual hydrogen terminated 10 nm diameter circular graphitic flakes, whose intra-layer interactions were 

described by the second-generation reactive empirical bond order (REBO) potential 
[19]

, which gives an equilibrium 

C-C bond length of          Angstroms. The relaxed flakes were stacked at an interlayer distance of        to 

form a partially overlapping bilayer system, twisted by     from Bernal stacking, whose interlayer transport 

properties were calculated. We note that the states associated with the hydrogen terminations do not contribute to 

the tight-binding-based transport calculations, as their energy is well outside the Fermi transport region. The results, 

appearing in Fig. S4 below, demonstrate that apart from some minor variations in their pattern, the period and 
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magnitude of the current oscillations in edge reconstructed interfaces remain unchanged. Moreover, to validate that 

the current fluctuations are dominated by edge states transport, we plot in Fig. S4 also the individual edge and bulk 

current contributions (red and green curves, respectively), calculated using the procedure described in Ref. [2]. The 

results demonstrate that bulk transport plays a negligible role across the final few interfacial slide nanometers, 

supporting our conclusion that the observed current fluctuations are induced by edge state quantum interference as 

opposed to bulk transport. 

 

Fig. S4: Vertical current as a function of lateral shift, calculated with (black) and without (blue) edge reconstruction 

at a bias voltage of       for a    nm diameter circular bilayer graphene system twisted by     from Bernal 

stacking with a fixed interlayer distance of       . The red and green curves represent the separate edge and bulk 

current contributions, respectively. 
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