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Materials and methods 

a) Device fabrication 

h-BN flakes of various thicknesses are exfoliated onto a SiO2 surface. A particular flake, 1-10 nm thick, is selected to 

have several topographic steps. AFM is used to scan the flake’s topography to distinguish the parts made of even or 

odd number of layers. Subsequently, the flake is ripped off into two pieces, which are stacked together by a polymer 

stamp (42). We control the twist angle during the stamping process (0° or 180°) to determine the parallel/antiparallel 

interface orientations at different locations along the flake, based on the even/odd topography. Finally, the two-flakes-

sandwich is placed on a graphite flake, Si\SiO2 or a gold substrate. 

 



b) AFM measurements 

Topography and Kelvin probe force microscopy (KPFM) measurements are acquired simultaneously (see Fig. S2), 

using Park System NX10 AFM in a non-contact scanning mode. The electrostatic signal is measured in the first 

harmonic or a sideband frequency using a built-in lock-in amplifier as detailed below. We use Multi-75g and PPP-

EFM n-doped tips with a conductive coating. The mechanical resonance frequency of the tips is ~75 kHz, and the 

force constant is 3 N/m. The cantilever oscillates mechanically with an amplitude ranging from 20 to 5 nm. In several 

experiments, the average height above the surface, h, is controlled via a two-pass measurement. The first pass records 

the topography, whereas in the second pass, the tip follows the same scanline with a predefined lift (typically 5-50 

nm) and measures the KPFM signal. In these two-pass experiments, we made sure to extend the lift beyond the 

mechanical oscillation amplitude. The cantilever is also excited with an AC voltage to perform KPFM measurements 

via first-harmonic, sideband, and open-loop methods (described below), with an amplitude of 1-6 V and frequency of 

3-17 kHz. In the closed-loop measurements, the DC voltage is controlled by a servo motor to obtain the surface 

potential measurements. The images are acquired using Park SmartScan software, and the data analysis is performed 

with Gwyddion program.  

To switch the domain orientation, biased scans are performed in a pin-point mode. Here, the tip approaches the surface 

vertically at each pixel in the scanned area. The estimated maximum force during this approach is 50nN. This mode 

minimizes lateral forces between the tip and the surface. We performed biased scans in different orientations (from 

right to left, up to down, and vice versa).  

 

c) Kelvin-probe surface potential measurements 

First harmonic measurements 

The applied voltage on the tip consists of  DC and AC components. The voltage difference between the tip and the 

substrate electrode is given by (43) : 

 𝑉 = 𝑉DC + 𝑉AC sin(𝜔𝑒𝑡) + 𝑉CPD,  (S1) 

where 𝑉CPD is the contact potential difference originating from the different work functions of the tip and the substrate 

plus the voltage drop at the h-BN interface. The force acting on the tip is: 

 𝐹 = −
𝜕𝑈

𝜕𝑧
= −

𝜕

𝜕𝑧
(
1

2
𝐶𝑉2) = 𝐹𝑠 + 𝐹2𝜔𝑒

−
𝜕𝐶

𝜕𝑧
(𝑉𝐶𝑃𝐷 + 𝑉𝐷𝐶)𝑉𝐴𝐶 sin(𝜔𝑒𝑡), (S2) 

where 𝑈 is the electrostatic energy, 𝑧 is the distance between the sample and the tip, 𝐶 is the capacitance, 𝐹𝑠 is a static 

component and 𝐹2𝜔𝑒
 is the second harmonic oscillation of the force. This claim holds assuming the sample is neutral 

and the field outside the sample due to the charge distribution in the sample is zero. The first harmonic of the force 

vanishes for 𝑉𝐷𝐶 = −𝑉𝐶𝑃𝐷. Hence, the principle of this KPFM mode is to apply a closed-loop DC voltage (𝑉𝐷𝐶) that 

nullifies this term. This DC voltage is recorded and plotted in Fig. 2B.  

 

Sideband measurements  

The scanning tip is composed of the conducting apex, a cone, and a cantilever. The latter two 

interact electrically with the surface on many-micrometer scale, average 𝑉𝐶𝑃𝐷 and therefore 



suppress its variations measurements in the first harmonic. To gain a more localized response, one 

may use the shifts at the mechanical resonance of the tip. The distance between the sample and the 

tip is typically dominated by mechanical oscillations: 𝑧 = ℎ + 𝐴𝑚cos(𝜔𝑚𝑡), with 𝜔𝑚 > 𝜔𝑒 is the 

mechanical frequency and 𝐴𝑚 is the corresponding amplitude. Evaluating Eq. S2 up to the second 

derivative of 𝐶 (or, up to the force gradient), creates additional mechanical response at a sideband 

frequency (𝜔𝑚 ±𝜔𝑒) (44). This higher derivative term is enhanced for the electrode parts with the 

smallest 𝑧, making the sideband signal mostly affected by the apex (which is the closest part to the 

surface). Similarly, to the first harmonic, the sideband term is also proportional to 𝑉𝐶𝑃𝐷 + 𝑉𝐷𝐶. 

Thus, by nullifying the sideband response with a closed-loop DC voltage 𝑉𝐷𝐶, one can measure 

the local surface potential (45). 

 

We note that we only analyze the potential drop between two adjacent and uniform domains. Any 

global external contribution hence, should underestimate the measured Δ𝑉𝐾𝑃 value. Indeed, we 

find a reduced value of ΔV𝐾𝑃~110𝑚𝑉, measured by the first harmonic response (See Fig. 2C), 

while the sideband measurements suggest values in the range 200 − 230𝑚𝑉 (see Fig. S1).  

 

d) Model system and classical force-field calculations 

To study the structural properties of twisted h-BN interfaces we constructed a model system consisting of two h-BN 

layers with an interlayer misfit angle of ~0.5°. To mimic the experimental scenario, a laterally periodic supercell was 

constructed with a triangular lattice of periodicity 𝐿 = |𝑛�⃗�1 +𝑚�⃗�2|, where the primitive lattice vectors are given by 

�⃗�1 = 𝑎ℎ𝐵𝑁(√3, 0) and �⃗�2 =
𝑎ℎ𝐵𝑁

2
(√3, 3), and the lattice constant, 𝑎ℎ𝐵𝑁 = 2.505Å, is obtained from the equilibrium 

boron-nitrogen bond-length used in the Tersoff potential, 𝑏𝐵𝑁 = 1.446Å. The indices 𝑛 = 195 and 𝑚 = 1 were 

chosen to fulfill the condition: 

 cos(𝜃) =
2𝑛2−𝑚2+2𝑛⋅𝑚

2(𝑛2+𝑚2+𝑛⋅𝑚)
. (S3) 

The corresponding moiré pattern dimension is 𝐿 =
𝑏𝐵𝑁

√2−2cos(𝜃)
= 16.3nm. The parallelepiped supercell was then 

multiplicated to construct a rectangular supercell consisting of more than 300,000 atoms. 

The structural properties of the twisted h-BN interface were calculated using the Tersoff (46) intra-layer potential in 

conjunction with the recently developed dedicated interlayer potential (ILP) (18). 

We first optimized the geometry of the top layer atoms with fixed supercell size using the Fire algorithm and keeping 

the bottom layer rigid. This was followed by optimization of the supercell dimensions by the conjugate gradient (CG) 

algorithm while scaling the rigid bottom layer according to the simulation box size. This two-step energy minimization 

procedure was repeated ten times, which is sufficient to obtain well converged results (see Fig. S3C). In each 

repetition, both minimization stages were terminated when the forces acting on each degree of freedom reduced below 



10−3𝑒𝑉/Å. The system was further relaxed by the Fire algorithm at a force tolerance of  10−4𝑒𝑉/Å. The optimized 

structure exhibits atomic reconstruction with distinct AB and BA stacking domains separated by domain walls (see 

Fig S3A).  

 

e) Local registry index analysis 

The local registry index (LRI) (see Fig. 1D) is a method introduced to quantify the degree of local interfacial registry 

matching at rigid material interfaces (31, 47). The idea is to assign a number between -1 and 1 to each atom in the 

layer, signifying whether it resides in an optimal or worse stacking region, respectively. To this end, a circle is 

associated with each atomic position in the two layers and the overlaps between circles of one layer and those of the 

adjacent layer are evaluated. For the case of h-BN three types of overlaps are considered, namely 𝑆𝑖
𝑁𝑁, 𝑆𝑖

𝑁𝐵 = 𝑆𝑖
𝐵𝑁, 

and 𝑆𝑖
𝐵𝐵. Here, S𝑖

𝐽𝐾
signifies the overlap of the circle associated with atom 𝑖 of type 𝐽 in one layer with all circles 

associated with 𝐾 type atoms in the adjacent layer. The radius of the circles associated with B and N atoms is taken 

as 𝑟B = 0.15𝑏ℎ𝐵𝑁, and 𝑟N = 0.5𝑏ℎ𝐵𝑁, which provides good qualitative agreement between registry index maps and 

sliding potential energy surfaces obtained from density functional theory calculations (31). The LRI of atom i is then 

defined as the average registry index of itself and its three nearest neighbors (j, k, l) within the entire layer, as follows: 

 𝐿𝑅𝐼𝑖 = 

1

3
∑
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𝑛=𝑗,𝑘,𝑙 , (S4) 

where S𝑖
𝐽𝐾,𝑜𝑝𝑡

 and S𝑖
𝐽𝐾,𝑤𝑜𝑟𝑠𝑡

 are S𝑖
𝐽𝐾

 are evaluated at the optimal and worst local stacking modes, respectively (AA' 

and AA in the case of h-BN, respectively, see Fig 1A of the main text). The calculated 𝐿𝑅𝐼𝑖 is then transformed by 

−(2𝐿𝑅𝐼𝑖 − 1) to make it range be between [-1, 1]. With this, the LRI at an AA' (AA) stacked region is 1 (-1) 

respectively, and that of an AB stacked region is 0.86. 

Plotting the LRI following geometry relaxation as discussed above (see main text Fig. 3D) we found an ordered array 

of AB and BA stacked domains separated by sharp domain walls. To estimate the width of the domain-wall region, 

we plotted a cross section of the out-of-plane height profile (see Fig. S3D) along the path marked by the dashed black 

line in Fig. S3B. A clear inverse correlation between the height map (red line) and the registry index (black line) is 

obtained. At the AB and BA stacked regions the interlayer distance is relatively constant at ~3.23 Å and 

correspondingly a relative constant value of LRI ~0.86 is obtained. At the center of the domain wall, the interlayer 

distance increases by ~0.05 Å and the LRI reduces to ~0.67, whereas at the domain wall crossings the interlayer 

distance reaches ~3.57 Å and the LRI drops to ~-0.93. Using a Gaussian fitting to the height profile near the domain 

wall we can estimate the domain wall width to be ~10 nm. 

 

f) Dipole moment calculations 

1. Finite systems calculations 

To evaluate the dipole moment developing in the system we first considered a finite AB stacked hexagonal h-BN 

bilayer model with a surface area of 1.1 nm2 and armchair edges. The flake was initially constructed with uniform B-

N bond lengths of 1.446 Å and the edges were saturated by hydrogen atoms with initial B-H and N-H bond lengths of 



1.200 Å and 1.020 Å, respectively (see Fig. S4A,C). The structures were optimized using density functional theory 

(DFT) calculations applying the hybrid B3LYP exchange-correlation density functional approximation and the 

double-ζ polarized 6-31G** Gaussian basis set (48) as implemented in the Gaussian 16 suite of programs (49). This 

was followed by refined relaxation adding Grimme's D3 dispersion correction (50) and using the 6-31+G** basis set. 

Finally, single point calculations were performed on the minimized structures at the B3LYP/6-31+G** and 

B3LYP/Def2TZVP (51) level of theory. Comparison of the out-of-plane dipole moment components obtained using 

the three basis sets is provided in Table S1, showing that our results are well converged with respect to basis set size. 

The value calculated by Def2TZVP was used in Fig. 1C in the main text. Table S1, displays also the in-plane dipole 

moments, which are found to be an order of magnitude lower that the corresponding out-of-plane component.  

To verify that the flake size used is sufficiently large, we repeated the dipole moment calculation for a bilayer flake 

with surface area of 2.9 nm2. As can be seen in Table S1 the obtained values are within 20-25% with those of the 

smaller flake. This indicates that the qualitative nature of the system’s polarization is already captured at the smaller 

flake size, however, for quantitative analysis, larger systems or periodic boundary conditions calculations are require. 

 

Table S1. The dipole moment calculated for the finite flake models along the out-of-pane (𝑃z), and in-plane (𝑃x and 

𝑃y) directions. 

Area (nm
2

) 

Dipole moment (Debye/nm
2

) 

6-31G** 6-31+G** Def2TZVP 

𝑃𝑧 𝑃𝑧 𝑃𝑧 𝑃𝑥 𝑃𝑦 

Double 

layer 

1.1 0.66 0.55 0.55 0.0 0.044 

2.9 0.52 0.45 0.45 -0.0006 0.046 

 

 

2. Periodic structure 

2.1 Geometry optimization. 

Based on the finite system calculations we repeated the dipole moment calculations in periodic bilayer and multilayer 

systems. For the bilayer systems, we chose a unit cell consisting of two nitrogen and two boron atoms stacked at 

several stacking modes. The geometry of the initial structure was optimized using the Vienna Ab-initio Simulation 

Package (VASP) (52) with the Perdew-Burke Ernzerhof (PBE) exchange-correlation functional approximation (53). 

Three-dimensional periodic boundary conditions were applied using a 10 nm vacuum gap in the vertical direction to 

avoid interactions between adjacent bilayer images. The core electrons of the boron and nitrogen atoms were treated 

via the projector augmented wave (PAW) and pseudopotential approach (54). The van der Waals interaction was 



incorporated via the many-body dispersion (MBD) approach (55). During optimization, both the cell box and the 

coordinates of the ions were allowed to relax, while keeping the size of the vacuum fixed. The energy cut-off was set 

to 850 eV during geometry optimization. The conjugate-gradient algorithm was applied with a force tolerance of 0.01 

eV/Å. The Brillouin zone was sampled with a Gamma-centered 15×15×1 k-mesh. 

Convergence tests with respect to the vacuum size, energy cut-off, and number of reciprocal space k-points indicate 

that our choice of parameters leads to total energies converged to within  0.005, 0.0003, and 0.0002 eV with respect 

to the vacuum size, energy cutoff, and number of k-points, respectively (see Fig. S5). 

 

2.2 Dipole moment. 

The dipole moment of the bilayer system at various stacking modes was evaluated using three methods: (i) the Berry 

phase method implemented in VASP to circumvent the effect of the vertical periodic boundary conditions; (ii) 

integration of the charge density differences between the bilayer system and the individual layers, which are non-polar 

in the vertical direction. To this end, the charge density differences were first integrated over the lateral directions, the 

result was then multiplied by the z-coordinate value and integrated vertically; (iii) using the Gaussian 16 package (49) 

that evaluates the dipole moment with two-dimensional periodic boundary conditions, thus avoiding the need for Berry 

phase corrections. Here, single-point calculations on the optimized structures obtained using VASP were performed 

with the PBE functional and the triple-𝜁 pob-TZVP basis set with a uniform 10x10 k-point mesh to obtain converged 

electron density and dipole moment. The direct comparison between the three approaches is discussed in section f2.3. 

The consistency of our results is verified by the fact that the dipole moments evaluated via the periodic boundary 

conditions calculations are comparable to those obtained for the finite flakes (see section f1 above and Fig. 1C of the 

main text). Furthermore, a clear trend of reduction of the out-of-plane polarization with system size (probably due to 

reduced contribution of charge polarization at the edges - see Fig. S4B and D) is found where the value obtained using 

periodic boundary conditions calculations are in good agreement with the experimental value measured for extended 

micrometer-scale domain regions (see Fig. 1C of the main text). 

To characterize the stacking mode dependence of the polarization (see Fig.1 of the main text), the top layer of the 

bilayer h-BN was shifted along the armchair direction with steps of 0.2Å, starting from the optimized AB stacking 

configuration going through the AA and BA stacking modes and arriving back at AB stacking. At each relative 

interlayer displacement the in-plane coordinates of the ions were fixed, and their out-of-plane coordinate was allowed 

to relax following the procedure detailed in section f2.1 above. For comparison purposes single-point rigid shift 

polarization calculations were also performed by fixing the interlayer distance at 3.3Å completely neglecting atomic 

relaxation effects. The results presented in Fig. S6 demonstrate that the calculated polarization in practically 

insensitive to out-of-plane atomic relaxation effects. 

 

2.3 Stack thickness effect. 

Since the experimental measurements are performed on multilayer h-BN stacks, we explored the thickness effect on 

the calculated polarization of AB-stacked h-BN (Fig. S7A) using the three different methods described in section f2.2 

above. To this end, we constructed multilayer h-BN models, where the entire structure is stacked in the AA' stacking 



mode, apart from one AB stacking fault introduced between the two central layers, such that the numbers of layers 

above and below the stacking fault are the same. The results from VASP (both the berry phase method and integration 

of charge density difference) shows a slightly increase of 𝑝z with the thickness, which is mainly due to reduction of 

the vacuum region with increased model thickness. The change of  𝑝z as a function of the vacuum size calculated by 

berry phase method for bilayer h-BN is plotted to support this statement (see Fig. S7B). The results calculated by 

Gaussian presented in Fig. S7A and C show that the out-of-plane polarization and potential drop between the upper 

and lower surfaces are nearly independent of the number of layers (for both rigid and flexible shifts – see section f2.2 

above) indicating that the main contribution to the system's polarization originates from the AB stacked interface. This 

is further supported by the charge density differences (with respect to the individual layers) analysis along the out-of-

plane direction presented in Fig. S7D. The charge variations are found to mainly occur at the central AB stacked h-

BN interface, regardless of the number of layers in the system. The profiles shown here are consistent with the 

qualitative behavior appearing in recent publications (56). We note that the polarization reported herein is about half 

of the values presented in these references for an h-BN bilayer (11, 56). This might be attributed to differences in the 

calculation parameters, such as the vacuum size and reciprocal-space sampling (which we have carefully tested for 

convergence, see section f2.1 above) or the use of vdW correction along the out-of-plane direction. A more detailed 

representation of the charge density differences is given in Fig. S8, where a two-dimensional cross section along the 

(110) crystallographic direction of the AB stacked bilayer h-BN is presented. Charge tends to accumulate atop the 

nitrogen ions that reside above hexagon centers of the adjacent layer. It is this charge redistribution that produces the 

intrinsic out-of-plane dipole moment of the system. 

To further support our claim that the polarization originates from the AB stacked interface, we constructed multilayer 

structures in which all adjacent layers are AB stacked. The calculated out-of-plane polarization of the system as a 

function of number of layers is presented in Fig. S9 (red squares). The results of Fig. S7A are presented as well (red 

circles) for comparison purposes. We find that the dipole moment of the fully AB stacked multilayer scales linearly 

with the number of layers, where the slope is given by the polarization of the bilayer model. This proves that indeed 

the polarization originates from the AB stacked interface and offers a simple route to increase the magnitude of the 

polarization of the system. 

 

2.4 Effect of external electric field. 

To evaluate the effects of the electric fields applied perpendicular to the layered interface in the experimental setup, 

we performed DFT calculations on the AB-stacked double layer h-BN under electric fields in the range 0.01 to 

0.1 𝑉 𝑛𝑚⁄ , relevant to the experiment. The field was applied perpendicular to the interface in both the positive and 

the negative directions. At each field, geometry optimization was performed following the procedure detailed in 

section f2.1. The field induced dipole moment (obtained using method (iii) of section f2.2), total energy, and interlayer 

distance variations are presented in panels A and B of Fig. S10. The results show that positive electric fields result in 

reduction of the perpendicular dipole moment accompanied by slight destabilization of the double layer structure and 

increase of the interlayer distance. This agrees with our finding of a permanent dipole moment appearing at AB stacked 

h-BN interfaces even in the absence of external fields.  



 

g) Minimalistic classical cohesive energy model 

1. Model description 

Our minimalistic model provides a classical estimate of the out-of-plane polarization of the AB bilayer interface 

treating the boron and nitrogen atoms as point charges (see Fig. S11A,B), interacting via Pauli and van der Waals 

(VdW) forces (described by the Lennard-Jones (LJ) potential), and Coulomb interactions. The total interlayer energy 

is written as follows: 

 𝐸 =
1

2
∑ [4𝜀 ((

𝜎

𝑟𝑖𝑗
)
12

− (
𝜎

𝑟𝑖𝑗
)
6

) +
𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
]𝑖,𝑗 , (S5) 

where 𝜀 is the cohesive energy with 𝜎 ≡3.3Å. We note that realistic models of h-BN should take atom specific 𝜀 and 

𝜎 values. Here, however we are interested in a qualitative description of the system and hence, for simplicity, we limit 

the treatment for uniform parameter values. The differences in electronegativity of the boron and nitrogen atoms are 

effectively taken into account by assigning dimensionless partial charges located at the nuclear centers 𝑞 = ±𝑞𝑖/𝑒 for 

𝑖 ∈ 𝐵, 𝑁 respectively. The parameter 𝑞2/𝜖𝜎 controls the relative strength between the Coulomb and LJ interactions. 

As we will demonstrate, this competition determines the sign of the polarization at the AB interface. We denote by α 

the atomic sites in one layer that reside above hexagon centers in the other layer (termed herein as hollow sites). 

Correspondingly, 𝛽 denotes atomic sites in one layer that reside above oppositely charged sites on the adjacent layer 

(termed herein as eclipsed sites). In each layer we use ℎ𝛼 or ℎ𝛽 todenote vertical heights of α and 𝛽 atomic sites, 

measured with respect to the midplane of the AB interface. To compute the polarization, we minimize the classical 

energy with respect to ℎ𝛼 and ℎ𝛽, via an approximate two-step protocol: 

1. First, we set ℎ𝛼 = ℎ𝛽 = ℎ/2 and minimize the interaction energy with respect to ℎ. 

2. Then we allow for finite relative vertical motion of B-N pairs around the optimal ℎ value 2Δ𝑑 = ℎ𝛼 − ℎ𝛽, which 

generates the polarization. Note that no lateral atomic motion is allowed. 

 

2. Optimal interlayer spacing at the AA' stacking mode 

As a reference, we first consider two h-BN layers in the AA' stacking configurations with ℎ𝛼 = ℎ𝛽 = ℎ/2. The total 

force per atom is: 

 𝐹AA′(ℎ) = −
𝑑𝐸

𝐴𝐴′
(ℎ)

𝑑ℎ
= 𝐹AA′

𝐿𝐽 + 𝐹AA′
𝐶  (S6) 

The Coulomb contribution can be written as 𝐹AA′
𝐶 = −𝐹11

𝐶 + 𝐹12
𝐶  (with 𝐹11

𝐶 , 𝐹12
𝐶 > 0), where 

 𝐹11
𝐶 (ℎ) = ∑

𝑒2ℎ

(�⃗⃗�11
2 +ℎ2)

3/2,�⃗⃗�11
𝐹12
𝐶 (ℎ) = ∑

𝑒2ℎ

(�⃗⃗�12
2 +ℎ2)

3/2�⃗⃗�12
. (S7) 

Here, �⃗⃗�11 = �⃗⃗�𝑛1,𝑛2 denote in plane lattice vectors connecting equivalent atoms, namely Bravais lattice vectors, and 

�⃗⃗�12 = �⃗⃗�𝑛1,𝑛2 − �̂�𝑅0 denote in plane lattice vectors connecting inequivalent atoms, where �̂�𝑅0is a vector connecting 

nearest-neighbors. The corresponding Bravais lattice vectors of the honeycomb lattice are given by �⃗⃗�𝑛1,𝑛2 = 𝑛1�⃗⃗�1 +

𝑛2�⃗⃗�2, and �⃗⃗�1,2 = 𝑅0(
3

2
, ±

√3

2
), with 𝑅0 = 1.4Å. Quick convergence of 𝐹AA′

𝐶  is guaranteed if for any pair of integers 

𝑛1, 𝑛2 the term 𝐹11
𝐶 (ℎ) is combined with 𝐹12

𝐶 (ℎ) calculated for −𝑛1, −𝑛2 and the sums are taken over the range −𝑛𝑚 ≤



𝑛1, 𝑛2 ≤ 𝑛𝑚 with sufficiently large 𝑛𝑚. The force then converges as 1/𝑛𝑚
2  (not shown) in Fig. S11C. Notably, the 

attractive force 𝑒2/ℎ2 associated with a single vertical bond is strongly suppressed due to the alternating charges 

within the layer and the small ratio 𝑅0/ℎ. This reduces the bare Coulomb interlayer energy 
𝑒2

ℎ
∼ 4.3eV into the meV 

regime, comparable with the VdW scale 𝜀 (57). 

Similarly, the LJ force can be split as 𝐹AA′
𝐿𝐽 = 𝐹11

𝐿𝐽 + 𝐹12
𝐿𝐽

, where 

 𝐹11
𝐿𝐽(ℎ) = 4𝜀 ∑ (

12𝜎12ℎ

(�⃗⃗�11
2 +ℎ2)

7 −
6𝜎6ℎ

(�⃗⃗�11
2 +ℎ2)

4),�⃗⃗�11
𝐹12
𝐿𝐽(ℎ) = 4𝜀∑ (

12𝜎12ℎ

(�⃗⃗�12
2 +ℎ2)

7 −
6𝜎6ℎ

(�⃗⃗�12
2 +ℎ2)

4)�⃗⃗�12
. (S8) 

The zero-force condition yields the optimal interlayer distance ℎ, marked in Fig. S11D by solid lines. As shown, ℎ 

decreases upon decreasing the Lenard-Jones energy scale 𝜀 with respect to the Coulomb energy. 

We note that a reasonable approximation for 𝐹AA′
𝐿𝐽 (ℎ), for small 𝑅0/ℎ, consists of treating the particles as a uniform 

mass distribution, i.e. replacing the sum over �⃗⃗� by integration, yielding 

 𝐹𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚
𝐿𝐽 (ℎ) = lim

𝑅0/ℎ→0
𝐹𝐿𝐽 = 𝜀

32𝜋

3√3𝑅0
2 ℎ (

𝜎12

ℎ12
−

𝜎6

ℎ6
). (S9) 

 

3. Optimal interlayer spacing at the AB stacking mode 

Now consider two h-BN layers at the AB stacking configuration. The corresponding interlayer force can be written as 

𝐹𝐴𝐵 = 𝐹𝐴𝐵
𝐿𝐽 + 𝐹𝐴𝐵

𝐶 . The unit cell consists of two types of atomic sites, one type where atoms of the two layers reside 

atop of each other (eclipsed) and the other type where an atom of one layer resides atop a hexagon center of the other 

layer (hollow sites). Note that the Coulomb contribution of the hollow sites vanishes due to symmetry considerations. 

Hence, we only have the Coulomb contribution from the eclipsed atomic sites. Since the latter have the exact same 

configuration in the AA' and AB stacking modes (see Fig. S11A) the overall Coulomb force contribution per atom in 

the AB stacking mode is half of that in the AA' mode, 𝐹𝐴𝐵
𝐶 =

1

2
𝐹𝐴𝐴′
𝐶 . 

For the VdW part, similar to the AA' stacking case, the eclipsed atomic sites give 𝐹11
𝐿𝐽 + 𝐹12

𝐿𝐽
 of Eq. S10, whereas the 

hollow atomic sites give 2𝐹12
𝐿𝐽

 due to the unique symmetry of the AB stacked bilayer hexagonal lattice. Therefore, in 

total we obtain for the LJ force contribution per atom that 𝐹𝐴𝐵
𝐿𝐽 =

𝐹11
𝐿𝐽
+𝐹12

𝐿𝐽

2
+

2𝐹12
𝐿𝐽

2
=

𝐹11
𝐿𝐽

2
+

3𝐹12
𝐿𝐽

2
. The zero-force condition 

yields the optimal AB stacking interlayer distance, marked by the dashed gray line in Fig. S11D. Similar to the case 

of AA' stacking mode, ℎ  decreases upon decreasing 𝜀/𝑞2. Note, however, that while h (AA') > h (AB) for large 𝜀/𝑞2 

the situation is inverted for 
𝜀

𝑞2
≲ 1.5meV. Specifically, when 𝑞 → 0 our model corresponds to the case of graphite 

with optimal AB stacking mode. 

 

4. Relative vertical displacement 

On top of the interlayer spacing, we now allow a small opposite motion of the hollow site (𝛼) and eclipsed site (𝛽) 

atoms: 

 ℎ𝛼 = ℎ/2 + Δ𝑑,ℎ𝛽 = ℎ/2 − Δ𝑑, (S10) 



as marked in Fig. S11B. We now analyze the total energy of the system as a function of Δ𝑑, via the Harmonic 

approximation 𝐸 ≅ 𝑐𝑜𝑛𝑠𝑡 + (
𝑑𝐸

𝑑(Δ𝑑)
)
Δ𝑑=0

Δ𝑑 +
1

2
(

𝑑2𝐸

𝑑(Δ𝑑)2
)
Δ𝑑=0

Δ𝑑2around Δ𝑑 = 0. The assumption that Δ𝑑 ≪ 𝑅0 

can be justified by the experimental estimate of Δ𝑑~10−3Å (see main text). Our simple model considered here, similar 

to an Einstein model for lattice vibrations, assumes that the Δ𝑑 coordinates are independent Harmonic oscillators with 

spring constant 𝐾Δ𝑑 =
𝑑2𝐸

𝑑(Δ𝑑)2
. Crucially, Δ𝑑 = 0  is not a minimum due to the reduced symmetry of the AB interface, 

with alternating eclipsed and hollow sites, which imposes a finite normal force (per atom) of: 

 𝐹Δ𝑑 = −
𝑑𝐸

𝑑(Δ𝑑)
= 𝐹Δ𝑑

𝐶 + 𝐹Δ𝑑
𝐿𝐽 , (S11) 

where 𝐹Δ𝑑
𝐶  and 𝐹Δ𝑑

𝐿𝐽
 are defined as the relative displacement force contributions of the Coulomb and LJ terms. Note 

that 𝐹Δ𝑑 is the difference between the forces acting on the eclipsed versus the hollow sites.  

Since, for Δ𝑑 = 0, hollow site atoms see a locally charge-neutral configuration on the other layer the Coulomb part 

of this linear force originates only from the eclipsed atomic sites. For the latter, the atom in the upper layer is attracted 

to the one residing exactly below it in the other layer. However, it is repelled by its next nearest neighbors in the other 

layer, and so on. When performing the entire lattice sum for the eclipsed site we obtain that the overall force is always 

attractive: 

 𝐹Δ𝑑
𝐶 =

𝐹11
𝐶 (ℎ)−𝐹12

𝐶 (ℎ)

2
> 0. (S12) 

On the other hand, the LJ potential, which can be written as the difference between the hollow site (2𝐹12
𝐿𝐽(ℎ)) and the 

eclipsed site (𝐹11
𝐿𝐽(ℎ) + 𝐹12

𝐿𝐽(ℎ)) contributions yields a repulsive force per atom near the equilibrium interlayer 

distance: 

 𝐹Δ𝑑
𝐿𝐽 =

2𝐹12
𝐿𝐽(ℎ)

2
−

𝐹11
𝐿𝐽(ℎ)+𝐹12

𝐿𝐽(ℎ)

2
=

𝐹12
𝐿𝐽(ℎ)−𝐹11

𝐿𝐽(ℎ)

2
< 0. (S13) 

This signifies that at the equilibrium interlayer distance, the eclipsed site contribution is more repulsive than that of 

the hollow site counterpart, mainly due to the fact that the eclipsed atoms are forced to reside within the steep Pauli 

repulsion wall side of their pairwise interaction. 

Overall, from Eqs. S11, S12 and S13 our crude estimate yields 

 Δ𝑑 ∼
𝐹Δ𝑑

𝐾Δ𝑑
=

(𝐹11
𝐶 (ℎ)−𝐹12

𝐶 (ℎ))+(𝐹12
𝐿𝐽(ℎ)−𝐹11

𝐿𝐽(ℎ))

2𝐾Δ𝑑
. (S14) 

𝐾Δ𝑑 in Eq. (S14) can be evaluated from the model parameters (see next section). Nevertheless, for simplicity we take 

it to be equal to the corresponding out-of-plane force constant in graphite 𝐾Δ𝑑~5N/m (58). 

The resulting relative displacement is plotted in Fig. S11E versus 𝜀/𝑞2. Crucially, it changes sign when 𝜀eff =
𝜀

𝑞2
∼

3.5meV. The experimentally measured voltages indicate that Δ𝑑 in AB stacked bilayer h-BN is of the order of  10−3Å 

(see main text) and our DFT calculations indicate that it is positive suggesting that 
𝜀

𝑞2
~3meV (see Fig. S11E), similar 

to expected values (57). Notably, other layered materials, which possess different effective 𝜀 and or 𝑞 values may 

show different quantitative and even qualitative polarization. 



Finally, it should be noted that our simplistic classical approach is sufficiently flexible to allow the study of additional 

effects, such as the dependence on the number of layers as well as external perturbations like pressure or electric field, 

as well as an additional in-plane component of the polarization, which we leave for future work. 

 

5. Analytic estimate of the normal spring constant 

To determine 𝐾Δ𝑑 =
𝑑2𝐸

𝑑(Δ𝑑)2
, we note that it has contributions from the interlayer LJ and Coulomb forces, as well as 

from the intra-layer forces. Its interlayer LJ contribution is obtained from the corresponding contribution to the energy 

𝐸𝐿𝐽(Δ𝑑) =
1

2
[𝑉11

𝐿𝐽(ℎ) + 𝑉12
𝐿𝐽(ℎ − 2Δ𝑑)] +

1

2
[𝑉12

𝐿𝐽(ℎ) + 𝑉12
𝐿𝐽(ℎ + 2Δ𝑑)]. The first (second) term represents the 

interaction of atoms at eclipsed (hollow) sites, and 𝑉11(12)
𝐿𝐽 (ℎ) = 4𝜀 ∑ (

𝜎12

(�⃗⃗�11(12)
2 +ℎ2)

6 −
𝜎6

(�⃗⃗�11(12)
2 +ℎ2)

3)�⃗⃗�11(12)
. One can 

obtain a good approximation for the spring constant (
𝑑2𝐸

𝑑(Δ𝑑)2
)
Δ𝑑=0

by replacing the sums ∑�⃗⃗�11(12)
  by integrals, as 

in 𝐹𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚
𝐿𝐽 (ℎ) . This procedure yields: 

 𝐾Δ𝑑
𝐿𝐽 =

64𝜋

√3𝑅0
2 𝜀. (S15) 

For 𝜀=3meV this yields a spring constant of 𝐾Δ𝑑
𝐿𝐽 = 3N/m. While additional contributions are expected from intra-

layer interactions, as well as Coulombic inter-layer interactions, this value is comparable with the measured out-of-

plane force constant in graphite 𝐾Δ𝑑~5N/m (58). Since Eq. S15 captures the order of magnitude of 𝐾Δ𝑑, we can use 

𝐾Δ𝑑 =
64𝜋

√3𝑅0
2 𝜀 ⋅ 𝑎, with a factor of order unity 𝑎~

5

3
, and obtain an approximate expression for the relative 

displacement, see Eq. (S14), fully in terms of our model's parameters, Δ𝑑 ∼
𝐹Δ𝑑

𝐾Δ𝑑
=

√3𝑅0
2

32𝜋

(𝐹11

𝐶 (ℎ)−𝐹12
𝐶 (ℎ))+(𝐹12

𝐿𝐽(ℎ)−𝐹11
𝐿𝐽(ℎ))

4𝜀
 



 

Fig S1. Quantitative sideband KPFM measurements. (A) Map of the surface potential in 

parallel stacked h-BN, measured from the response at a frequency of 68 kHz. The tip's mechanical 

resonant frequency is 71 kHz, and the electrical frequency is chosen to be 3 kHZ. The h-BN 

sandwich is 11 nm thick above the graphite substrate. (B) Surface potential along the green line 

marked in A.  The blue line was taken in a single pass, whereas the red line was measured in a 

two-pass mode, with a lift of 20 nm above the first pass height. (C) 𝜟𝑽𝑲𝑷 (as marked in B) for 

different lifts. 

 

 

  

 

 

 



 

  
 

Fig S2. Topography maps and additional samples. (A, B) Surface potential and topography 

maps measured simultaneously on the structure presented in the main text (Fig 2B). The top h-BN 

flake thickness is uniform and includes 10 layers. Topography steps in the surface of the bottom 

flake are marked by dashed red lines, and its total thickness at different positions is indicated. (C, 

D) An additional interface between a thick (>1000 layers) bottom flake and a thin (4-7 layers) top 

flake. Similar potential drops between the domains are observed independent of the thickness of 

the structures or the substrate: graphite (SiO2) in A (C), respectively. 



 

Fig. S3. Geometric relaxation of the Moiré pattern; (A) Atomic configuration of a relaxed periodic twisted bilayer 

h-BN with a twisted angle of 𝜃 = 0.5°. The size of the entire model system is 48.9 nm × 84.7 nm. B and N atoms are 

colored by ochre and blue, respectively. Distinctly colored AB and BA domains are obtained since atoms of the upper 

layer hide those of the bottom layer that reside exactly below them. (B) Interlayer distance map for the relaxed twisted 

bilayer. (C) The energy variation during the minimization cycles applied to the model system appearing in panel (A) 

plotted relative to the initial energy. The first ten points represent cycles with force tolerance set to 10−3eV/Å and the 

last point corresponds to the final minimization step with force tolerance of 10−4eV/Å. (D) Interlayer distance (red) 

and local registry index (black) calculated along the path marked by the black dashed line in panel B. The reference 

LRI values of the AA and AB/BA stacking modes are -1 and 0.86 (marked by the corresponding horizontal lines).  

  



 

 

  

Fig. S4. Charge distribution maps. (A) Top view of the relaxed AB stacked hydrogen terminated finite bilayer h-

BN flake of 1.1𝑛𝑚2 contact area. Pink, blue and white spheres represent boron, nitrogen, and hydrogen atoms, 

respectively. (B) The electron density difference (with respect to the isolated single-layered flakes) of the structure 

presented in (A) calculated at the B3LYP/Def2TZVP level of DFT theory. The blue and red color represent charge 

accumulation and depletion, respectively. The isosurface value is 2.3 × 10−4𝑒/Å3. (C) and (D) are same as (A) and 

(B) but for the 2.9𝑛𝑚2 contact area system, respectively.  

 

 

Fig S5: Convergence tests. Convergence tests of the total energy following geometry optimization as a function of 

(a) vacuum size; (b) energy cutoff; and (c) number of k-points. 



 

Fig S6: Polarization as a function of lateral interlayer shift. The out-of-plane polarization of bilayer h-BN as a 

function of interlayer displacement as calculated using the Gaussian package at the PBE/pob-TZVP level of theory 

for rigid and vertically flexible systems. The corresponding stacking modes are marked in the figure. 

 

  



 

Fig S7: Polarization dependence on the number layers (a) The out-of-plane polarization as a function of the total 

number of layers calculated using three different methods (see section f.2.2): (i) the berry phase method in VASP with 

a 10 nm vacuum size (red); (ii) integration of charge density differences (yellow); and (iii) the Gaussian package at 

the PBE/pob-TZVP level of theory (blue). The multilayer system includes an AB stacked interface surrounded by two 

AA’ stacked slabs (see text for full description). (b) The out-of-plane polarization as a function of vacuum size 

calculated by VASP for bilayer h-BN. (c) The electrostatic potential drop between the upper and lower surface as a 

function of number of layers. (d) The laterally summed charge density differences (with respect to the individual layers 

charge density) as a function of the vertical position (z) for several multilayer h-BN models ranging from the bilayer 

(red) to a 10-layer (gray) system. Zero vertical coordinate signifies the midpoint between the AB stacked central 

layers. The black dashed lines show the position of the AB stacked bilayer. 

 

  



 

Fig S8: Charge redistribution: A two-dimensional cross section through the charge density differences (with respect 

to the individual layers) along the (110) crystallographic direction of the AB stacked bilayer h-BN calculated using 

VASP with the PBE density functional approximation. 

  



 

 
Fig. S9. The out of plane polarization of an AB stacked multi-layer system. The out-of-plane polarization as a 

function of number of layers for the fully AB stacked multilayer system (black squares) compared to the results 

presented in Fig. S7A above (red circles). The polarization was calculated using Gaussian. 

  



 

 

 
Fig. S10. External electric field effects.  Field induced dipole moment (A, obtained using method (iii) of section 

f2.2), total energy, and interlayer distance (B) variation with an external electric field applied perpendicular to the 

interface of an AB stacked bilayer h-BN. 

 

 

 

  



 

 

 
 

Fig S11: Classical cohesion model. (A) Top view of AB (left) and AA' (right) stacked bilayer h-BN. The top (bottom) 

layer atoms are marked by small (large) circles. Lattice sites that participate in the forces 𝐹11 (12) in Eq. (S7, S8) are 

marked by dashed green (solid red) arrows, respectively. Similar to AA', the eclipsed atoms in AB experience both 

forces, however, the hollow atoms include only 𝐹12 (twice). Also, note the zero Coulomb force in the latter case due 

to opposite charges of yellow/blue sites. (B) Cross-section of AB stacked bilayer h-BN along the dotted black line 

marked in (A). 𝛼(𝛽) indicates hollow (eclipsed) sites, respectively. (C) Convergence of the total interlayer Coulomb 

force for ℎ = 3.3Å with the number of Bravais lattice vectors (𝑛𝑚) in the summation in Eq. (S7, S8). (D) Inter-layer 

spacing (ℎ) calculated for AA' (solid lines) and AB (dashed lines) stacked bilayer h-BN, for different fixed values of 

cohesion / Coulomb ratio 𝜀/𝑞2. Black lines with 𝑞 = 0 correspond to graphite and show smaller h for AB than AA' 

stacking as expected, while orange lines with 
𝜀

𝑞2
= 1.5meV show the opposite, as expected for h-BN. (E) Intra-layer 

displacement (marked in B) as a function of 𝜀/𝑞2. The estimated value from the experiment is marked by a red star, 

suggesting 𝜀/𝑞2~3 meV. 

 

 

 

 

 



 

Fig. S12. Additional examples of domain-wall sliding due to biased tip scans. Consequent 

KPFM images from the left- to the right-hand side of the same flake location. (A) A biased tip 

(±10 V) was scanned above the region marked by a blue square. Positive tip bias resulted in 

domain-wall motion that increased the white domains area over the black domains and vice versa. 

The h-BN sandwich thickness is 14 nm above the graphite substrate. (B) A similar example with 

a tip biased ±4 V and h-BN thickness of 11 nm (see red arrows). Note the hybridization of domains 

at the green arrow position after the first scan. The expanding and narrowing of the domains does 

not depend on different scanning directions (up to down, left to right, and vice versa). The 

minimum flipping electric field measured is 𝟎. 𝟑𝑽/𝒏𝒎. 

  

 

 

 

 

 

 



 

References:   

1.  M. Lines, A. Glass, Principles and applications of ferroelectrics and related materials 

(2001; 

https://www.google.com/books?hl=en&lr=&id=p6ruJH8C84kC&oi=fnd&pg=PA1&dq=P

rinciples+and+Applications+of+Ferroelectrics+and+Related+Materials+(Oxford+Univers

ity.+Press,+1977)&ots=3F7179vH7T&sig=nefFtl1fv8lkap4UyS1S3QrVUro). 

2.  N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. 

Kohlstedt, N. Y. Park, G. B. Stephenson, I. Stolitchnov, A. K. Taganstev, D. V. Taylor, T. 

Yamada, S. Streiffer, Ferroelectric thin films: Review of materials, properties, and 

applications. J. Appl. Phys. 100 (2006), p. 051606. 

3.  J. F. Scott, [3D] nano-scale ferroelectric devices for memory applications. Ferroelectrics. 

314, 207–222 (2005). 

4.  J. F. Scott, Prospects for Ferroelectrics: 2012–2022. ISRN Mater. Sci. 2013, 1–24 (2013). 

5.  M. Dawber, K. M. Rabe, J. F. Scott, Physics of thin-film ferroelectric oxides. Rev. Mod. 

Phys. 77, 1083–1130 (2005). 

6.  J. Müller, P. Polakowski, S. Mueller, T. Mikolajick, Ferroelectric Hafnium Oxide Based 

Materials and Devices: Assessment of Current Status and Future Prospects. ECS J. Solid 

State Sci. Technol. 4, N30–N35 (2015). 

7.  Y. Cao, A. Mishchenko, G. L. Yu, E. Khestanova, A. P. Rooney, E. Prestat, A. V. 

Kretinin, P. Blake, M. B. Shalom, C. Woods, J. Chapman, G. Balakrishnan, I. V. 

Grigorieva, K. S. Novoselov, B. A. Piot, M. Potemski, K. Watanabe, T. Taniguchi, S. J. 



Haigh, A. K. Geim, R. V. Gorbachev, Quality Heterostructures from Two-Dimensional 

Crystals Unstable in Air by Their Assembly in Inert Atmosphere (2015), 

doi:10.1021/ACS.NANOLETT.5B00648. 

8.  D. D. Fong, G. B. Stephenson, S. K. Streiffer, J. A. Eastman, O. Aucielo, P. H. Fuoss, C. 

Thompson, Ferroelectricity in ultrathin perovskite films. Science (80-. ). 304, 1650–1653 

(2004). 

9.  S. S. Cheema, D. Kwon, N. Shanker, R. dos Reis, S.-L. Hsu, J. Xiao, H. Zhang, R. 

Wagner, A. Datar, M. R. McCarter, C. R. Serrao, A. K. Yadav, G. Karbasian, C.-H. Hsu, 

A. J. Tan, L.-C. Wang, V. Thakare, X. Zhang, A. Mehta, E. Karapetrova, R. V Chopdekar, 

P. Shafer, E. Arenholz, C. Hu, R. Proksch, R. Ramesh, J. Ciston, S. Salahuddin, Enhanced 

ferroelectricity in ultrathin films grown directly on silicon. Nature. 580, 478–482 (2020). 

10.  F. Liu, L. You, K. L. Seyler, X. Li, P. Yu, J. Lin, X. Wang, J. Zhou, H. Wang, H. He, S. 

T. Pantelides, W. Zhou, P. Sharma, X. Xu, P. M. Ajayan, J. Wang, Z. Liu, Room-

temperature ferroelectricity in CuInP 2 S 6 ultrathin flakes. Nat. Commun. 7, 1–6 (2016). 

11.  L. Li, M. Wu, Binary Compound Bilayer and Multilayer with Vertical Polarizations: Two-

Dimensional Ferroelectrics, Multiferroics, and Nanogenerators. ACS Nano. 11, 6382–

6388 (2017). 

12.  G. Constantinescu, A. Kuc, T. Heine, Stacking in bulk and bilayer hexagonal boron 

nitride. Phys. Rev. Lett. 111 (2013), doi:10.1103/PhysRevLett.111.036104. 

13.  R. S. Pease, Crystal structure of boron nitride. Nature. 165, 722–723 (1950). 

14.  S. Zhou, J. Han, S. Dai, J. Sun, D. J. Srolovitz, Van der Waals bilayer energetics: 

Generalized stacking-fault energy of graphene, boron nitride, and graphene/boron nitride 



bilayers. Phys. Rev. B - Condens. Matter Mater. Phys. 92, 155438 (2015). 

15.  S. M. Gilbert, T. Pham, M. Dogan, S. Oh, B. Shevitski, G. Schumm, S. Liu, P. Ercius, S. 

Aloni, M. L. Cohen, A. Zettl, Alternative stacking sequences in hexagonal boron nitride. 

2D Mater. 6, 021006 (2019). 

16.  J. H. Warner, M. H. Rümmeli, A. Bachmatiuk, B. Büchner, Atomic Resolution Imaging 

and Topography of Boron Nitride Sheets Produced by Chemical Exfoliation. ACS Nano. 

4, 1299–1304 (2010). 

17.  Materials, methods, and additional information are available as supplementary materials. 

18.  T. Maaravi, I. Leven, I. Azuri, L. Kronik, O. Hod, Interlayer Potential for Homogeneous 

Graphene and Hexagonal Boron Nitride Systems: Reparametrization for Many-Body 

Dispersion Effects. J. Phys. Chem. C. 121, 22826–22835 (2017). 

19.  J. S. Alden, A. W. Tsen, P. Y. Huang, R. Hovden, L. Brown, J. Park, D. A. Muller, P. L. 

McEuen, Strain solitons and topological defects in bilayer graphene. Proc. Natl. Acad. Sci. 

U. S. A. 110, 11256–11260 (2013). 

20.  M. R. Rosenberger, H. J. Chuang, M. Phillips, V. P. Oleshko, K. M. McCreary, S. V. 

Sivaram, C. S. Hellberg, B. T. Jonker, Twist Angle-Dependent Atomic Reconstruction 

and Moiré Patterns in Transition Metal Dichalcogenide Heterostructures. ACS Nano. 14, 

4550–4558 (2020). 

21.  A. Weston, Y. Zou, V. Enaldiev, A. Summerfield, N. Clark, V. Zólyomi, A. Graham, C. 

Yelgel, S. Magorrian, M. Zhou, J. Zultak, D. Hopkinson, A. Barinov, T. H. Bointon, A. 

Kretinin, N. R. Wilson, P. H. Beton, V. I. Fal’ko, S. J. Haigh, R. Gorbachev, Atomic 

reconstruction in twisted bilayers of transition metal dichalcogenides. Nat. Nanotechnol. 



15, 592–597 (2020). 

22.  H. Yoo, R. Engelke, S. Carr, S. Fang, K. Zhang, P. Cazeaux, S. H. Sung, R. Hovden, A. 

W. Tsen, T. Taniguchi, K. Watanabe, G.-C. Yi, M. Kim, M. Luskin, E. B. Tadmor, E. 

Kaxiras, P. Kim, Atomic and electronic reconstruction at the van der Waals interface in 

twisted bilayer graphene. Nat. Mater. |. 18, 448–453 (2019). 

23.  T. A. Green, J. Weigle, Theorie du moire. Helv. Phys. acta. 21, 217 (1948). 

24.  C. R. Woods, L. Britnell, A. Eckmann, R. S. Ma, J. C. Lu, H. M. Guo, X. Lin, G. L. Yu, 

Y. Cao, R. V. Gorbachev, A. V. Kretinin, J. Park, L. A. Ponomarenko, M. I. Katsnelson, 

Y. N. Gornostyrev, K. Watanabe, T. Taniguchi, C. Casiraghi, H.-J. Gao, A. K. Geim, K. 

S. Novoselov, Commensurate–incommensurate transition in graphene on hexagonal boron 

nitride. Nat. Phys. 10, 451–456 (2014). 

25.  O. Hod, E. Meyer, Q. Zheng, M. Urbakh, Structural superlubricity and ultralow friction 

across the length scales. Nature. 563, 485–492 (2018). 

26.  L. J. McGilly, A. Kerelsky, N. R. Finney, K. Shapovalov, E. M. Shih, A. Ghiotto, Y. 

Zeng, S. L. Moore, W. Wu, Y. Bai, K. Watanabe, T. Taniguchi, M. Stengel, L. Zhou, J. 

Hone, X. Zhu, D. N. Basov, C. Dean, C. E. Dreyer, A. N. Pasupathy, Visualization of 

moiré superlattices. Nat. Nanotechnol. 15, 580–584 (2020). 

27.  P. Ares, T. Cea, M. Holwill, Y. B. Wang, R. Roldán, F. Guinea, D. V. Andreeva, L. 

Fumagalli, K. S. Novoselov, C. R. Woods, Piezoelectricity in Monolayer Hexagonal 

Boron Nitride. Adv. Mater. 32, 1905504 (2020). 

28.  W. M. Lomer, K. W. Morton, The electrostatic energy of boron nitride [2]. Proc. Phys. 

Soc. Sect. A. 66, 772–773 (1953). 



29.  Y.-N. Xu, W. Y. Ching, Calculation of ground-state and optical properties of boron 

nitrides in the hexagonal, cubic, and wurtzite structures. Phys. Rev. B. 44, 7787–7798 

(1991). 

30.  J.-C. Charlier, X. Gonze, J.-P. Michenaud, Graphite Interplanar Bonding: Electronic 

Delocalization and van der Waals Interaction. Europhys. Lett. 28, 403–408 (1994). 

31.  N. Marom, J. Bernstein, J. Garel, A. Tkatchenko, E. Joselevich, L. Kronik, O. Hod, 

Stacking and registry effects in layered materials: The case of hexagonal boron nitride. 

Phys. Rev. Lett. 105 (2010), doi:10.1103/PhysRevLett.105.046801. 

32.  O. Hod, Graphite and hexagonal boron-nitride have the same interlayer distance. Why? J. 

Chem. Theory Comput. 8, 1360–1369 (2012). 

33.  L. Jiang, S. Wang, Z. Shi, C. Jin, M. I. B. Utama, S. Zhao, Y. R. Shen, H. J. Gao, G. 

Zhang, F. Wang, Manipulation of domain-wall solitons in bi- and trilayer graphene. Nat. 

Nanotechnol. 13, 204–208 (2018). 

34.  M. Yankowitz, J. I. J. Wang, A. G. Birdwell, Y. A. Chen, K. Watanabe, T. Taniguchi, P. 

Jacquod, P. San-Jose, P. Jarillo-Herrero, B. J. LeRoy, Electric field control of soliton 

motion and stacking in trilayer graphene. Nat. Mater. 13, 786–789 (2014). 

35.  J. Sung, Y. Zhou, G. Scuri, V. Zólyomi, T. I. Andersen, H. Yoo, D. S. Wild, A. Y. Joe, R. 

J. Gelly, H. Heo, S. J. Magorrian, D. Bérubé, A. M. M. Valdivia, T. Taniguchi, K. 

Watanabe, M. D. Lukin, P. Kim, V. I. Fal’ko, H. Park, Broken mirror symmetry in 

excitonic response of reconstructed domains in twisted MoSe2/MoSe2 bilayers. Nat. 

Nanotechnol. 15, 750–754 (2020). 

36.  T. I. Andersen, G. Scuri, A. Sushko, K. de Greve, J. Sung, Y. Zhou, D. S. Wild, R. J. 



Gelly, H. Heo, K. Watanabe, T. Taniguchi, P. Kim, H. Park, M. D. Lukin, Moiré excitons 

correlated with superlattice structure in twisted WSe2/WSe2 homobilayers. arXiv (2019) 

(available at http://arxiv.org/abs/1912.06955). 

37.  S. Artyukhin, K. T. Delaney, N. A. Spaldin, M. Mostovoy, Landau theory of topological 

defects in multiferroic hexagonal manganites. Nat. Mater. 13, 42–49 (2014). 

38.  K. Yasuda, X. Wang, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, Stacking-engineered 

ferroelectricity in bilayer boron nitride. arXiv (2020) (available at 

http://arxiv.org/abs/2010.06600). 

39.  C. R. Woods, P. Ares, H. Nevison-Andrews, M. J. Holwill, R. Fabregas, F. Guinea, A. K. 

Geim, K. S. Novoselov, N. R. Walet, L. Fumagalli, Charge-polarized interfacial 

superlattices in marginally twisted hexagonal boron nitride. Nat. Commun. 12, 1–7 (2021). 

40.  Z. Zheng, Q. Ma, Z. Bi, S. de la Barrera, M. H. Liu, N. Mao, Y. Zhang, N. Kiper, K. 

Watanabe, T. Taniguchi, J. Kong, W. A. Tisdale, R. Ashoori, N. Gedik, L. Fu, S. Y. Xu, 

P. Jarillo-Herrero, Unconventional ferroelectricity in moiré heterostructures. Nature. 588, 

71–76 (2020). 

41.  Data for: Interfacial Ferroelectricity by van der Waals Sliding;, 

doi:10.5281/zenodo.4732268. 

42.  C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. 

Taniguchi, P. Kim, K. L. Shepard, J. Hone, Boron nitride substrates for high-quality 

graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010). 

43.  W. Melitz, J. Shen, A. C. Kummel, S. Lee, Kelvin probe force microscopy and its 

application. Surf. Sci. Rep. 66 (2011), pp. 1–27. 



44.  R. Borgani, D. Forchheimer, J. Bergqvist, P. A. Thorén, O. Inganäs, D. B. Haviland, 

Intermodulation electrostatic force microscopy for imaging surface photo-voltage. Appl. 

Phys. Lett. 105 (2014), p. 143113. 

45.  J. Colchero, A. Gil, A. M. Baró, Resolution enhancement and improved data interpretation 

in electrostatic force microscopy. Phys. Rev. B - Condens. Matter Mater. Phys. 64, 245403 

(2001). 

46.  C. Sevik, A. Kinaci, J. B. Haskins, T. Çağın, Characterization of thermal transport in low-

dimensional boron nitride nanostructures. Phys. Rev. B. 84, 085409 (2011). 

47.  I. Leven, R. Guerra, A. Vanossi, E. Tosatti, O. Hod, Multiwalled nanotube faceting 

unravelled. Nat. Nanotechnol. 11, 1082–1086 (2016). 

48.  P. C. Hariharan, J. A. Pople, The influence of polarization functions on molecular orbital 

hydrogenation energies. Theor. Chim. Acta. 28, 213–222 (1973). 

49.  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, 

G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, 

J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. 

Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. 

Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. 

Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. 

Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. 

Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. 

Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. 

Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. 



Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. 

Foresman, D. J. Fox, Gaussian 09, Rev. D.01. Gaussian Inc., Wallingford, CT (2016). 

50.  S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio 

parametrization of density functional dispersion correction (DFT-D) for the 94 elements 

H-Pu. J. Chem. Phys. 132, 154104 (2010). 

51.  F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and 

quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. 

Chem. Chem. Phys. 7, 3297–3305 (2005). 

52.  G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy 

calculations using a plane-wave basis set. Phys. Rev. B - Condens. Matter Mater. Phys. 

54, 11169–11186 (1996). 

53.  J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. 

Phys. Rev. Lett. 77, 3865–3868 (1996). 

54.  D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. 

Phys. Rev. B - Condens. Matter Mater. Phys. 59, 1758–1775 (1999). 

55.  A. Ambrosetti, A. M. Reilly, R. A. Distasio, A. Tkatchenko, Long-range correlation 

energy calculated from coupled atomic response functions. J. Chem. Phys. 140, 18A508 

(2014). 

56.  P. Zhao, C. Xiao, W. Yao, Universal superlattice potential for 2D materials from twisted 

interface inside h-BN substrate. arXiv (2020) (available at 

http://arxiv.org/abs/2011.03933). 

57.  C. Kittel, Introduction to Solid State Physics, 8th edition. Wiley Sons, New York, NY 



(2004). 

58.  P. P. Gillis, Calculating the elastic constants of graphite. Carbon N. Y. 22, 387–391 

(1984). 

 


