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ABSTRACT: A new parametrization of the anisotropic interlayer potential for
hexagonal boron nitride (h-BN ILP) is presented. The force-field is benchmarked
against density functional theory calculations of several dimer systems within the
Heyd-Scuseria-Ernzerhof hybrid density functional approximation, corrected for
many-body dispersion effects. The latter, more advanced method for treating
dispersion, is known to produce binding energies nearly twice as small as those
obtained with pairwise correction schemes, used for an earlier ILP parametriza-
tion. The new parametrization yields good agreement with the reference cal-
culations to within ∼1 and ∼0.5 meV/atom for binding and sliding energies,
respectively. For completeness, we present a complementary parameter set for
homogeneous graphitic systems. Together with our previously suggested ILP
parametrization for the heterogeneous graphene/h-BN junction, this provides a
powerful tool for consistent simulation of the structural, mechanical, tribological,
and heat transport properties of both homogeneous and heterogeneous layered structures based on graphene and h-BN.

■ INTRODUCTION

The successful isolation of single layer graphene in 20041 has
triggered an avalanche of studies aiming to understand the
physical and chemical properties of carbon-based and inorganic
two-dimensional (2D) layered materials (see, e.g., refs 2−13).
The reduced dimensionality of these systems allows for an
efficient computational evaluation of their structural and elec-
tronic properties within the framework of first-principles calcu-
lations based on density functional theory (DFT).14 Never-
theless, when modeling large nonperiodic structures and their
long-term dynamics, DFT becomes prohibitively expensive and
one needs to resort to simplified and more computationally
efficient approaches.
Classical force-fields (FFs) are one of the most popular alter-

natives for studying the structural, dynamical, mechanical,
tribological, and heat transport characteristics of 2D layered
materials. Due to the inherent anisotropy of these systems, FFs
are often designed to describe their intra- and interlayer inter-
actions separately. To treat the former, many intralayer FFs
have been presented over the years for a variety of material
compositions.15−38 These often include bonded interactions
describing two-body bond stretching and compression, three-
body bond angle bending, and four-body torsional angle defor-
mations, as well as nonbonded two-body dispersive and elec-
trostatic interactions. The corresponding force-constants and
equilibrium values are either empirically fitted or parametrized
against higher-accuracy computational methods. As for the

interlayer interactions, classical electrostatic Coulomb terms are
used whenever significant partial atomic charges exist. These
are often augmented by Lennard-Jones or Morse-type potentials
to treat the long-range attractive dispersion interactions and the
short-range Pauli-repulsions.22,24,39,40 The latter, however,
depend on two-body interatomic distances and therefore fail
to capture the anisotropic nature of the layered structure,
resulting in too shallow interlayer sliding energy landscapes.41

This strongly hinders their ability to describe interlayer mech-
anical and tribological properties.42

To address this problem, Kolmogorov and Crespi (KC)
presented an anisotropic two-body interlayer potential (ILP)
term that depends not only on the interatomic distance but also
on interatomic relative lateral displacement.43,44 The KC-ILP
expression consists of a long-range isotropic Lennard-Jones
attraction term and a short-range isotropic Morse-like repulsive
term, corrected for anisotropic effects by a lateral Gaussian-type
repulsion with the following form:
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distances between atomic centers i and j, respectively. The
latter is defined as the shortest distance between atom j
on one graphene layer and the surface normal at atom i resid-
ing on an adjacent graphene layer. With appropriate empirical
parametrization, the KC potential was shown to treat accu-
rately both interlayer binding and sliding energy variations
in graphitic systems.41 Recently, the KC functional form was
adapted to treat the heterogeneous junction of graphene and
hexagonal boron nitride (h-BN), using empirical parameter
fitting.45,46

In order to extend the scope of the KC approach to new
layered material junctions, where empirical reference data are
scarce or even completely lacking, the parameter fitting pro-
cedure requires reliable reference data based on accurate compu-
tational methodologies. To this end, we recently presented a
modified anisotropic ILP expression that consists of three
interaction terms:47,48 short-range repulsion, long-range attrac-
tion, and electrostatic interactions, as described in detail
below.
For homogeneous h-BN junctions our original ILP para-

metrization involved fitting against Tkatchenko-Scheffler van
der Waals (TS-vdW) corrected DFT reference calculations of
finite dimer systems.47,49,50 While being state-of-the-art at the
time, this procedure neglects many-body dispersion (MBD)
effects. An efficient and accurate scheme that takes MBD
effects into account has been developed since.51−54 As with
the TS-vdW approach,55 within the MBD approach, the pro-
blem of obtaining an accurate description of both geometry

and electronic structure in weakly bound systems is decou-
pled. For each system, a standard DFT calculation using an
exchange-correlation density functional approximation that
provides a reliable description of the intralayer structure and
electronic properties is performed. An MBD correction is then
employed to remedy the insufficient long-range correlation
description provided by standard DFT exchange-correlation
functionals. This procedure typically yields CCSD(T) quality
results.48,53 Within the MBD approach, one first evaluates the
TS-vdW C6 coefficients and atomic polarizabilities by normal-
izing their free-atom values using their effective atomic
Hirshfeld volume in the molecular or solid state environ-
ment.56,57 Then, the atomic response functions are mapped
onto a set of quantum harmonic oscillators that are coupled
through dipole−dipole interactions to obtain self-consistent
screened polarizabilities. The latter are used to calculate the
correlation energy of the interacting oscillator model system,
within the random-phase approximation.
For bulk graphite and h-BN, Gao and Tkatchenko have

shown that MBD effects reduce binding energies by nearly a
factor of 2, as compared to pairwise correction schemes, with a
smaller but still noticeable effect on the interplanar distances.58

Therefore, it is imperative to revise the ILP parametrization so
as to reflect advances in the underlying first-principles theory,
on which it is based. Recently, we used a range-separated ver-
sion of the MBD scheme53 to parametrize an ILP for hetero-
geneous graphene/h-BN junctions.48 In order to provide a
consistent description for homogeneous h-BN structures, in the

Figure 1. Binding energy curves of (a) the borazine dimer; (b) the borazine/HBNC system; and (c) the HBNC dimer calculated using HSE+MBD
(black) compared to HSE+TS-vdW data (red) and to the B3LYP+TS-vdW results of ref 47 (green). The energy axis origin of each curve is set as the
energy of the corresponding dimer at a separation of 100 Å.

Table 1. List of ILP Parameter Values for Homogeneous h-BN Based Systems, Fitted Against MBD-Corrected DFT Reference
Data, Using Variable Effective Atomic Charges Obtained via the EEM Method

value

term parameter BB NN HH BH NH BN units

dispersive dij 15.0 15.0 15.0 15.0 15.0 15.0 ----
sR,ij 0.8 0.8 0.784 0.784 0.784 0.8 ----
rij
eff 3.786 3.365 2.798 3.292 3.082 3.576 Å
C6,ij 1007.322 300.433 50.870 241.686 120.589 490.681 kcal · Å6/mol

taper Rcut,ij 16.0 16.0 16.0 16.0 16.0 16.0 Å

repulsive αij 7.5 8.0 9.0 9.0 9.0 8.0 ----
βij 3.10 3.33 2.70 2.80 2.70 3.12 Å
γij 1.6 1.2 20.0 20.0 20.0 1.6 Å
εij 0.46 0.21 0.31 0.31 0.25 0.20 kcal/mol
Cij 0.45 0.66 0.13 0.13 0.13 0.10 kcal/mol

electrostatic κ 14.4 14.4 14.4 14.4 14.4 14.4 eV · Å
λii 0.70 0.69 0.80 0.75 0.74 0.69 Å−1

EEM χj* 10.0 11.4 10.2 ---- ---- ---- eV
ηj* 6.7020 7.0000 7.0327 ---- ---- ---- eV
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present study we reparametrize our original h-BN ILP against
MBD corrected reference data. Furthermore, while the KC-ILP
already provides a good description of the interlayer interac-
tions in homogeneous graphene junctions, for full compatibility
with our other parametrizations we offer a complementary
parametrization of our ILP term for homogeneous graphitic
systems. We find that the simple pairwise ILP expression has
sufficient parametric flexibility to capture the main many-body
dispersion effects also for the homogeneous systems considered
herein.

■ REFERENCE DFT CALCULATIONS
We adopt the procedure used in ref 48, where the ILP was
parametrized for the heterogeneous graphene/h-BN junction.
Four h-BN systems are considered: (i) the borazine dimer;
(ii) borazine on hexaborazino-coronene (the BN analogue of
coronene, with the chemical formula B12N12H12, denoted
herein as HBNC); (iii) the HBNC dimer; and (iv) a periodic
h-BN bilayer. Correspondingly, for graphene we consider
(i) the benzene dimer; (ii) benzene on coronene; (iii) the
coronene dimer; and (iv) a periodic graphene bilayer.
The isolated monomers of graphene and h-BN were first

optimized using the screened-exchange hybrid functional of
Heyd, Scuseria, and Ernzerhof (HSE)59−62 and the split-valence
double-ζ 6-31G** Gaussian basis-set,63 as implemented in
the GAUSSIAN suite of programs.64 The various dimer sys-
tems were then formed by placing pairs of monomers at
their respective optimal stacking mode (AA′ for h-BN and
AB for graphene) and interdimer distance (see Supporting
Information for dimer coordinates and insets in Tables 2 and 5

below for visualization). This was followed by binding and
sliding energy calculations performed by rigidly shifting the
monomers with respect to each other vertically and laterally,
respectively. In these calculations, we used the MBD corrected
HSE functional, as implemented in the FHI-AIMS code,65 with
the tier-2 basis-set,66 using tight convergence settings (see the
Supporting Information of ref 48 for more details). Basis-set
superposition errors at the equilibrium interdimer distance
with this basis were previously estimated to be on the order of
0.16 meV/atom for heterogeneous graphene/h-BN system and
0.5 meV/atom for homogeneous h-BN dimers and are
therefore neglected throughout the current parametrization
procedure.47,48,55,67

To demonstrate the importance of including MBD effects
in our reference calculations, we compare in Figure 1 the
dimer binding-energy curves of ref 47 obtained using the
pairwise TS-vdW approach applied to the B3LYP68 hybrid
density functional and the MBD correction scheme applied to
the HSE functional. For completeness, we also present results
obtained at the HSE+TS-vdW level of theory using the same
basis-set and convergence criteria. Within the TS-vdW scheme,
the onset of the pairwise correction is explicitly determined
according to the amount of long-range interactions accounted
for in the underlying exchange-correlation density functional
approximation.57 Hence, the difference between the B3LYP
+TS-vdW and HSE+TS-vdW binding energy curves is reduced
with increasing system size. On the contrary, MBD effects
become more significant in larger systems. For the HBNC
dimer the difference in binding energies obtained using the
B3LYP+TS-vdW and HSE+TS-vdW density functionals is

Figure 2. Binding energy curves of (a) the borazine dimer; (b) the borazine/HBNC system; (c) the HBNC dimer; and (d) a periodic h-BN bilayer,
all calculated using the revised h-BN ILP with varying (red) and fixed (orange) partial charges, compared to the reference HSE+MBD results
(black). The energy axis origin of each curve in panels (a)−(c) is set as the energy of the corresponding dimer at a separation of 100 Å. For the
periodic bilayer system (panel (d)) the energy axis origin is calculated as twice the energy of a single h-BN layer.
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merely 0.09 meV/atom, whereas the difference between the HSE
+TS-vdW and HSE+MBD binding energies is as large as
4.77 meV/atom. The latter is at least an order of magnitude
above the estimated numerical accuracy of our reference
calculations,67 clearly justifying the need for reparametrization
of the h-BN ILP.

■ STRUCTURE OF THE INTERLAYER POTENTIAL

Short-Range Repulsion. To describe short-range repul-
sion we use a screened KC-type anisotropic repulsion term of

the form:

ρ ε= × + +
α β

ρ
γ

ρ
γ− − −
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where the polynomials multiplying the anisotropic Gaussian
repulsion terms have been omitted and a long-range taper cutoff
function of the form Tap(rij) = 20(rij/Rcut,ij)

7 − 70(rij/Rcut,ij)
6 +

84(rij/Rcut,ij)
5 − 35(rij/Rcut,ij)

4 + 1, which provides a continuous

Table 2. Binding Energies (BE) and Equilibrium Distances (Deq) for All Finite and Periodic h-BN Systems Studied in Figure 2,
as Obtained Using the HSE+MBD Method and the Revised h-BN ILP Developed in This Worka

aFor each system, results from both the EEM approach and the fixed-charge approach are presented. Point group symmetries of each dimer are
provided in parentheses near the dimer name.

Table 3. List of ILP Parameter Values for Homogeneous h-BN Based Systems, Fitted Against MBD-Corrected DFT Reference
Data, Using Fixed Effective Atomic Charges

value

term parameter BB NN HH BH NH BN units

dispersive dij 15.0 15.0 15.0 15.0 15.0 15.0 ----

sR,ij 0.8 0.8 0.784 0.784 0.784 0.8 ----

rij
eff 3.786 3.365 2.798 3.292 3.082 3.576 Å

C6,ij 1037.322 310.433 37.870 185.686 90.589 516.681 kcal · Å6/mol

taper Rcut,ij 16.0 16.0 16.0 16.0 16.0 16.0 Å

repulsive αij 8.0 8.0 9.0 9.0 9.0 7.5 ----

βij 3.10 3.34 2.70 2.80 2.70 3.17 Å

γij 1.6 1.2 20.0 20.0 20.0 1.8 Å

εij 0.46 0.21 0.31 0.31 0.25 0.20 kcal/mol

Cij 0.45 0.68 0.13 0.13 0.13 0.13 kcal/mol

electrostatic κ 14.4 14.4 14.4 14.4 14.4 14.4 eV · Å
λij 0.70 0.69 0.80 0.75 0.74 0.69 Å−1

qi 0.42 −0.42 0 ---- ---- ---- | ̅|e
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cutoff (up to third derivative) for interatomic separations larger
than Rcut,ij, is used to dampen the repulsion term at large dis-
tances. These modifications simplify the FF expressions and
reduce the computational burden, while providing a satisfactory
description of the interlayer interactions.47,48 The parameters εij
and Cij are constants that set the energy scales associated with
the isotropic and anisotropic repulsion, respectively, βij and γij
set the corresponding interaction ranges, and αij is a parameter
that sets the steepness of the isotropic repulsion function.
Long-Range Attraction. We adopt the screened Lennard-

Jones long-range attraction term of the Tkatchenko-Scheffler
(TS) correction scheme,56 in the form

= × − + ·− · −
−

⎪ ⎪
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⎨
⎩

⎡⎣ ⎤⎦
⎫
⎬
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V r r
C

r
( ) Tap( ) 1 eij ij

d r S r ij

ij
Att
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6
ij ij R ij ij,
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Here, rij
eff is the sum of effective equilibrium vdW atomic radii of

atoms i and j that reside on different layers, C6,ij is the pairwise
dispersion coefficient of the two atoms in the solid-state envi-
ronment, and dij and SR,ij are unitless parameters defining the

steepness and onset of the short-range Fermi−Dirac type
damping function.69 As in the repulsive term discussed above,
we implement the long-range taper damping in order to reduce
the computational burden. We note that the specific functional
form appearing in eq 3 is chosen as it allows us to evaluate some
of the parameters directly from the first-principles calculations.

Electrostatic Interaction. In cases where atoms residing
on the interacting layers bear sizable effective charges, elec-
trostatic contributions should be taken into account. To this
end, we utilize the formalism implemented in the ReaxFF
scheme.70,71 Within this approach, a shielded Coulomb poten-
tial term of the form

κ λ= × · +V r r q q r( ) Tap( ) [23.0609 / (1/ ) ]ij ij i j ij ijCoul
3 33

(4)

is used. Here, κ is Coulomb’s constant, qi and qj are the effective
charges of atoms i and j that reside on different layers (given in
units of the absolute value of the electron charge), the factor
23.0609 kcal/(mol eV) converts the units of energy from eV
to kcal/mol, and λ λ λ=ij ii jj is a shielding parameter that

eliminates the short-range singularity of the classical monopolar
electrostatic interaction expression. This shielding takes effect
in regions where Pauli repulsions between overlapping electron
clouds dominate the interlayer potential and hence has only a
minor influence on the results. Again, we use a taper damping
function to avoid the computational burden involved in the
calculation of long-range electrostatic interactions. For periodic
systems, this should be done with care, as some of the lattice
sums may become conditionally convergent.72 In such cases,
alternative approaches such as the Ewald summation technique
should be considered.73,74

Most often, the effective ionic charges can be treated as
constant values throughout the simulation. Nevertheless, in
order to provide a general description, we calculate them
dynamically using the electronegativity equalization method
(EEM).70,75−77 This method relies on a principle formulated
by Sanderson, stating that upon molecular or solid forma-
tion the electronegativities of the constituent atoms equalize to

Figure 3. Sliding energy landscape of the periodic h-BN (upper panels) and graphene (lower panels) bilayers calculated for rigid layers laterally
shifted at a fixed interlayer distance of 3.3 and 3.4 Å, respectively, using the ILP with fixed charges (left column) and HSE+MBD (middle column).
The differences between the sliding energy surfaces calculated using the reference HSE+MBD data and the ILP results are presented in the right
column. The energy axis origin is set to the energy of the optimally stacked configuration for each system.

Table 4. List of ILP Parameter Values for Homogeneous
Graphene-Based Systems, Fitted Against MBD-Corrected
DFT Reference Data

value

term parameter CC HH CH units

dispersive dij 15.0 15.0 15.0 ----
sR,ij 0.704 0.784 0.784 ----
rij
eff 3.586 2.798 3.197 Å
C6,ij 522.915 37.870 131.989 kcal · Å6/mol

taper Rcut,ij 16.0 16.0 16.0 Å

repulsive αij 9.2 9.0 9.0 ----
βij 3.22 2.70 2.80 Å
γij 1.2 20.0 20.0 Å
εij 0.01 0.31 0.31 kcal/mol
Cij 0.80 0.13 0.13 kcal/mol

electrostatic qi 0 0 ---- | ̅|e
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yield a global electronegativity of the whole system.78,79 Hence,
the electronegativity of a given atom within the molecular
environment (χi) is written in terms of the corresponding
isolated atom electronegativity80 (χi

0) and hardness81 (ηi
0) as

χ χ χ η η κ λ= + Δ + + Δ + ∑ +≠q q r( ) 2( ) / (1/ )i i i i i i j j ij ij
0 0

i
3 33 .

Here, Δχi and Δηi represent the electronegativity and hardness
variations due to the embedding molecular or solid environ-
ment, and the last term incorporates the electrostatic potential
induced by all other atoms in the system. The effective atomic
charges can be obtained by enforcing the guiding principle that
within the molecular or solid environment all atomic elec-
tronegativities should be equal to the equilibrated molecular
electronegativity χi=1···N = χeq. To this end, the matrix eq 5 is
solved, where the isolated atomic electronegativities and
hardnesses, χi

0 and ηi
0, their corresponding molecular environ-

ment variations, Δχi and Δηi, the shielding factors, λij, and the
total charge, Q, should be provided as input. The latter is
dictated by the modeled system, while the former can be
parametrized as described below.

■ PARAMETER FITTING
All ILP parameters discussed above were fit, within reasonable
physical bounds, to obtain good agreement with the reference

binding and sliding energy curves. Specifically, for the long-
range attraction term the parameter values obtained via the
TS-vdW scheme were used as a starting point for further refine-
ment. The parametrization is intentionally biased toward better
agreement with the reference data of extended systems, where
MBD effects become more significant. These systems are
harder to treat using first-principles methods. Therefore, they
require the use of approximate approaches that provide a good
balance between accuracy and computational efficiency, such as
the developed ILP.
Table 1 provides the full set of ILP parameter values

suggested for homogeneous h-BN based systems. The resulting
binding energy curves of all h-BN based dimer models con-
sidered in this work are compared to the reference HSE+MBD
data in Figure 2. It is readily observed that the revised ILP
(red) reproduces the reference binding energy curves (black)
well. The largest deviations in the calculated binding energy
and equilibrium distance are 0.96 meV/atom and 0.07 Å (see
Table 2), obtained for the HBNC dimer and Borazine on
HBNC systems, respectively. Notably, for the periodic bilayer
system the agreement between the ILP and reference data is
within 0.02 meV/atom near the equilibrium interlayer distance.
A comparison with the original h-BN ILP parametrization, per-
formed against TS-vdW corrected B3LYP reference data,47

demonstrates that the revised version typically yields smaller
binding energies and somewhat increased equilibrium interdimer
distances (see Supporting Information), consistent with the cor-
responding reference first-principles calculations (see Figure 1).

Figure 4. Binding energy curves of (a) the benzene dimer; (b) the benzene/coronene system; (c) the coronene dimer; and (d) a periodic graphene
bilayer, all calculated using the graphene ILP (red) and compared to the reference HSE+MBD results (black). For further comparison, the KC
binding energy curve of the periodic bilayer system (brown) is given in panel (d). The energy axis origin of each curve in panels (a)−(c) is set as the
energy of the corresponding dimer at a separation of 100 Å. For the periodic bilayer system (panel (d)) the energy axis origin is calculated as twice
the energy of a single graphene layer.
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Importantly, the calculated partial charges on the boron and
nitrogen atoms are found to be quite insensitive to the relative
positioning of the monomers within a given dimer system.
Therefore, in order to reduce the computational burden, one
can usually avoid the EEM calculation by using fixed partial
charges. To obtain a good fit with the reference data, this
requires some modification of the parameters in the non-
electrostatic terms to compensate for the fixing of the charge.
Table 3 provides the full set of ILP parameters to be used when
fixed partial charges are implied. The corresponding binding-
energy curves (orange lines in Figure 2) show good agreement
with the reference data, with maximal binding-energy and equi-
librium interdimer distance deviations of 1.2 meV/atom and
0.05 Å obtained for the HCBN dimer and the Borazine dimer
systems, respectively (see Table 2). Considerably smaller binding-
energy (0.23 meV/atom) and equilibrium interdimer distance
(0.02 Å) deviations are obtained for the periodic bilayer system.
An important feature of the developed ILP is its ability to

simultaneously capture both the interlayer binding and sliding
energy landscapes. To verify this, we show in Figure 3 the
sliding energy landscape of the periodic h-BN bilayer (upper
panels), calculated using the ILP with the fixed-charge param-
etrization of Table 3 (upper left panel), compared to the refer-
ence sliding energy landscape obtained using HSE+MBD (upper
middle panel). Excellent quantitative agreement between the two
surfaces is obtained, with maximal deviations of 0.52 meV/atom
(upper right panel). This clearly demonstrates that the aniso-
tropic nature of the ILP is sufficient to provide a good
description of both binding and sliding physics of h-BN based
systems even in the presence of many-body dispersion effects.
As mentioned above, for completeness we offer in Table 4

the recommended ILP parameters for graphitic systems. This is

not intended to replace the KC formalism but rather to provide
a uniform platform when performing calculations on differ-
ent layered materials. The resulting ILP binding energy curves
(red) are compared to the HSE+MBD reference data (black) in
Figure 4. Here too, good agreement between the ILP and the
reference data is obtained, with maximal binding-energy devia-
tion of 0.39 meV/atom for the benzene dimer and benzene-on-
coronene systems, and maximal interdimer equilibrium distance
deviation of 0.11 Å obtained for the coronene dimer system (see
Table 5), with considerably smaller deviations (0.23 meV/atom
and 0.02 Å, respectively) obtained for the periodic bilayer
system. For comparison, the KC binding energy curve of the
periodic system (brown) is provided in Figure 4d. As can be
seen, the KC parametrization, fit to experimental reference data,
predicts a very similar interlayer distance (3.37 Å) with a some-
what smaller (−21.75 meV/atom) binding energy.
To verify that the ILP parametrization for graphene can also

capture the interlayer sliding physics, we also show in Figure 3
the sliding energy landscape of the periodic graphene bilayer
(lower panels) calculated using the ILP (lower left panel) with
the parametrization of Table 4 compared to the reference slid-
ing energy landscape obtained using HSE+MBD (lower middle
panel). Here too, excellent quantitative agreement between the
two surfaces is obtained, with maximal deviations as small as
0.59 meV/atom (lower right panel).

■ SUMMARY AND CONCLUSIONS
We presented a reparametrization of the interlayer potential
for hexagonal boron nitride that considers many-body dis-
persion effects. The new set of parameters is calibrated against
binding and sliding energy surfaces calculated for a set of dimer
systems using MBD-corrected density functional theory calcula-

Table 5. Binding Energies (BE) and Equilibrium Distances (Deq) for All Finite and Periodic Graphene Systems Studied in
Figure 4, as Obtained Using the HSE+MBD Approach and the Graphene ILP Developed in This Worka

aPoint group symmetries of each dimer are provided in parentheses near the dimer name.
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tions based on the screened-exchange-correlation HSE density
functional. A complementary set of HSE+MBD calibrated
ILP parameters was also provided for graphitic systems, for
transferability purposes. For all systems considered, the ILP was
found to yield good agreement with the new reference data,
with binding-energies that can be nearly twice as small as those
obtained via the previous TS-vdW reference calculations. Com-
bined with our previous ILP parametrization for the heterogeneous
graphene/h-BN junction, these allow for flexible and internally
consistent simulations of the mechanical, tribological, dynam-
ical, and heat transport properties of both homogeneous and
heterogeneous layered structures based on graphene and h-BN.
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