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A parameter-free version of the recently developed driven Liouville-von Neumann equation
[T. Zelovich et al., J. Chem. Theory Comput. 10(8), 2927–2941 (2014)] for electronic transport
calculations in molecular junctions is presented. The single driving rate, appearing as a fitting param-
eter in the original methodology, is replaced by a set of state-dependent broadening factors applied to
the different single-particle lead levels. These broadening factors are extracted explicitly from the self-
energy of the corresponding electronic reservoir and are fully transferable to any junction incorporating
the same lead model. The performance of the method is demonstrated via tight-binding and extended
Hückel calculations of simple junction models. Our analytic considerations and numerical results indi-
cate that the developed methodology constitutes a rigorous framework for the design of “black-box”
algorithms to simulate electron dynamics in open quantum systems out of equilibrium. Published by
AIP Publishing. [http://dx.doi.org/10.1063/1.4976731]

INTRODUCTION

Over the past decade, the study of electron dynam-
ics in open quantum systems out of equilibrium has gained
growing attention within the molecular electronics commu-
nity.1–9 Many important aspects of molecular junctions have
been addressed including the characterization of transient cur-
rent dynamics,10–12 dynamical response to time-dependent
bias voltages,13,14 optically induced current variations,15–24

and non-equilibrium thermodynamics in externally driven
systems.25–28 Despite the many developments made in the
field, understanding dynamical effects in molecular junctions
remains a major theoretical, computational, and experimental
challenge. This challenge needs to be addressed at a funda-
mental level to enable the future design of molecular-based
electronic components with fast response times.

In recent work we presented the driven Liouville-von Neu-
mann (DLvN) equation of motion (EOM) for simulating time-
dependent electron transport in molecular junctions.3,23,29–33

Within this approach the molecular junction is represented
by a fully atomistic finite model system consisting of two
sufficiently large lead sections bridged by an (extended)
molecule. Open boundary conditions are enforced by
augmenting the Liouville-von Neumann EOM with an appro-
priate non-unitary source/sink term. The latter continuously

a)Present address: Department of Chemistry, New York University, New York,
NY 10003, USA.

drives the leads’ state occupations toward the equilibrium
Fermi-Dirac distribution of the (implicit) electronic reservoir
to which each lead is coupled. With appropriate choices for
the chemical potential and the electronic temperature of the
various reservoirs, a non-equilibrium charge-polarized state,
characterized by charge accumulation and depletion near the
corresponding junction model edges, is achieved. This, in turn,
results in well-defined voltage and electronic temperature gra-
dients that induce dynamic current flow through the system.
The performance of the DLvN approach was demonstrated
for simple molecular junctions based on tight-binding (TB)
Hamiltonian models29,30 as well as for explicit non-orthogonal
basis-set representations based on extended Hückel (EH) the-
ory.31 The dynamics obtained by the DLvN EOM were shown
to conserve density matrix positivity and to obey Pauli’s exclu-
sion principle.29–32 Furthermore, the method was shown to
accurately describe dynamic currents in junctions subjected to
time-dependent perturbations.23

The success of the DLvN approach suggests that it offers
an efficient and physically motivated methodology for time-
dependent charge transport in molecular junctions. Neverthe-
less, the original theory incorporates a single fitting parameter
that hinders its complete first-principles implementation.34

This parameter is a driving factor that dictates the rate at which
the system is driven out of equilibrium. While the results
were shown to be fairly insensitive to the exact value of
the driving rate,29 in practice it has to be fitted to repro-
duce reference steady-state Landauer currents. Recently, a
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FIG. 1. (a) Schematic real-space representation of a finite
molecular electronic junction model formally divided
into left and right lead sections bridged by an extended-
molecule; (b) energy representation of the same molecular
junction model in the basis of eigenstates of the different
system sections; (c) schematic representation of the iter-
ative principal layer procedure to obtain the reservoir’s
surface Green’s function and of the coupling and overlap
matrix blocks between the lead section and its adjacent
reservoir’s first principal layer (PL), required to construct
the self-energy matrix.

procedure to further reduce the sensitivity of the calculated cur-
rents to the driving rate was suggested within the framework
of time-dependent density functional theory.34 Interestingly,
for simple model systems it was shown that an appropriate
value of the driving rate can be deduced from physical con-
siderations involving wave packet reflection time scales at the
boundaries of the finite junction model.29 This suggests that the
driving rate should be generally attainable from first-principles
considerations.

It is the purpose of the current study to present a rigorous
methodology that replaces the single driving rate appearing in
the original theory by a set of single-particle lead state broad-
ening factors that are extracted explicitly from the self-energy
of the corresponding reservoir. This eliminates the need for
any fitting procedure, resulting in an autonomous methodol-
ogy that can be readily implemented within existing packages
in a “black-box” fashion.

METHODOLOGY

Within the DLvN approach, a finite junction model is
formally divided into lead sections that are bridged by an
extended-molecule region (see Figure 1(a)). The latter incor-
porates the molecule augmented by lead sections that are
sufficiently large such that the electronic properties at their
far edges are converged to those of the infinite lead. Assuming
a two-lead setup, the original EOM has the following block
form:29
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where H and ρ are the Hamiltonian matrix representation and
density matrix of the entire finite junction, respectively, given
in the eigenstate basis of the individual system sections (see
Figure 1(b)); ρL/R are the density matrix blocks of the left
and right lead sections, respectively; ρL/R,EM and ρEM,L/R rep-
resent the lead/extended-molecule coherences; ρ0

L/R are diag-
onal target density matrices, whose fixed diagonal elements
follow the Fermi-Dirac occupation distribution sampled at the
left/right lead eigenvalues with chemical potential and elec-
tronic temperature of the corresponding reservoir to which the
lead section is implicitly coupled; ~ is the reduced Plank con-
stant; and Γ/~ is a real positive number determining the rate

at which the leads are driven toward their target equilibrium
states.

In the energy domain, the choice of a single driving
rate corresponds to the application of a uniform Lorentzian
broadening to the entire single-particle lead state manifold.
This broadening represents the effect of coupling the finite
lead section to an implicit semi-infinite electronic reservoir
within the wide-band approximation. In practice, in order to
obtain a continuous lead density of states (DOS) in the trans-
port energy window,35 the discrete DOS should be slowly
varying in this range such that the broadening factor can
be chosen as the corresponding typical level spacing. Fur-
thermore, only when the different leads present similar elec-
tronic structure can the same broadening factor be applied to
all.

In order to eliminate the ambiguity involved in the choice
of the driving rate and to represent the effect of coupling
the leads to external reservoirs more accurately, we introduce
state-dependent broadenings to each lead level. To this end,
we employ Green’s function (GF) theory, where the effects
of coupling a subsystem (in our case the finite lead section)
to its environment (the semi-infinite reservoir) are described
by augmenting the Hamiltonian of the subsystem with a self-
energy operator, in which information as to the electronic
structure of the environment and its coupling to the subsystem
is encoded. The real part of the self-energy operator constitutes
level shifting within the subsystem, whereas the imaginary
part induces level broadening due to the finite life-time of the
coupled states.

To obtain the self-energy operator, explicit reservoir mod-
els are constructed as duplicates of the finite lead sections
(see Figure 1(c)).36 The energy dependent matrix representa-
tion of the retarded surface Green’s function of each isolated

reservoir, Gr,0
Res (ε) =

[
εSRes −H0

Res

]−1
, is first calculated.

Here, H0
Res is the Hamiltonian matrix representation of the

uncoupled semi-infinite reservoir in a given basis-set, SRes is
the corresponding overlap matrix, and ε = E + iη, where E is
a real variable representing the electron energy and η → 0+

is a small imaginary part added to soften singularities (see the
supplementary material for a discussion of the sensitivity of
the calculated state-dependent broadenings to the value of η).
To this end, we use the iterative principal layer approach,37–43

where the semi-infinite reservoir is sliced into finite sections
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(termed layers, see Figure 1(c)) that are sufficiently wide
such that interactions beyond nearest-neighboring layers can
be neglected. Under the above conditions, H0

Res assumes a
block tri-diagonal form, with the dimension of each block
being that of the principal layer. An efficient iterative algo-
rithm is then used to successively augment the surface layer
by bulk layers until convergence of the surface electronic
properties, to within the required accuracy, is reached. The
resulting Gr,0

Res (ε) has the dimension of one principal layer.
Next, the reservoir’s retarded self-energy matrix is constructed
via Σr

Res (ε) =
(
ESl,Res − Vl,Res

)
Gr,0

Res (ε)
(
ESRes,l − VRes,l

)
,

where Sl,Res and Vl,Res are the real-space lead/reservoir overlap
and coupling matrix blocks, respectively, calculated between
the finite lead section and its adjacent reservoir princi-
pal layer (see Figure 1(c)), with SRes,l =S†l,Res and VRes,l

= V†l,Res.
For each bare lead state, |l〉, the reservoir’s self-energy,

evaluated at the corresponding energy εl, is added to the finite
lead model Hamiltonian HLead + Σ

r
Res (εl) in the real-space

(site) representation.44,45 The resulting dressed Hamiltonian
is then diagonalized and the complex eigenvalue correspond-
ing to the original bare lead state |l〉 is extracted, by com-
paring the eigenvectors of the dressed Hamiltonian to those
of the bare lead Hamiltonian (more details regarding this
procedure are provided below). The imaginary part (multi-
plied by �2)45 of this eigenvalue is chosen as the (energy
independent) broadening factor of state |l〉 (see Appendix
A). We note that by evaluating the reservoir’s self-energy
at the energy of the given lead eigenstate a “local wide-
band approximation” is invoked, where Σr

Res (ε) is assumed
to be weakly dependent on energy in the vicinity of εl (see
the supplementary material for a discussion regarding the
validity of this approximation).46,47 It should be emphasized
that unlike the full wide-band approximation, which assumes

constant (i.e., independent of the electron energy) and uniform
broadening of all lead states, our approach results in constant
but state-dependent broadening factors. The latter, which are
explicitly derived from the reservoir’s self-energy, allow for a
more reliable representation of the electronic structure of the
semi-infinite lead by the finite lead model.

To identify which dressed lead state corresponds to the
bare lead state |l〉, we turn on the lead/reservoir coupling grad-
ually.44 To this end, we multiply the lead/reservoir overlap and
coupling matrices (Sl,Res and Vl,Res) by a scaling factor that is
progressively ramped up from 0 to 1. At each step, k, the (left
or right) eigenfunction, |lk〉, of the new dressed Hamiltonian
that has the largest overlap, |〈lk |lk−1 〉|, with the eigenfunction
that was associated with the bare lead state |l〉 in the previous
step, |lk−1〉, is identified and stored.45,48 This adiabatic connec-
tion assumption allows us to follow the evolution of the bare
lead state continuously into the fully dressed one. As a com-
plementary test we also follow the gradual shift in the real-part
of the lead eigenvalue with increasing coupling to the reser-
voir, allowing us the association of the bare lead state with
its fully dressed counterpart. These shifts are usually found to
be small relative to the full bandwidth of lead states and are
hence neglected throughout the rest of the calculation (see the
supplementary material for a discussion regarding the validity
of this approximation).

The procedure described above is repeated for all eigen-
states of a given finite lead section, resulting in a set of state-
specific broadening factors. Since the calculation requires just
the bare lead overlap and Hamiltonian matrices as input, it is
performed only once per given lead. The obtained broadening
factors are then fully transferable to every molecular junction
using the same lead model.

Given the set of state broadening factors, the DLvN EOM
is written as follows (see Appendix B):

d
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where ΓL and ΓR are diagonal matrix blocks of dimensions
of the finite left and right lead model basis-sets, respectively,
containing the calculated state-specific broadening factors on
their diagonals. Notably, this EOM naturally reduces to the
original DLvN EOM of Eq. (1) when a single uniform driving
rate is used (see Appendix B).

TESTING AND VALIDATION

To validate the developed parameter-free DLvN (PF-
DLvN) methodology, we performed a set of time-dependent
transport calculations on several test systems. We start from
the simplest one-dimensional TB junction model, consist-
ing of two TB chains representing the leads bridged by
a third TB chain acting as the active molecular region
(all model parameters appear in the caption of Figure 2).
The calculated state-dependent broadening factors for lead

models consisting of 200 and 300 sites are presented in
Figure 2(a). The broadening factors form a band that reaches a
maximum at the lead’s Fermi energy and vanishes near the
band edges. This can be rationalized by invoking Fermi’s
golden rule for a single lead level coupled to the entire reser-
voir state manifold.49 Here, the lead level broadening is given

by Γi =
2π
~

���
〈
f ���V̂

���i
〉���

2
δ
(
Ef − Ei

)
, where

〈
f ���V̂

���i
〉

is the coupling
matrix element between lead state |i〉 of energy Ei and reser-
voir state |f 〉 of energy Ef , and δ(x − x0) is the Dirac delta
function. Therefore, within this approximation the broaden-
ings follow the lead/reservoirs coupling scheme that forms a
Newns-Anderson type band.30,50 Increasing the lead size by
a factor of 1.5 without modifying its bandwidth results in a
corresponding increase of the density of states. This is fol-
lowed by a reduction of the calculated broadening factors (see
Figure 2(a)) such that the 200 and 300 sites lead models present
an overall similar continuous density of states. In both cases,
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FIG. 2. Application of the PF-DLvN method for a one-dimensional TB junction (see schematic at the upper right panel) constructed from two TB chain leads
consisting of 200 or 300 sites each, bridged by an extended-molecule comprising a 10 site TB chain molecular section embedded between two 50 site TB chains.
(a) Calculated state-dependent lead level broadenings for a finite lead model size of 200 (blue “+” marks) and 300 (black “+” marks) sites. (b) Time-dependent
current at a bias voltage of 0.3 V and reservoir electronic temperature of 0 K, calculated using the procedure described in Ref. 29 for microcanonical dynamics1

without the driving term (brown and red lines), compared with PF-DLvN simulations (blue and black lines) performed with lead model sizes of 200 (blue and
brown lines) and 300 (black and red lines) sites. The steady-state Landauer current, calculated using the procedure described in Ref. 29, is presented with an X
mark. On-site energies of all sites are taken as 0 eV. The hopping integrals between all sites within the lead and the molecule sections, as well as all lead/molecule
hopping integrals, are taken as �0.2 eV. (c) Same as (b) but with lead/molecule coupling of �0.05 eV. A 4th order Runge-Kutta algorithm is used to propagate
Eq. (2) with a constant 1 fs time-step.51

it is clearly seen that the choice of a single uniform driving
rate is justifiable in a small energy window around the Fermi
energy but should be done with care when larger bias voltages,
approaching the lead band edges, are applied.

The simulated time-dependent currents for a bias voltage
of 0.3 V, applied by a symmetric shift of the chemical
potentials of the two reservoirs in the target density matri-
ces, are presented in Figures 2(b) and 2(c) for strong and weak
lead/molecule coupling, respectively. Polarized initial condi-
tions are employed, where the leads are populated according
to their target level occupations and the molecule levels are
filled up to the Fermi energy of the entire finite model sys-
tem. Using the calculated broadening factors both the 200
and 300 lead site model systems present very similar current
traces that reproduce the Landauer steady-state current and
the plateau regions in the microcanonical1,2,4–7 simulation.
The latter are performed by running unitary LvN dynam-
ics starting from the same non-equilibrium initial polarized
conditions. This provides a clear indication of the ability
of the developed methodology to reliably simulate current
dynamics in open quantum systems with no parameter fitting
involved.

Next, we turn to examine the performance of the PF-DLvN
method for non-orthogonal basis-set representations of molec-
ular junctions, within the framework of EH theory.31 To this
end, a Slater orbital basis-set is introduced to evaluate the over-
lap and Hamiltonian matrix representation elements using the
procedure and parameters described in Ref. 31. First, we con-
sider a hydrogen chain junction model equivalent to the TB

chain model discussed above. Here, two hydrogen chain leads,
300 atoms in length each, are bridged by a third 110 atom
hydrogen chain acting as the extended-molecule region. The
time-dependent current obtained at a bias voltage of 0.5 V and
a uniform inter-atomic distance of 2 Å is presented in Figure
3(a). Here, as well, the PF-DLvN current trace matches well
the microcanonical simulation results up to the point where
the latter exhibits current inversion due to wave-packet reflec-
tion from the edges of the finite lead models. Furthermore, the
steady-state current corresponds well with the Landauer cur-
rent (X mark) calculated using the procedure described in Ref.
31. The broadening factors, plotted in the inset of Figure 3(a),
form a band similar to the one obtained in the TB calculation
(Figure 2(a)), with slight asymmetry around the Fermi energy
(�13.5 eV) due to the non-uniform density of states obtained
within the EH model.

A somewhat more involved picture is obtained when con-
sidering finite-width lead models. Figure 3(b) presents the
current dynamics obtained for a 110 atoms hydrogen chain
bridging two finite-width hydrogen lead models constructed
from five 100 atoms long rows each. Nullification of all broad-
ening factors results in microcanonical dynamics that, in the
present case, suffers from strong current oscillations. This indi-
cates that the finite lead models used are insufficient to obtain
a stable quasi-steady-state. To remedy this, much larger finite
leads have to be modeled, thus hindering the practical applica-
bility of the microcanonical approach to a reliable description
of current dynamics in such molecular junctions. Using the
PF-DLvN approach, after a typical initial rise the current
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FIG. 3. Application of the PF-DLvN approach to an extended Hückel non-orthogonal basis-set representation of hydrogen-based molecular junction models.
The main panels present the PF-DLvN (black line) and the microcanonical (red line) time-dependent currents, calculated using the procedure described in Ref. 31,
at a bias voltage of 0.5 V and reservoir electronic temperatures of 0 K for a 110 atom extended-molecule chain bridging: (a) two 300 hydrogen atom chain-lead
models, and (b) finite-width lead models constructed from 5 rows of 100 hydrogen atom chains each (see schematics above the diagrams). The corresponding
steady-state Landauer currents, calculated using the procedure described in Ref. 31, are presented as reference by the X marks. Insets: lead state-dependent
broadening factors calculated using the PF-DLvN methodology (black “+” marks). Uniform nearest-neighbors inter-atomic distances of 2 Å are used. An adaptive
time step 5th order Runge-Kutta algorithm is used to propagate Eq. (2).51

trace gradually approaches the Landauer results, indicating
the suitability of the calculated broadening factors for driving
the system toward the required non-equilibrium state. Unlike
the atomic chain leads discussed above, however, here these
broadening factors form five bands (see inset of Figure 3(b))
around the Fermi energy (�13.09 eV), which correspond to
the five single-particle states spanned along the direction per-
pendicular to the main lead axis by the minimal basis-set
used.30

As a last test case we consider a carbon chain junction
model, where each atomic center contributes four (one 2s
and three 2p) Slater orbital basis functions. The leads are
modeled by 200 carbon atom chains each bridged by a 110

atom extended-molecule carbon chain. The lead broadening
factors of this system form three bands (see Figure 4(a)).
The two higher broadening bands, appearing in the ranges
(�23.5)–(�18.6) eV and (�13.1)–(�8.5) eV, correspond to the
valence and conduction bands of the system, respectively. The
lower band appearing between �11.8 and �10.8 eV corre-
sponds to the increased density of states in the vicinity of the
Fermi energy at �11.6 eV due to the appearance of van Hove
singularities.

The resulting PF-DLvN time-dependent current ap-
proaches the Landauer reference value at steady-state
(Figure 4(b)), providing additional support for the physical
validity of the developed methodology. This is further

FIG. 4. Application of the PF-DLvN approach to an extended Hückel non-orthogonal basis-set representation of a carbon chain molecular junction (see
schematics above the main panels) constructed from 200 atom lead models bridged by a 110 atom extended-molecule section. (a) The calculated state-dependent
lead level broadening factors (black “+” marks). Inset: the corresponding lead model density of states calculated by broadening each finite lead level with a
normalized Gaussian function of width 0.062 eV that corresponds to the highest broadening factor calculated for this system. (b) Current traces obtained using
the PF-DLvN methodology (black line) and the microcanonical approach (red line), using the procedure described in Ref. 31, for a bias voltage of 0.5 V and
leads electronic temperature of 0 K. The reference Landauer steady-state current, calculated using the procedure described in Ref. 31, is represented by the X
mark. A uniform inter-atomic distance of 2 Å is used throughout the junction model. An adaptive time step 5th order Runge-Kutta algorithm is used to propagate
Eq. (2).51
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emphasized in light of the microcanonical simulation results
that present a complex set of current plateaus with abrupt cur-
rent variations (Figure 4(b)). This reflects the different time
scales associated with the dynamics of various lead states
as manifested by the three broadening factor bands in Fig-
ure 4(a). While one of the obtained plateaus indeed matches
the correct steady-state value it is difficult to assess, with-
out a priori knowledge, when the system attains the correct
quasi-steady-state.

Finally, it should be noted that all systems considered
herein consist of identical lead models that present relatively
uniform DOS within the Fermi transport window. This sug-
gests that the use of a single driving rate should be sufficient
to sustain appropriate open boundary conditions. Indeed, if one
uses the maximal broadening value calculated for each system
using the H+Σ procedure described above as the single driving
rate, the resulting current traces and steady-state occupations
are comparable to those obtained using the full PF-DLvN pro-
cedure (see the supplementary material). Nevertheless, more
realistic model systems, like those considered in Ref. 31, often
exhibit complex non-uniform DOS in the vicinity of the lead
Fermi energy. For such systems, the use of a single driving rate
per lead is insufficient for obtaining an appropriate descrip-
tion of the lead surface electronic properties with a finite lead
model. Hence, the entire set of state-dependent broadening
factors should be used to drive the system out of equilibrium.
Notably, the computational overhead associated with using
state-dependent broadenings over the single driving rate during
the dynamics is negligible.

SUMMARY AND CONCLUSIONS

A parameter-free version of the driven Liouville-von
Neumann approach to time-dependent simulation of non-
equilibrium electron dynamics in open quantum systems was
presented. The computational overhead, with respect to the
single fitting parameter version of the method, involves the cal-
culation of the reservoir self-energy operator and a diagonal-
ization of the corresponding dressed lead Hamiltonian block
for the evaluation of each state-dependent broadening factor.
The whole procedure is performed only once per lead/reservoir
model, and the obtained set of broadening factors is fully
transferable to any molecular junction using the same lead
model. The performance of the method was demonstrated on
tight-binding and non-orthogonal basis-set representations of
simple molecular junction models, including hydrogen and
carbon atomic chains bridging one-dimensional and finite-
width lead models. The developed methodology eliminates
the need for any fitting procedure. This potentially allows for a
black-box implementation within the framework of advanced
electronic structure methods, at least under the assumption
that single-electron states can be interpreted as approximate
quasi-particle states.52–54

SUPPLEMENTARY MATERIAL

See the supplementary material for a discussion regarding
the validity of the assumption that the state-specific broaden-
ing factors can be approximated to be energy independent, a
comparison of simulation results obtained using state-specific
and uniform broadening factors, and an assessment of the sen-
sitivity of the results to the value of the parameter η used in
the reservoir’s surface Green’s function calculation.
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APPENDIX A: DERIVATION OF THE H + Σ APPROACH
FOR CALCULATING LEAD STATE-DEPENDENT
BROADENING FACTORS

The accurate description of quantum dynamics in large
systems is usually a prohibitively demanding computational
task. Nevertheless, often it is sufficient to focus on the dynam-
ics of a small section of the entire system. In these cases, the
equation of motion can be recast as a sum of terms describ-
ing the internal subsystem dynamics and the influence of its
coupling to the rest of the system. In the context of the present
study, we are interested in describing electron dynamics within
a finite lead model that is coupled to an external semi-infinite
reservoir. The contribution of the reservoir to the lead dynam-
ics, L (t), can be expressed in terms of the lesser Green’s
function, G< (t, t), and Hamiltonian, H, matrix representations
of the entire lead/reservoir system as follows:23,55

Llm (t) = −
1
~

∑
r

[
HlrG<

rm (t, t) − G<
lr (t, t) Hrm

]
, (A1)

where l and m are single-particle state indices within the finite
lead model and the index r runs over all reservoir states. The
lesser GFs can be factorized using Langreth rules to obtain23,55




G<
rm (t, t) =

1
~

∑
s,n

∫
dτG(0),ret

rs (t, τ) HsnG<
nm (τ, t) +

1
~

∑
s,n

∫
dτG(0),<

rs (t, τ) HsnGadv
nm (τ, t)

G<
lr (t, t) =

1
~

∑
n,s

∫
dτGret

ln (t, τ) HnsG
(0),<
sr (τ, t) +

1
~

∑
n,s

∫
dτG<

ln (t, τ) HnsG
(0),adv
sr (τ, t)

, (A2)
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where Gadv (τ, t), Gret (t, τ), G(0),adv (τ, t), G(0),ret (t, τ) are
the advanced and retarded GFs of the entire system in the
presence and absence of lead/reservoir coupling, respectively,
and G(0),< (τ, t) is the lesser GF of the entire uncoupled
lead/reservoir system. The indices n and s run over all lead
and reservoir states, respectively.

Inserting the expressions of Eq. (A2) in Eq. (A1) yields

Llm (t) = −
1

~2

∑
n



∫
dτ *

,

∑
r,s

HlrG(0),ret
rs (t, τ) Hsn

+
-

G<
nm (τ, t)

+

∫
dτ *

,

∑
r,s

HlrG(0),<
rs (t, τ) Hsn

+
-

Gadv
nm (τ, t)

−

∫
dτGret

ln (t, τ) *
,

∑
s,r

HnsG
(0),<
sr (τ, t) Hrm

+
-

−

∫
dτG<

ln (t, τ) *
,

∑
s,r

HnsG
(0),adv
sr (τ, t) Hrm

+
-


.

(A3)

We can now define the retarded, advanced, and lesser self-
energies as follows:




Σret
ln (t, τ) ≡

∑
r,s HlrG(0),ret

rs (t, τ) Hsn

Σadv
nm (τ, t) ≡

∑
s,r HnsG

(0),adv
sr (τ, t) Hrm

Σ<ln (t, τ) ≡
∑

r,s HlrG(0),<
rs (t, τ) Hsn

(A4)

and rewrite Eq. (A3) as

Llm (t) =
1

~2

∑
n

[∫
dτG<

ln (t, τ) Σadv
nm (τ, t)

−

∫
dτΣret

ln (t, τ) G<
nm (τ, t)

]

+
1

~2

∑
n

[∫
dτGret

ln (t, τ) Σ<nm (τ, t)

−

∫
dτΣ<ln (t, τ) Gadv

nm (τ, t)

]
. (A5)

1. Sink term

The first sum in Eq. (A5) can be identified as the sink
term absorbing electrons traveling in the lead toward the
reservoir,

LSink
lm (t) =

1

~2

∑
n

[∫
dτG<

ln (t, τ) Σadv
nm (τ, t)

−

∫
dτΣret

ln (t, τ) G<
nm (τ, t)

]
. (A6)

The retarded and advanced self energies appearing in Eq. (A6)
can be recast as Fourier integrals of the form




Σret
ln (t, τ) =

∫
dε
2π e−i ε~ (t−τ)Σret

ln (ε) =
∑

r

∫
dε
2π e−i ε~ (t−τ)HlrG(0),ret

rr (ε) Hrn

Σadv
nm (τ, t) =

∫
dε
2π e−i ε~ (τ−t)Σadv

nm (ε) =
∑

r

∫
dε
2π e−i ε~ (τ−t)HnrG(0),adv

rr (ε) Hrm

, (A7)

where we have used the definitions appearing in Eq. (A4) and
the fact that we are working in the basis of eigenfunctions of the
isolated lead and reservoir subsystems (state representation),
where the isolated reservoir’s retarded and advanced GFs are
diagonal.

Invoking the wide band approximation (WBA), we can
neglect the real-part of the isolated reservoir’s retarded and
advanced GFs, associated with level shifting. Notably, in all
numerical examples appearing in the main text, lead level shifts
due to coupling to the reservoir were found to be very small
with respect to the full lead energy bandwidth and level cross-
ing was rarely observed (see the supplementary material for
further discussion regarding the effect of coupling to the reser-
voir on the lead level shifts). This indicates the validity of this
approximation. The remaining imaginary part can be written as

=
[
G(0),ret/adv

rr (ε)
]
= =

{
limη→0+,η∈Re

[
1

(ε ± iη) − Hrr

]}
= =

{
limη→0+,η∈Re

[
(ε ∓ iη) − Hrr

(ε − Hrr)2 + η2

]}
= limη→0+,η∈Re

[
∓η

(ε − Hrr)2 + η2

]

= ∓πδ (ε − Hrr) . (A8)

Inserting Eq. (A8) in Eq. (A7) the retarded and advanced self-
energies can be approximated as




Σ
ret
ln (t, τ) ≈ −πi

∑
r

∫
dε
2π

e−i ε~ (t−τ)Hlrδ (ε − Hrr) Hrn

Σ
adv
nm (τ, t) ≈ πi

∑
r

∫
dε
2π

e−i ε~ (τ−t)Hnrδ (ε − Hrr) Hrm

.

(A9)

Eq. (A9) can be rewritten in terms of the broadening matrix
element,

Γ
lead
ln (ε) ≡

∑
r

2πHlrδ (ε − Hrr) Hrn, (A10)

as




Σret
ln (t, τ) ≈ −

i
2

∫
dε
2π

e
−i
ε

~
(t−τ)
Γlead

ln (ε)

Σadv
nm (τ, t) ≈

i
2

∫
dε
2π

e
−i
ε

~
(τ−t)
Γlead

nm (ε)

. (A11)

The WBA further implies that Γlead
ln (ε) is energy independent

(see the supplementary material for a discussion regarding the
validity of this assumption) for all indices l and n so it can be

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-031796
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-031796
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taken out of the integration in Eq. (A11) to give




Σret
ln (t, τ) ≈ −

i
2
Γlead

ln

∫
dε
2π

e−i ε~ (t−τ) = −
i
2
~Γlead

ln δ (t − τ)

Σadv
nm (τ, t) ≈

i
2
Γlead

nm

∫
dε
2π

e−i ε~ (τ−t) =
i
2
~Γlead

nm δ (τ − t)
.

(A12)

Inserting Eq. (A12) in Eq. (A6) gives

LSink
lm (t) ≈

1
2~

∑
n

[
Γ

lead
nm i

∫
dτG<

ln (t, τ) δ (τ − t)

+ Γlead
ln i

∫
dτδ (t − τ) G<

nm (τ, t)

]

=
1

2~

∑
n

[
Γ

lead
nm iG<

ln (t, t) + Γlead
ln iG<

nm (t, t)
]

= −
1

2~

∑
n

[
ρlead

ln Γ
lead
nm + Γ

lead
ln ρlead

nm

]
, (A13)

where we have introduced the reduced density matrix of the
finite lead model ρlead (t) = −iG< (t, t).

Eq. (A13) can be written in matrix form as

LSink (t) ≈ −
1

2~

[
ρlead (t) Γlead + Γleadρlead (t)

]

= −
1

2~

[
Γlead , ρlead (t)

]
+

. (A14)

If we further assume that the lead states are not mixed by
the coupling to the reservoir, Γlead becomes a diagonal matrix
holding the state-dependent (and energy independent) broad-
ening factors and Eq. (A14) becomes identical to the lead block
damping term appearing in Eq. (2) above.

2. Source term

The second sum in Eq. (A5) can be identified as the source
term injecting electrons from the reservoir traveling toward the

extended-molecule through the lead,

Lsource
lm (t) =

1

~2

∑
n

[∫
dτGret

ln (t, τ) Σ<nm (τ, t)

−

∫
dτΣ<ln (t, τ) Gadv

nm (τ, t)

]
. (A15)

The lesser self-energies appearing in Eq. (A15) contain infor-
mation regarding the reservoir states populations. To obtain
this information explicitly we first assume, as above, that
the lead states are not mixed by the bath such that both the
lesser Green’s function appearing in Eq. (A4) and the lesser
self-energy itself are diagonal. Next, the diagonal elements of
the lesser self-energy can be expressed in terms of a Fourier
integral,

Σ
<
nm (τ, t) = δnm

∑
r

HnrG(0),<
rr (τ − t) Hrm

= δnm

∑
r

∫
dε
2π

Hnre−
iε(τ−t)
~ G(0),<

rr (ε) Hrm. (A16)

Since the lesser GF appearing in Equation (A16) relates to the
uncoupled reservoir at thermal equilibrium, it can be expressed
in terms of the advanced and retarded GFs as

G(0),<
rr (ε) = −f (ε)

(
G(0),ret

rr (ε) − G(0),adv
rr (ε)

)
= if (ε) Arr (ε) = 2πif (ε) δ (ε − εr) , (A17)

where the spectral function of the uncoupled reservoir, Arr (ε),
consists of a set of Dirac δ functions centered at the corre-
sponding eigenvalues. Inserting (A17) in (A16) gives

Σ
<
nm (τ, t) = δnm

∑
r

∫
dε
2π

e−
iε(τ−t)
~ Hnr2πif (ε) δ (ε − εr) Hrm

= iδnm

∑
r

e−
iεr (τ−t)
~ Hnr f (εr) Hrm. (A18)

Using this in the expression for the source term in Eq. (A15),
one obtains

Lsource
lm (t) =

1

~2

∑
n




∫
dτGret

ln (t, τ)

iδnm

∑
r

e−
iεr (τ−t)
~ Hnr f (εr) Hrm


−

∫
dτ


iδln

∑
r

e−
iεr (t−τ)
~ Hlr f (εr) Hrn


Gadv

nm (τ, t)



=
i

~2

∑
r

[
f (εr) |Hrm |

2
∫

Gret
lm (t, τ) e−

iεr (τ−t)
~ dτ − |Hlr |

2 f (εr)
∫

e−
iεr (t−τ)
~ Gadv

lm (τ, t) dτ

]
. (A19)

Next, we assume that the lead Hamiltonian is time-independent such that the retarded and advanced GFs appearing in Eq. (A19)
have time-translational invariance and can be written as the following Fourier integral:




Gret
lm (t, τ) = Gret

lm (t − τ) =
∫

dω
2π

e−iω(t−τ)Gret
lm (ω)

Gadv
lm (τ, t) = Gadv

lm (τ − t) =
∫

dω′

2π
e−iω′(τ−t)Gadv

lm (ω′)
. (A20)

Inserting these expressions in the time integrals appearing in Eq. (A19) we obtain∫
Gret

lm (t, τ) e−iωr (τ−t)dτ =
∫ [∫

dω
2π

e−iω(t−τ)Gret
lm (ω)

]
e−iωr (τ−t)dτ =

∫
dω
2π

e−i(ω−ωr )tGret
lm (ω)

∫
e−i(ωr−ω)τdτ

=

∫
dω
2π

ei(ωr−ω)tGret
lm (ω) 2πδ (ω − ωr) = Gret

lm (ωr) , (A21)
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and

∫
e−iωr (t−τ)Gadv

lm (τ, t) dτ =
∫

e−iωr (t−τ)
[∫

dω′

2π
e−iω′(τ−t)Gadv

lm

(
ω′

)]
dτ =

∫
dω′

2π
ei(ω′−ωr )tGadv

lm

(
ω′

) ∫
ei(ωr−ω

′)τdτ

=

∫
dω′

2π
ei(ω′−ωr )tGadv

lm

(
ω′

)
2πδ

(
ωr − ω

′) = Gadv
lm (ωr) , (A22)

where we have defined ωr ≡
εr
~ . Inserting Eqs. (A21) and

(A22) in Eq. (A19) yields

Lsource
lm (t) =

i
~

∑
r

[
f (εr) |Hrm |

2 Gret
lm (ε r)

− |Hlr |
2 f (εr) Gadv

lm (ε r)
]

. (A23)

Following the assumption that the lead state are not mixed by
the coupling to the reservoir we focus on the diagonal elements
of the source term appearing in Eq. (A23),

Lsource
ll (t) =

i
~

∑
r

[
f (εr) |Hrl |

2 Gret
ll (εr)

− |Hlr |
2 f (εr) Gadv

ll (εr)
]

=
1
~

∑
r

f (εr) |Hrl |
2 i

[
Gret

ll (εr) − Gadv
ll (εr)

]

=
1
~

∑
r

f (εr) |Hrl |
2 All (εr)

=
1
~

∑
r

∫
dε f (ε) |Hrl |

2 All (ε) δ (ε − εr),

(A24)

where we have introduced the spectral function All (εr)
= i

[
Gret

ll (εr) − Gadv
ll (εr)

]
and used the properties of the Dirac

δ function in the last equality. Using the definition of the broad-
ening matrix elements of Eq. (A10) above, Eq. (A24) can be
written as

Lsource
ll (t) =

1
~

∫
dε
2π

f (ε) Γlead
ll (ε) All (ε) . (A25)

Since the spectral function, All (ε), is peaked around the lead
eigenvalue εl, we can evaluate the broadening at this eigen-
value Γlead

ll (ε) ≈ Γlead
ll (εl) and take it out of the integral to

obtain the equilibrium density matrix (see the supplemen-
tary material for a discussion regarding the validity of this
approximation),

Lsource
ll (t) ≈

1
~
Γ

lead
ll (εl)

∫
dε
2π

f (ε) All (ε) =
1
~
Γ

lead
ll (εl) ρ

0
ll

=
1

2~

[
Γ

lead
ll (εl) ρ

0
ll + ρ

0
llΓ

lead
ll (εl)

]
. (A26)

Defining the diagonal matrix Γlead whose diagonal elements
host the values of Γlead

ll (εl) and the diagonal matrix ρ0 whose
diagonal elements have the Fermi-Dirac distribution sampled
at the isolated lead’s eigen-energies f (εl) encoding the chem-
ical potential and electronic temperature of the corresponding
reservoir, we can rewrite Eq. (A26) as

Lsource
ll (t) ≈

1
2~

[
Γlead, ρ0

]
+

. (A27)

This is identical to the lead block injection term appearing in
Eq. (2).

APPENDIX B: HEURISTIC DERIVATION
OF THE DRIVEN LIOUVILLE-VON NEUMANN
EQUATION WITH STATE-SPECIFIC
BROADENING FACTORS

To obtain the DLvN equation in the case of state-
dependent broadening factors, we follow the heuristic deriva-
tion of the original equation with a single driving rate, appear-
ing in Ref. 29. First, the Hamiltonian of the entire finite junc-
tion model is written in the basis of eigenfunctions of the leads
and the extended-molecule section. The procedure to trans-
form the real-space (site) Hamiltonian to the energy (state) rep-
resentation in the case of orthogonal and non-orthogonal basis-
set representations is given in Refs. 29 and 31, respectively.
Next, to account for absorption of outgoing electrons propagat-
ing through the leads towards the edges of the finite lead mod-
els, the Hamiltonian blocks representing the lead sections are
augmented by diagonal imaginary matrices −iγL/R represent-
ing the broadening (or damping rate) of each single-particle
lead state. For a two-lead setup this translates to the following
form:

H = HRe − iHIm =
*.
,

HL VL,EM 0
VEM,L HEM VEM,R

0 VR,EM HR

+/
-
− i *.

,

γL 0 0
0 0 0
0 0 γR

+/
-
=

*.
,

HL − iγL VL,EM 0
VEM,L HEM VEM,R

0 VR,EM HR − iγR

+/
-

. (B1)

Inserting this expression in the Liouville-von Neumann Eq. (A8) of Ref. 29 and assuming that in the state representa-
tion γL and γR are diagonal blocks, the absorption term obtains the following anti-commutation form (see Eq. (A9) of
Ref. 29):

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-031796
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−
1
~

[
HIm, ρ (t)

]
+
= −

1
~

[
HImρ (t) + ρ (t) HIm

]
= −

1
~



*.
,

γL 0 0
0 0 0
0 0 γR

+/
-

*.
,

ρL ρL,EM ρL,R
ρEM,L ρEM ρEM,R
ρR,L ρR,EM ρR

+/
-

+
*.
,

ρL ρL,EM ρL,R
ρEM,L ρEM ρEM,R
ρR,L ρR,EM ρR

+/
-

*.
,

γL 0 0
0 0 0
0 0 γR

+/
-



= −
1
~



*.
,

γLρL γLρL,EM γLρL,R
0 0 0

γRρR,L γRρR,EM γRρR

+/
-
+

*.
,

ρLγL 0 ρL,RγR
ρEM,LγL 0 ρEM,RγR
ρR,LγL 0 ρRγR

+/
-



= −
1
~

*.
,

γLρL + ρLγL γLρL,EM γLρL,R + ρL,RγR
ρEM,LγL 0 ρEM,RγR

γRρR,L + ρR,LγL γRρR,EM γRρR + ρRγR

+/
-

= −
1
~

*.
,

[
γL, ρL

]
+ γLρL,EM γLρL,R + ρL,RγR

ρEM,LγL 0 ρEM,RγR
γRρR,L + ρR,LγL γRρR,EM

[
γR, ρR

]
+

+/
-

. (B2)

The emission term is obtained in a similar manner by replacing the density matrix of the system with the density matrix of the
electronic reservoirs and inverting the overall sign (see Eq. (A12) of Ref. 29),

1
~

[
HIm, ρ0

]
+
=

1
~

[
HImρ0 + ρ0HIm

]
=

1
~



*.
,

γL 0 0
0 0 0
0 0 γR

+/
-

*.
,

ρ0
L 0 0

0 0 0
0 0 ρ0

R

+/
-
+

*.
,

ρ0
L 0 0

0 0 0
0 0 ρ0

R

+/
-

*.
,

γL 0 0
0 0 0
0 0 γR

+/
-



=
1
~



*.
,

γLρ
0
L 0 0

0 0 0
0 0 γRρ

0
R

+/
-
+

*.
,

ρ0
LγL 0 0
0 0 0
0 0 ρ0

RγR

+/
-


=

1
~

*..
,

[
γL, ρ0

L

]
+

0 0
0 0 0
0 0

[
γR, ρ0

R

]
+

+//
-

, (B3)

where ρ0
L/R are diagonal matrices holding equilibrium Fermi-Dirac single-particle state occupations on their diagonal with the

chemical potential and electronic temperature of the left/right reservoirs.
Summing the absorption (Eq. (B2)) and emission (Eq. (B3)) contributions results in the driving term appearing in Eq. (2) of

the main text,

−
1
~

[
HIm, ρ (t)

]
+
+

1
~

[
HIm, ρ0

]
+
= −

1
~

*..
,

[
γL,

(
ρL − ρ0

L

)]
+
γLρL,EM γLρL,R + ρL,RγR

ρEM,LγL 0 ρEM,RγR

γRρR,L + ρR,LγL γRρR,EM

[
γR,

(
ρR − ρ0

R

)]
+

+//
-

. (B4)

Defining ΓL = 2γL and ΓR = 2γR, we obtain

−
1
~

[
HIm, ρ (t)

]
+
+

1
~

[
HIm, ρ0

]
+
= −

1
2~

*..
,

[
ΓL,

(
ρL − ρ0

L

)]
+
ΓLρL,EM ΓLρL,R + ρL,RΓR

ρEM,LΓL 0 ρEM,RΓR

ΓRρR,L + ρR,LΓL ΓRρR,EM

[
ΓR,

(
ρR − ρ0

R

)]
+

+//
-

. (B5)

When using a uniform driving rate the broadening matrices obtain the structure ΓL = ΓIL and ΓR = ΓIR, where IL/R are unit
matrices of dimensions of the left and right lead model basis. In this case, the driving term of Eq. (B5) assumes the form

−
1
~

[
HIm, ρ (t) − ρ0

]
+
= −
Γ

2~

*..
,

[
IL,

(
ρL − ρ0

L

)]
+

ILρL,EM ILρL,R + ρL,RIR

ρEM,LIL 0 ρEM,RIR

IRρR,L + ρR,LIL IRρR,EM

[
IR,

(
ρR − ρ0

R

)]
+

+//
-

= −
Γ

2~

*..
,

2
(
ρL − ρ0

L

)
ρL,EM 2ρL,R

ρEM,L 0 ρEM,R

2ρR,L ρR,EM 2
(
ρR − ρ0

R

) +//
-
= −
Γ

~

*..
,

ρL − ρ0
L

1
2ρL,EM ρL,R

1
2ρEM,L 0 1

2ρEM,R
ρR,L

1
2ρR,EM ρR − ρ0

R

+//
-

. (B6)

This is the driving term appearing in the original DLvN EOM of Eq. (1).

1M. Di Ventra and T. N. Todorov, “Transport in nanoscale systems: The
microcanonical versus grand-canonical picture,” J. Phys.: Condens. Matter
16(45), 8025–8034 (2004).

2N. Bushong, N. Sai, and M. Di Ventra, “Approach to steady state transport
in nanoscale conductors,” Nano Lett. 5, 2569–2572 (2005).

3C. G. Sánchez, M. Stamenova, S. Sanvito, D. R. Bowler, A. P. Horsfield,
and T. N. Todorov, “Molecular conduction: Do time-dependent simulations

tell you more than the Landauer approach?,” J. Chem. Phys. 124(21),
214708 (2006).

4C. L. Cheng, J. S. Evans, and T. Van Voorhis, “Simulating molecular con-
ductance using real-time density functional theory,” Phys. Rev. B 74(15),
155112 (2006).

5N. Bushong, J. Gamble, and M. Di Ventra, “Electron turbulence at nanoscale
junctions,” Nano Lett. 7(6), 1789–1792 (2007).

http://dx.doi.org/10.1088/0953-8984/16/45/024
http://dx.doi.org/10.1021/nl0520157
http://dx.doi.org/10.1063/1.2202329
http://dx.doi.org/10.1103/physrevb.74.155112
http://dx.doi.org/10.1021/nl070935e


092331-11 Zelovich et al. J. Chem. Phys. 146, 092331 (2017)

6J. S. Evans, C. L. Cheng, and T. Van Voorhis, “Spin-charge separation in
molecular wire conductance simulations,” Phys. Rev. B 78(16), 165108
(2008).

7J. S. Evans and T. Van Voorhis, “Dynamic current suppression and gate
voltage response in metal-molecule-metal junctions,” Nano Lett. 9(7),
2671–2675 (2009).

8M. Ratner, “A brief history of molecular electronics,” Nat. Nanotechnol.
8(6), 378–381 (2013).

9J. P. Bergfield and M. A. Ratner, “Forty years of molecular electronics:
Non-equilibrium heat and charge transport at the nanoscale,” Phys. Status
Solidi B 250(11), 2249–2266 (2013).

10S.-H. Ke, R. Liu, W. Yang, and H. U. Baranger, “Time-dependent transport
through molecular junctions,” J. Chem. Phys. 132(23), 234105 (2010).

11S. Chen et al., “Interference and molecular transport—A dynamical view:
Time-dependent analysis of disubstituted benzenes,” J. Phys. Chem. Lett.
5(15), 2748–2752 (2014).
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