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Energy Independent Broadening Factors 

A central assumption made in the derivation of the parameter-free driven Liouville von Neumann approach, 

described in the main text, is that the state-specific broadening factors are independent of energy. To demonstrate the 

validity of this assumption we have calculated the full energy dependence of these factors for a 50-site tight-binding 

chain lead model with onsite energies of 0 eV and nearest-neighbor hopping integrals of -0.2 eV. To this end, we have 

evaluated the dressed lead Hamiltonian defined in the main text using the full energy-dependent reservoir self-energy 

and extracted its energy dependent eigenvalues, whose imaginary parts represent the various lead state broadening 

factors. Fig. ure S1a presents 50 different diagrams, each corresponding to the energy dependence of the broadening 

factor associated with a given lead level due to the coupling to the reservoir. 

Given this energy dependence, the shape of each lead level can be approximated as a Lorentzian, where the constant 

broadening factor is replaced by its energy dependent counterpart:[1] 
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Here,    is the position of lead level   and       its energy-dependent broadening factor. 

As can be seen in Fig. ure S1a, for the model parameters used herein, the maximal broadening value achieved is 

~0.02 eV, which serves as an upper limit on the lead level widths. Importantly, at this energy range around the level 

peak positions, all calculated broadening factors are only weakly dependent on energy. Away from the peak position the 

broadening factors further diminish, rendering their contribution negligible. Hence, to a good approximation, the 

broadening factors can be assumed to be energy independent and can be represented by their maximal value obtained at 

the corresponding lead state eigen-energy. 

To further support this statement, we plot in Fig. ure S1b the Lorentzian function of Eq. S1 for three out of the 50 

levels shown in Fig. ure S1a, with both energy dependent and constant maximal value broadening. Clearly, for the three 

levels considered the constant broadened and energy dependent broadened Lorentzians almost completely overlap over 

the entire relevant energy range, thus justifying the use of constant broadening factors for this system. The inset of Fig. 

ure S1b presents a zoom-in on the tail regions of the central level. It shows, as expected, that using a constant maximal 

value broadening (green curve) produces a slightly longer tail than using the full energy dependent broadening function 

(blue curve). 

Another assumption made while invoking the wide band approximation in the main text involves neglecting the lead 

level shifts due to the coupling to the semi-infinite reservoir. To demonstrate the validity of this assumption we follow 

the procedure described above now considering the real-part of the reservoir self-energy, Fig. ure S1c presents the 

energy dependence of the entire lead eigenvalue spectrum. The results clearly demonstrate that, for the chosen model 

parameters, the shifts in lead level positions due to the coupling to the reservoir are negligible relative to the full lead 

bandwidth and smaller than the typical lead spacing. Furthermore, no level crossing occurs in the entire energy range 

considered. Importantly, in the vicinity of the Fermi energy (see inset) the level shifts are shown to be nearly parallel 

thus further justifying their neglect. As a general remark, we expect this approximation to become better with increasing 

lead section size. 
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Figure S1: (a) Explicit energy dependence of the lead state-specific broadening factors for a 50-site tight-binding chain 

lead model with onsite energies of 0 eV and uniform nearest-neighbor hopping integrals of -0.2 eV. Each color 

represents the energy-dependence of a different state-specific broadening factor. (b) Lorentzian line-shapes plotted for 

three representative lead states using Eq. S1. Full lines represent Lorentzians having constant broadening factors, 

chosen as the maximal broadening of the respective state. X marks are obtained using the corresponding energy-

dependent broadening functions appearing in the left panel. Inset: zoom in on the tail regions of the central Lorentzian 

function. (c) Explicit energy dependence of the lead level positions. Inset: zoom in on the level shifts in the vicinity of 

the Fermi energy. 
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State-Dependent Vs. Uniform Broadening 

The PF-DLvN approach presented in the main text improves over the original DLvN approach[2][3][4][5] in two 

ways: (i) the uniform driving rate appearing in the original implementation is replaced by lead state-specific broadening 

factors that account more accurately for the effect of coupling the lead to the reservoir; (ii) the broadening factors are 

calculated explicitly from the electronic properties of the corresponding reservoir, eliminating the need for any fitting 

procedure. In the main text we have focused on the ability of the new methodology to capture the current dynamics and 

reproduce the correct steady-state current values. To enhance the understanding of the method's performance we further 

compare the current traces and steady-state occupations obtained using the full PF-DLvN approach with lead state-

specific broadening factors and a uniform broadening factor chosen as the highest state-specific broadening obtained 

using the     method for each system. 

Fig. ure S2 compares the PF-DLvN current trace (black), obtained for the tight-binding junction model considered in 

the main text, to the uniform driving rate trace (red). The two method provide very similar current traces that reproduce 

the Landauer steady-state current. The steady-state occupations of the left (full lines) and right (dashed lines) leads  

resemble their target values (blue) with minor deviations within the Fermi transport window region (see inset of Fig. ure 

S2), indicating that the leads are not fully driven to their equilibrium value. This has a minor effect on steady-state 

occupations of the molecular section (circles and '+' signs)[2], which are found to be very similar in both methods. 

Using a single driving rate, whose value is the maximal lead state-specific broadening, for the hydrogen chain 

bridging two finite width hydrogen lead models, produces current traces very similar to those obtained by the full PF-

DLvN approach (see Fig. ure S3). The lead steady-state occupations obtained by the two approaches (see inset of Fig. 

ure S3) follow their target values in a very similar manner. The corresponding occupations of the molecular states are 

widely scattered, reflecting their asymmetric coupling to the lead states within the extended Hückel electronic structure 

treatment.[3][4] Interestingly, the uniform broadening molecular occupations deviate from the full PF-DLvN values 

throughout the Fermi transport region but with minor effect on the steady-state current. 

When applying both methods to the carbon atomic chain junction model at the extended Hückel level of theory, the 

current traces deviate from each other. The uniform driving rate current is consistently smaller than that obtained using 

the full PF-DLvN approach (see Fig. ure S4). This is also reflected in the steady-state occupations, where the uniform 

driving rate typically provides lower values for the molecular occupations and smaller deviations of the lead 

occupations from their target values (see inset of Fig. ure S4). This indicates that the uniform driving rate, chosen as the 

maximal state-dependent broadening value, is too high, resulting in suppression of the current within the molecular 

region.[6] 

When considering more realistic lead models, strongly non-uniform densities of states in the vicinity of the Fermi 

energy are often encountered.[4] In such cases, uniform broadening cannot be used to transform the discrete density of 

states of the finite lead model into the corresponding continuous counterpart. Hence, the full set of state-specific 

broadening factors should be used to drive the system out of equilibrium. This involves only a minor computational 

overhead as most of the effort involves the extraction of the appropriate broadening values from the self-energy of the 

reservoir. 
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Figure S2: Comparison of the current traces (main frame) and steady-state occupations (inset) of a tight-binding chain 

model junction (upper illustration), obtained using the full PF-DLvN approach with state-specific broadening factors 

(black) and uniform broadening (red), with the latter taken as the highest calculated state-dependent broadening value 

(0.0057 eV). Landauer steady-state current, calculated using the procedure detailed in Ref. [2], is presented by the x 

mark. The inset shows the steady-state occupations of the molecular section (circles and '+' signs), and of the left (full 

line) and right (dashed line) leads. The corresponding target lead occupations are shown in blue. Parameters are 

identical to those detailed in the caption of Fig. 2b of the main text for a lead section size of 300 sites. 
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Figure S3: Comparison of the current traces (main frame) and steady-state occupations (inset) of an atomic hydrogen 

chain bridging two finite width hydrogen lead models (upper illustration), calculated at the extended Hückel level of 

theory using the full PF-DLvN approach with state-specific broadening factors (black) and uniform broadening (red), 

with the latter taken as the highest calculated state-dependent broadening value (0.10 eV). Landauer steady-state 

current, calculated using the procedure detailed in Ref. [4], is presented by the x mark. The inset shows the steady-state 

occupations of the extended molecule section (circles and '+' signs), and of the left (full line) and right (dashed line) 

leads. The corresponding target lead occupations are shown in blue. Parameters are identical to those detailed in the 

caption of Fig. 3b of the main text.  
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Figure S4: Comparison of the current traces (main frame) and steady-state occupations (inset) of an atomic carbon chain 

junction model (upper illustration), calculated at the extended Hückel level of theory using the full PF-DLvN approach 

with state-specific broadening factors (black) and uniform broadening (red), with the latter taken as the highest 

calculated state-dependent broadening value (0.063 eV). Landauer steady-state current, calculated using the procedure 

detailed in Ref.[4], is presented by the x mark. The inset shows the steady-state occupations of the extended molecule 

section (circles and '+' signs), and of the left (full line) and right (dashed line) leads. The corresponding target lead 

occupations are shown in blue. Parameters are identical to those detailed in the caption of Fig. 4 of the main text. 
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Assessment of sensitivity to    

An essential step in the calculation of the state-dependent broadening factors is the evaluation of the bare reservoir's 

surface Green's function (GF). To this end, in the present study we have adopted the iterative principal layer scheme of 

Sancho et al.[7][8][9][10] In this approach a small real positive parameter,  , is introduced to soften the singularities of 

the bare principal layer GF used during the iterative construction of the entire surface GF. Formally,  should approach 

zero from above       . In practice, due to the finite size of the principal layer model a finite   value should be used. 

Typically, there exists a wide range where the calculated surface GF, and hence all other extracted physical observables, 

are insensitive to the value of  . Below this range, too small   values result in noticeable numerical instabilities. Above 

this range the surface GF becomes sensitive to the particular choice of  . 

Fig. S5 presents the calculated state-dependent broadening factors as a function of single-particle state-energy, 

obtained using four values of   for the 200 sites one-dimensional tight-binding lead model (panel a) and 300 hydrogen 

atoms extended Hückel chain lead model (panel b). In both cases, the highest   value chosen provides unconverged 

state-dependent broadening factors. Below this value the broadening factors converge and remain stable over a few 

orders of magnitude of   variations. For the lowest   value shown the calculated broadening factors develop numerical 

instabilities, whose severity further increases with growing  . 

 

Figure S5:   sensitivity of the state-dependent broadening factors calculated for (a) the 200 sites one-dimensional 

tight-binding lead model and (b) the 300 hydrogen chain extended Hückel lead model. All parameters of the two lead 

models are provided in the main text. 

 

In our simulations, we check for stability of the calculated state-dependent broadening factors with respect to the 

value of  . The broadenings that are obtained with the smallest   value that still provides numerical stability are used to 

perform the dynamic calculations. Importantly, this stability test needs to be performed only once per lead model and is 

transferable to any junction that uses the same lead. The values of   used in the different calculations can be found in 

the table below: 

Lead 

model 

200 sites tight-binding 

chain 

(Fig. 2) 

300 sites tight-binding 

chain 

(Fig. 2) 

300 hydrogen atoms 

extended Hückel chain 

(Fig.3) 

500 hydrogen atoms 

extended Hückel finite 

width 
(Fig.3) 

200 carbon atoms 

extended Hückel chain 

(Fig. 4) 

  (eV) 10-7 10-7 10-4 10-3 10-4 
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