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ABSTRACT: A nonorthogonal localized basis-set implementa-
tion of the driven Liouville von Neumann (DLvN) approach is
presented. The method is based on block-orthogonalization of the
Hamiltonian and overlap matrix representations, yielding non-
overlapping blocks that correspond to the various system sections.
An extended Hückel description of gold/benzene-dithiol/gold and
gold/pyridine-dithiol/gold junctions is used to demonstrate the
performance of the method. The presented generalization is an
important milestone toward using the DLvN approach for
performing accurate dynamic electronic transport calculations in
realistic model systems, based on density functional theory
packages that rely on atom-centered basis-set representations.

■ INTRODUCTION

The study of electronic transport through molecular-scale
junctions is at the heart of the field of molecular
electronics.1−4 Over the past four decades this field has
matured to a point where measurements and calculations of
steady-state transport characteristics of individual molecules
are routinely performed in many laboratories.5−7 Different
aspects, such as conductance switching,8−12 rectification,13−18

thermo-power effects,19−24 interference effects,25−28 chemical
composition,29 and lead−molecule coupling schemes,18,30−33

have been explored aiming to realize a molecular device
exhibiting the desired functionality and efficiency.
Experimental efforts to study molecular junctions subject to

time-dependent perturbations are currently at their infancy.
This is probably a result of the technical complexity involved
in such measurements. Here, theory and computation may
offer valuable support both in guiding experiments toward
promising molecular setups and optimal operation conditions
and in the interpretation and understanding of experimental
results. To this end a variety of methods, too vast to review
here in detail, have been developed for modeling electron
dynamics in single molecule junctions. Many of these
methods rely on model Hamiltonians that provide valuable
information regarding general transport phenomena but
cannot describe the dynamical behavior of specific junctions;
see, e.g., refs 34−43. Other approaches explicitly consider the
chemical composition and structure of the studied system,
thus allowing for direct comparison with realistic exper-
imental scenarios; see, e.g., refs 44−56.

Recently, we have suggested that these two views can be
combined. To this end, the driven Liouville von Neumann
(DLvN) approach57,58 for calculating time-dependent59

electronic transport through atomistic junction models has
been developed. Within this approach, nonequilibrium
boundary conditions, mimicking the effects of coupling to
external particle and heat reservoirs, are imposed at the edges
of finite junction models, thus effectively “opening” the
system. To avoid computational complexity during the proof-
of-concept stages of the development of the DLvN approach,
simple Hamiltonian models, avoiding explicit use of a basis-
set, have been employed.57,58 However, simulations of
electron dynamics in realistic molecular junctions often
involve a nonorthogonal atom-centered basis-set representa-
tion of the corresponding time-dependent electronic wave
functions.60−65 Such a representation presents a difficulty for
the DLvN method as lead and molecule eigenstates are not
orthogonal, an issue elaborated below.
In the present paper, we extend the applicability of the

DLvN approach to nonorthogonal basis-set representations.
To overcome the inter-subblock basis-function mixing
problem we adopt the recently proposed block-orthogonaliza-
tion procedure of Kwok et al.62 We validate the methodology
by studying the simple case of transport through a hydrogen
chain, described by an extended Hückel (EH) Hamiltonian
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model. The latter is then used to study the dynamic
transport characteristics of benzene- and pyridine-dithiol
molecules bridging two gold electrodes. This demonstrates
the applicability of the method to simulations of electron
dynamics in realistic molecular junction models within a
nonorthogonal basis-set representation.

■ METHOD
The driven Liouville von Neumann approach uses a finite
system, consisting of a molecule and lead models, to study
electronic transport through molecular junctions. For a two-
lead setup, the system is artificially divided into three sections
including the left (L) and right (R) leads and the extended
molecule (EM). The latter is the molecule augmented by
lead subsections chosen to be sufficiently large such that the
electronic properties of the resulting extended molecule are
converged with respect to their size, to within a required
accuracy. The lead subsections further act as buffer regions
that minimize the interaction of the molecular region with
the lead models, where driving terms are applied as described
below. With this partition, if one chooses an atom-centered
basis-set representation, the real-space overlap and Hamil-
tonian matrix representations take the following block form
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where SL, SR, SEM and HL, HR, HEM are the real-space
overlap and Hamiltonian matrix blocks of the left and right
lead sections and the extended molecule, respectively. SL,EM =
SEM,L
† , SR,EM = SEM,R

† , VL,EM = VEM,L
† , and VR,EM = VEM,R

† are
the corresponding overlap and coupling matrices between the
extended molecule section and the left and right leads, and
we neglect any direct interlead orbital overlap (SL,R = SR,L

T =
0) and Hamiltonian coupling (VL,R = VR,L

† = 0). The latter
assumption is valid for spatially well-separated leads.
The real-space Hamiltonian matrix of the whole system is

first transformed to the basis of eigenfunctions of the

individual system sections. In this representation, non-
equilibrium single-particle lead state occupations, obeying
Fermi−Dirac statistics with the chemical potential and
electronic temperature of the respective reservoirs, can be
readily enforced.57 Using a nonorthogonal basis-set, however,
the molecular orbitals (MOs) of the individual system
sections (L, EM, and R) are not mutually orthogonal when
the subsections are brought into contact. This intrinsic
mixing between the lead and extended molecule MOs implies
that the boundary conditions applied to the lead states
explicitly involve the extended molecule MOs as well. In
turn, this introduces unphysical effects within the scattering
region of interest, thereby hindering the validity of the
predictions.
To solve this problem, we adopt the block orthogonalzia-

tion method of Kwok et al.,62 which uses a transformation of
the form
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with Ii=L,EM,R being a unit matrix of dimensions i × i, to
transform the atom-centered orbital basis of the extended
molecule section, making it mutually orthogonal to the left
and right lead basis functions. Under this transformation, the
real-space overlap matrix of the whole system obtains the
following block diagonal form62
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and the Hamiltonian matrix reads
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Notably, the overlap and Hamiltonian diagonal blocks
corresponding to the left and right leads are unaffected by
this transformation (S̃L = SL, S̃R = SR, H̃L = HL, H̃R = HR).
This allows us to enforce the single-particle lead state
occupation boundary conditions as in the orthogonal basis-set
representation case while avoiding the complexity of inter-

section MO mixing. To this end, we apply the unitary site-to-
state transformation of the form
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to S̃ and H̃. Here, Ui=L,EM,R are unitary matrices constructed
from the eigenvectors of the generalized eigenvalue equations,

H̃ic = ϵS ̃ic, such that ̃H̃i = Ui
†H̃iUi are diagonal matrices

holding the eigenstates of the isolated ith section on their
diagonal and Ui

†S̃iUi = Ii. This constitutes a transformation to
the basis of single-particle eigenstates of the individual system
sections (L, EM, and R).
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In the single-particle state representation, the overlap

matrix becomes the identity matrix ̃S̃ = U†S̃U = I, and the
Hamiltonian matrix is written as

̃̃ = ̃
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Here, the diagonal blocks represent the single-particle
eigenstate energy manifolds of the various system sections,
and the off-diagonal blocks represent the intermanifold

coupling scheme.58 Importantly, since ̃S̃ becomes the unit

matrix and the direct interlead couplings in ̃H̃ remain
eliminated, we may apply the DLvN equation of motion
(EOM),57 originally developed for tight-binding model
Hamiltonians, to calculate the dynamic electronic transport
through the system under open boundary conditions within
the nonorthogonal basis-set representation. Specifically,
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Here, ρ ̃ ̃ is the single-particle reduced density matrix in the
state representation; ρ ̃L̃/R0 are diagonal density matrix blocks
“encoding” the equilibrium Fermi−Dirac state occupation
distribution of the left and right leads, respectively, with the
appropriate chemical potential and electronic temperature;
and Γ is the driving rate. Full details and derivations of this
equation can be found in refs 57−59 and 66. Briefly, the
DLvN EOM augments the unitary dynamics (represented by
the commutator on the right-hand side of eq 8) with a term
that drives the density at the system boundaries toward a

Figure 1. Time-dependent transport through a uniform hydrogen chain model. Upper panel: Schematic representation of the hydrogen chain
junction model. The left and right leads are represented by finite elongated hydrogen chains (yellow spheres). The molecule (maroon spheres)
is augmented by lead sections (orange spheres) to form the extended molecule. NL, NM, and NR are the number of hydrogen atoms used to
represent the left lead, molecule, and right lead models, respectively. NML and NMR are the number of extended molecule atoms on the left and
right of the molecule, respectively. Lower panel: Time-dependent current through a system of dimensions NL = NR = 300, NML = NMR = 50,
NM = 20, and a uniform interatomic distance of dCC = 2 Å, calculated at a bias voltage of Vb = 1.0 V and lead electronic temperatures of TL =
TR = 0 K, using an adaptive time step fifth-order Runge−Kutta propagation scheme for eq 8. The initial conditions impose Fermi−Dirac state
occupations on the left and right lead models with chemical potentials and electronic temperatures of the corresponding implicit external
reservoir. Specifically, the leftmost NL atoms experience a chemical potential of μL = EF + 0.5Vb, and the rightmost NR atoms experience a
chemical potential of μR = EF − 0.5Vb, where the Fermi energy, EF, is chosen as the average of the highest occupied and lowest unoccupied
molecular orbital energies of the entire finite junction model. In the extended molecule, an initial Fermi−Dirac distribution with chemical
potential μM = EF and electronic temperature of TM = 0 K is used. The black and red lines represent results of microcanonical (Γ = 0) and
DLvN (Γ = 0.105 fs−1) calculations, respectively. The green X mark represents the steady-state current obtained via the Landauer approach
(see Appendix B).85,86 Inset: Left lead (full blue line), right lead (full green line), and extended molecule (purple x symbols) steady-state
occupations. The target single-particle lead state occupations (diagonal elements of ρ ̃L̃/R0 ) are represented by the blue (left lead) and green
(right lead) dashed-line step functions.
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target density that represents the electron distribution of the
corresponding reservoir. This enforces a stable charge
imbalance at the boundaries, effectively “opening” the system
and driving it toward a dynamic nonequilibrium current
carrying state.

■ TESTING AND BENCHMARK EVALUATIONS

To demonstrate the performance of the DLvN dynamics
within a nonorthogonal basis-set representation we use the
semiempirical extended Hückel model,67−71 which has been
previously used to study transport calculations in molecular
junctions.72 Here, one defines an atom-centered Slater-type
orbital (STO) basis-set73,74 for the valence shell of each
atom. The diagonal elements of the real-space Hamiltonian
matrix are extracted from the atomic ionization potentials of
the valence electrons; namely, the diagonal element
corresponding to a given valence atomic orbital, i, is taken

as the ionization potential of this atomic orbital, Hii = IPi.
The off-diagonal Hamiltonian matrix elements are evaluated
from their diagonal counterpart as Hij = 0.5(Hii + Hjj)KSij.
Here, K = 1.75 is the Wolfsberg−Helmholtz constant,75

chosen to best fit the experimental data, and Sij is the real-
space overlap matrix between the various STOs. The overlap
matrix elements are calculated analytically using a method
developed by Guseinov et al.76−81 For the overlap and
Hamiltonian matrix element calculations, we adopt the STO
and atomic ionization potential parameters of Hoffman.67,69,82

We consider first the simple case of transport through a
uniform hydrogen atomic chain. The leads are represented by
two 350 hydrogen atom chains bridged by a 20 atom chain
section with a constant interatomic distance of dCC = 2 Å
throughout the system.83 Within the extended Hückel
minimal basis-set model, each hydrogen atom is assigned a
single 1s-type STO resulting in overlap and Hamiltonian
matrix representations of dimensions 720 × 720. We

Figure 2. Time-dependent electronic transport in gold/benzene-dithiol/gold (a) and gold/pyridine-dithiol/gold (b) molecular junctions. The
junctions consist of 596 gold-atom lead models (brown spheres) and 83 gold-atom lead sections (yellow spheres) within the extended molecule
region on each side of the benzene/pyridine dithiol molecules (atomic coordinates are provided in the Supporting Information). The finite lead
density of states, broadened by a Gaussian of width σ = ℏΓ = 0.052 eV, is presented in panel (c), where the yellow rectangles represent the
Fermi transport energy window (see inset for a state representation illustration of this energy window). Here, the origin of the energy axis is
set to the center of the HOMO−LUMO energy gap of the isolated lead. The time-dependent currents calculated for the benzene (black) and
pyridine (red) dithiol junctions, at a bias voltage of Vb = 1.0 V and electronic lead temperatures of TL = TR = 0 K, are depicted in panel (d).
The initial conditions are similar to those described in the caption of Figure 1. The corresponding Landauer steady-state currents (see
Appendix B) are designated by X marks with matching colors. Current vs bias voltage curves calculated from the DLvN steady-state currents
obtained at a simulation time of 1 ps (circles) and the Landauer formalism (X marks) for the benzene (black) and pyridine (red) dithiol
junctions are presented in panel (e), where dashed lines are added to guide the eye. Panel (f) presents the underlying transmittance
probabilities of the two junctions in the vicinity of the Fermi energy, along with representative extended molecule MOs (using an isosurface
value of 0.0075 atomic units) that bridge the two leads and can support current. X marks represent the eigenenergies of the extended molecule
MOs in this range. Here, the origin of the energy axis is set to the center of the HOMO−LUMO energy gap of the entire (finite) system. The
transmittance probability within the full Fermi transport window at Vb = 1.0 V and more MO illustrations are presented in the Supporting
Information.
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propagate the DLvN equation of motion (eq 8) using the
fifth-order Runge−Kutta scheme, with an adjustable time
step.84 The current through the bridge is calculated using the
following expression (see Appendix A)

∑ ∑
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Here, e is the electron charge; ℏ is the reduced Planck’s

constant; ̃ṼEM,R/L are the off-diagonal Hamiltonian matrix
blocks coupling the extended molecule single-particle state
manifold with the corresponding right and left lead states,
respectively; and ρ ̃ẼM,R/L are the off-diagonal density matrix
blocks representing the corresponding extended-molecule/
lead state coherences.
The time-dependent current through a hydrogen chain

model system, for a bias voltage of Vb = 1.0 V and lead
electronic temperatures of TL = TL = 0 K, is presented in
Figure 1. The full black line represents a “microcanonical”46

simulation, where no driving is applied (Γ = 0 fs−1). As
expected, after some transient dynamics (∼ 50 fs), dictated
by the initial conditions, a quasi-steady-state (QSS) develops
that matches the Landauer steady-state value (marked by the
green x mark). This QSS remains stable until the wave
packet is reflected from the edges of the finite model system
back into the extended molecule region and current reversal

occurs (at ∼225 fs). When turning on the driving term (Γ =
0.105 fs−1) the system follows similar initial dynamics but
develops a true steady state that matches the Landauer value.
The inset of Figure 1 presents the eigenstate-resolved steady-
state occupations in the left and right leads and the extended
molecule. As can be seen, the lead state occupations are very
close to their target step-function Fermi−Dirac populations
with the corresponding chemical potentials.87 The extended
molecule populations form a smooth average between the
lead state occupations within the Fermi transport window.
This behavior resembles the tight-binding chain model
results,57 thus indicating the validity of the developed
methodology.
Next, we turn to demonstrate the performance of the

method for more realistic model junctions consisting of
benzene dithiol (BDT, Figure 2a) and pyridine dithiol (PDT,
Figure 2b) molecules bridging two gold leads.88,89 The leads
are represented by finite gold rods that form a tip-like
structure near the molecular region. The formal division of
the system into the left and right lead regions and the
extended molecule, consisting of the benzene/pyridine dithiol
molecules and their adjacent tip sections, is depicted in
panels 2a and 2b. With the EH parameters used here, the
electronic bandwidth of the finite lead models spans a range
of 25 eV (see Figure 2c). The Fermi transport window
(defined by the bias voltage, the equilibrium chemical
potentials of the leads, and the lead electronic temperatures)
is typically considerably narrower than this range (see yellow
rectangles in Figure 2c). Therefore, we propagate only a

Figure 3. Steady-state single-particle state occupations of the various benzene−dithiol junction sections. (a) Left lead (solid blue line), right
lead (solid green line), and extended-molecule (magenta x marks) steady-state occupations compared to the corresponding target lead-
equilibrium step-function distributions (blue and green dashed lines, respectively). (b) Zoom in on the occupations of four specific consecutive
extended-molecule states, denoted in (a). An illustration of the corresponding molecular orbitals within the extended molecule region is shown
in (c), and their effective couplings to the left and right leads are given in (d).
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subset of single-particle states within the transport window
and in its immediate vicinity and freeze the dynamics of the
rest of the states. When converging the results with respect
to the size of this dynamic range enclosing the transport
window, this procedure considerably accelerates the compu-
tation at no loss of accuracy. Importantly, within the chosen
dynamical energy range, a relatively uniform lead density of
states is obtained (Figure 2c), thus justifying the choice of a
single driving rate, Γ, to broaden the discrete set of finite
lead model states into a continuum electronic structure.
Specifically, for the junctions studied herein, we find that a
value of Γ = 0.08 fs−1 reproduces well the Landauer steady-
state current.
Figure 2d presents the time-dependent current through the

benzene (black) and pyridine (red) junctions under a bias of
1.0 V and a gate voltage of −0.2 V simulated by a rigid shift
of the onsite energies of the molecule atoms. The latter is
applied in order to position the molecular eigenstates in a
region of increased lead density of states within the model
parameters. For both systems, after an initial current rise (see
inset of Figure 2d), the system develops a stable steady state
whose value matches well the Landauer result. The remaining
deviations can be remedied by increasing the lead model size
allowing for their state occupations to further approach the
corresponding target equilibrium values. The benzene dithiol
junction steady-state current is ∼50% higher than the
corresponding pyridine dithiol value. These findings hold in
a wide range of bias voltages, as can be seen in Figure 2e,
where the current−voltage curves obtained for the two
systems using the DLvN approach and the Landauer
approach are compared. This can be explained by analyzing
the electron transmittance probability through the junction
(Figure 2f), calculated via nonequilibrium Green’s function
formalism (see Appendix B). Clearly, the pyridine junction
exhibits a lower transmittance probability throughout the
transport energy window. This is most pronounced near the
Fermi energy, where the pyridine junction exhibits a
transmittance probability close to 1 and the benzene junction
shows a 2-fold larger transmittance probability, indicating the
presence of two almost fully conducting channels. This can
be attributed to the double degeneracy of the clockwise and
anticlockwise particle-in-a-ring like benzene eigenstates, which
is lifted in the case of pyridine. To demonstrate this, we plot
in Figure 2f several MOs of the extended molecule that
bridge the left and right leads and can carry current within
the corresponding energy range. Specifically, near the BDT
junction transmittance peak, located 0.03 eV above the Fermi
energy, we find two MOs that span the whole extended
molecule region with considerable weight residing on the
BDT molecule itself. These facilitate the two open
conduction channels that give rise to a transmittance
probability of 2. When plotting the charge density variations
for the two systems we also find negative charging of the
BDT but no significant charging of PDT under bias voltage
(see Supporting Information for further details).
Figure 3 depicts the steady-state single-particle state

occupations of the various sections of the benzene dithiol
junction. The left (full blue line) and right (full green line)
lead model states follow the general envelope of the target
step-function occupations (blue and green dashed lines,
respectively) with the corresponding chemical potentials. The
observed small undulations of the occupation function result
from the variation of the different lead model states coupling

to the extended molecule states. These can be further
reduced by increasing the lead model size.90 The extended
molecule steady-state occupations (magenta x marks) follow a
general pattern similar to that observed for the hydrogen
chain junction (see inset of Figure 1) but exhibit strong
fluctuations within the Fermi transport window. These can be
attributed to asymmetric coupling of these states to the left
and right lead state manifolds. To demonstrate this, we focus
on four consecutive extended molecule states that exhibit
large steady-state occupation variations (Figure 3b) and
calculate their effective coupling to the left and right leads.
To that end, we use a Fermi’s golden rule based definition of

the effective coupling: ZL/R(εn) = 2π∑q| ̃ ̃V nq
L/R|2 δ(εn − εq

L/R),

where ̃ ̃V nq
L/R are the coupling matrix elements between a

bridge state of energy εn and a state of energy εq
L/R of the left

or right lead, as obtained by the “site-to-state” transformation,
with the sum extending over all states in the relevant
dynamic range of the lead.58,59 The results are summarized in
the table appearing in Figure 3d. Interestingly, the states
marked by “1” and “2” are almost evenly coupled to both
leads and hence have steady-state occupations close to 0.5.
State “3” is 17 times more strongly coupled to the right lead
(with the lower chemical potential) than to the left lead,
resulting in a very low steady-state occupation of ∼0.083. On
the contrary, the following state (“4”) is 17 times more
strongly coupled to the left lead (with higher chemical
potential) than to the right lead resulting in a high steady-
state occupation of ∼0.86. A similar behavior is found for all
other MOs within the Fermi transport windows (see
Supporting Information). This can also be qualitatively
demonstrated by viewing the corresponding MOs (Figure
3c), where orbitals “1” and “2” span the entire extended
molecule region, whereas orbitals “3” and “4” are localized on
the right and left extended molecule sections, respectively.
Notably, all single-particle state occupations are in the range
of [0,1] indicating the conservation of N-representability and
density matrix positivity throughout the simulation.57,59,66

■ CONCLUSIONS

In summary, we presented a nonorthogonal basis-set
generalization of the driven Liouville von Neumann approach.
The method addresses the problem of inter-subsystem orbital
overlap by adopting a block diagonalization procedure that
does not affect the lead basis. The performance of the
method was demonstrated using time-dependent transport
calculations for a hydrogen chain junction and for benzene
and pyridine dithiol molecules bridging two gold leads, whose
underlying electronic properties were described by extended
Hückel Hamiltonians. The obtained steady-state currents
were found to be in good agreement with predictions based
on the Landauer formalism. The steady-state single-particle
molecular state occupations have been analyzed in terms of
their relative effective couplings to the left and right leads.
For all cases studied, positivity of the reduced density matrix
was conserved throughout the dynamics with no apparent
violation of Pauli’s exclusion principle. This indicates the
robustness of the proposed approach for simulating electron
dynamics in open quantum systems out of equilibrium. The
extension of the DLvN approach presented herein is also
important for future implementation of the method within
density functional theory and density functional tight-binding
computational codes, based on nonorthogonal basis-set
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representations. This, in turn, will allow for accurate and
efficient dynamic transport calculations in realistic molecular
junction models.

■ APPENDIX A: CURRENT CALCULATION IN A
NONORTHOGONAL BASIS-SET REPRESENTATION

The driven Liouville von Neumann equation in the state
representation is given by
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The dynamics of the density matrix block representing the
extended molecule is thus given by

ρ
ρ ρ ρ
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Since the MOs of the extended molecule are orthogonal to
the lead section orbitals after the block orthogonalization
procedure, the change in total number of electrons in the
extended molecule region is given by
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Calculating each term separately we obtain
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where summations run over the entire set of NEM extended
molecule states. Note that in the second equality we have
switched between the summation indices of the second term.
For the second term of eq A3 we have
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Here, we have used the fact that the Hamiltonian matrix, in

this case, is symmetric91 ( ̃ṼL,EM(m, n) = ̃ṼEM,L(n, m)) and
the density matrix is Hermitian (ρ ̃ẼM,L(n, m) = ρ ̃L̃,EM* (m, n)).
Similarly, for the third term we obtain
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Summing all terms and using the symmetry of the
Hamiltonian matrix we have
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We can now identify the term (2/ℏ)∑n
NEM∑m

NL ̃ṼL,EM(m, n)
Im[ρ ̃L̃,EM(m, n)] as the net particle influx from the left lead
into the extended molecule region and the term (2/ℏ)

∑n
NEM∑m

NR ̃ṼEM,R(n, m)Im[ρ ̃ẼM,R(n, m)] as the net outgoing
particle flux from the extended molecule region into the right
lead. The total electric current can be defined as the average
of these particle fluxes, multiplied by the charge, |e|, carried
by each particle
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where we have used the symmetry of ̃H̃ and Hermiticity of ρ ̃ ̃
for the first term in the second line. If desired, this
expression can be readily converted to the real-space (site)
representation by the inverse of the basis transformations
described in the main text to transform to the state-
representation.
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■ APPENDIX B: DESCRIPTION OF LANDAUER
TRANSPORT CALCULATIONS IN
NONORTHOGONAL BASIS-SET
REPRESENTATIONS

The standard Landauer formalism was used to perform
steady-state reference current calculations. In this approach,
the current (I) flowing through the system from the left (L)
lead to the right (R) lead at a given bias voltage (V) is
evaluated from the probability, T, of an electron with a given
energy, E, to traverse the system

∫ μ μ= −
−∞

∞
I V

e
h

E f E V f E V T E( )
2

d [ ( , ( )) ( , ( ))] ( )L L R R

(B1)

where e is the electron charge; h is Planck’s constant; f L/R(E,
μL/R(V)) = [1 + e βL/R(E−μL/R(V))] are the Fermi−Dirac
distribution functions representing the electron occupations

in the left/right leads; β =
k TL/R

1

B L/R
; kB is Boltzmann’s

constant; TL/R is the electronic temperature in the left/right
leads; and the bias voltage is assumed to drop symmetrically
at the lead−molecule junctions such that the lead chemical
potentials μL/R are chosen as μL/R = Ef

L/R ± 0.5 V, with Ef
L/R

being the Fermi energy of the left/right lead.
The electron transmittance probability through the

junctions, required as input for the Landauer formula, was
calculated using the nonequilibrium Green’s function trace
formula92−94

= Γ̂ ̂ Γ̂ ̂T E E G E E G E( ) Tr[ ( ) ( ) ( ) ( )]L EM
r

R EM
a

(B2)

Here, ĜEM
r (E) = [(ĜEM

0 (E))−1 − ∑L
r (E) − ∑R

r (E)]−1 is the
retarded Green’s function of the extended molecule, where
ĜEM
0 (E) = (EŜEM − ĤEM)

−1 is the Green function of the bare
extended molecule; ĤEM is the Hamiltonian matrix
representation of the extended molecule; S ̂EM is the overlap
matrix representation of the extended molecule; and the lead
self-energy functions ∑L/R

r (E) are given by

Σ̂ = ̂ − ̂ ̂ ̂ − ̂E ES V G E ES V( ) ( ) ( )( )L/R
r

EM,L/R EM,L/R L/R
r

L/R,EM L/R,EM

(B3)

where V̂EM,L/R is the Hamiltonian matrix block representing
the coupling between the extended molecule and the left/
right lead, V̂L/R,EM = [V̂EM,L/R]

†; S ̂EM,L/R is the corresponding
overlap matrix block; S ̂L/R,EM = [ŜEM,L/R]

†; and ĜL/R
r (E) =

(ES ̂L/R − ĤL/R)
−1 is the retarded surface Green’s function of

the bare semi-infinite lead. The advanced Green’s function
matrix representation of the extended molecule is given by
ĜEM
a (E) = [ĜEM

r (E)]†, and the broadening functions, Γ̂L/R(E),
are given by

Γ̂ = Σ̂ − Σ̂E i E E( ) [ ( ) ( )]L/R L/R
r

L/R
a

(B4)

with ∑̂L/R
a (E) = [∑̂L/R

r (E)]†.
The retarded surface Green’s function of the bare semi-

infinite lead, ĜL/R
r (E), can be obtained by using efficient

iterative methods.95−99 Here, in the spirit of the finite model
system, we calculate it by complex matrix inversion of
ĜL/R
r (E) = [EŜL/R − ĤL/R + iηL/R]

−1, where ĤL/R is the
Hamiltonian matrix representation of the finite left/right lead
model; S ̂L/R is the overlap matrix representation of the finite
left/right lead model; and iηL/R is a small imaginary
broadening factor introduced to eliminate the singularities
and broaden the discrete spectra of the finite lead models

into a quasi-continuous one. To this end, ηL/R is chosen as
twice the maximum eigen-energy spacing within the Fermi
transport region, defined by the chemical potentials and
electronic temperatures of the lead model. The obtained
Landauer current is then converged with respect to the size
of the lead models to the required accuracy.
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