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Basis Set Superposition Error 

As described in the main text the force-field parameterization has been performed using the 

tier-2 basis set,
1
 as implemented in the FHI-AIMS suite of programs,

2
 with tight convergence 

settings. This basis set is known to introduce minor basis set superposition errors (BSSE) in 

dimer calculations.
3, 4

 In order to estimate the BSSE in the present case, we have performed 

counterpoise (CP)
5, 6

 BSSE correction calculations on the borzaine/benzene dimer. Fig. S1 

presents binding energy curves of the dimer calculated using the screened-exchange HSE density 

functional approximation
7-10

 with (red) and without (black) CP BSSE correction, the TS-vdW
11

  

dispersion augmented HSE functional with (blue) and without (green) CP BSSE correction, and 

the HSE functional with (purple) and without (brown) CP BSSE correction augmented by many-

body dispersion (MBD)
12, 13

 effects. The CP BSSE energy corrections at the corresponding 

equilibrium inter-dimer distances are 0.10(-0.22), 0.07(-7.80), and 0.16(-5.54) meV/atom for the 

HSE, TS-vdW+HSE, and HSE+MBD methods, respectively. Values in the parentheses are the 

calculated binding energies after the CP BSSE correction. This clearly indicates that BSSE 

effects are well below the expected force-field fitting accuracy and therefore can be safely 

neglected. 
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Figure S1: Basis set superposition errors. Binding energy curves of the borzaine/benzne dimer 

calculated using: (i) the HSE functional with (red) and without (black) CP BSSE correction; (ii) 

the TS-vdW corrected HSE functional with (blue) and without (green) CP BSSE correction; and 

(iii) the HSE functional with (purple) and without (brown) CP BSSE correction augmented by 

many-body dispersion treatment of long-range correlation. 
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Convergence Settings 

As mentioned in the main text we used tight convergence settings throughout our FHI-AIMS 

calculations. These imply the tightest division of the radial grid, which contains 49, 65, 69, and 

71 shells for H, B, C, and N, where the outermost shell is located at distance of 7 Å. The 

distribution of actual grid points on these shells is done using Lebedev grids,
14

 which are 

designed to integrate all angular momenta up to a certain order, l, exactly.
2
 The sum of 

eigenvalues converged to the level of 10
-3

 eV and the volume integrated root-mean square 

change of the charge density between two consecutive self-consistent field iterations was 10
-5

 

electrons. Furthermore, we have converged the self-consistent total energies up to 10
-6

 eV. 

 

Local Registry Index for Graphene/h-BN 

In this section we briefly summarize the basic principles of the local registry index (LRI) 

method used in the main text to characterize the registry patterns of the periodic bilayer of 

graphene/h-BN. A detailed description of the method can be found in Ref. 15. 

The LRI is a tool developed to characterize the local degree of lattice commensurability 

between adjacent layers. It is based on the global registry index (GRI) approach that quantifies 

the overall inter-lattice registry at various stacking configurations of rigid interfaces.
16

 In general 

terms, the LRI is defined as the average GRI of the local environment of a given atom on one 

surface, with all atoms of its adjacent surface. To this end, each atom is given a number ranging 

from 0 (optimal registry) to 1 (worst registry) that quantifies its local registry. Here, optimal and 

worst stand for the energetically most and least favorable local stacking modes, respectively (see 

Fig. S2). 

Similar to the GRI, the LRI is evaluated via the calculation of projected overlaps between 

circles assigned to atoms on adjacent layers. For flat surfaces the projected circle overlap area of 

atoms i and n located on adjacent layers,       , is a simple function of their lateral distance,    , 

which, in turn, is taken as the distance between atom n and the surface normal of atom i. The 

latter is defined as the normal to the plane formed by the three nearest neighbors of atom i.
3
 

Unlike the case of flat surfaces, for curved systems         and therefore the circle overlap is 
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taken as the average                        , which reduces to        for flat surfaces 

where        . 

With this, the LRI of a given atom, i, on the graphene layer within the heterogeneous 

graphene/h-BN interface is defined as: 

                

 
 

 
 

    
     

       
      

   
      

       
     

       
      

   
      

  

    
           

             
      

   
      

       
           

             
      

   
      

  
       

  

where the sum is taken over the three nearest neighbors (j, k, and l) of atom i, and   
      

, 

  
        

, and   
   are the sum of pair overlaps of the circle associated with a carbon atom m on 

the graphene layer and all circles of type M (B or N) on the adjacent layer obtained at the 

optimal, worst, and a general local stacking mode, respectively. A similar definition holds for the 

LRI of the B and N atoms within the h-BN layer. For the LRI calculations presented in the main 

text we adopt the circle radii of the graphene/h-BN system suggested in Ref. 17 where    

      ,          , and          , with            and             being the C-C 

and B-N intralayer covalent bond lengths, respectively. 

 

Figure S2: LRI optimal and worst stacking configurations. Schematic representation of the 

optimal (left) and worst (right) local stacking configurations of atom i and its three nearest 

neighbors j, k and l in the heterogeneous graphene/h-BN system. Pink, grey, and blue circles 

represent boron, carbon, and nitrogen atoms, respectively. 
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