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1. Achiral DWCNTs optimized using the Tersoff intra-layer potential 

In the main text we have presented optimized structures of various DWCNTs 

obtained using the Airebo1 intra-layer and Kolmogorov-Crespi2 interlayer force fields. 

Here, in order to verify the robustness of our results against the choice of intra-layer 

force-field we have repeated the calculations using the Tersoff3 intra-layer potential. 

Comparing the optimized AC@AC systems presented in Fig. 1 of the main text and 

those shown in Fig. S1 we find that the relaxed structures present very similar 

faceting behavior for both intra-layer potentials. The ZZ@ZZ DWCNTs exhibit less 

faceting when optimized using the Tersoff potential than with the Airebo force-field. 

Furthermore, using the former, the widest DWCNT considered (20 nm in diameter) 

already exhibits a circular cross section thus indicating the existence of a maximal 

critical faceting diameter. Nevertheless, the qualitative behavior that originates from 

the basic symmetries of the system remains valid for both force-fields. 

 

Figure S1: Relaxed achiral DWCNTs geometries and LRI patterns obtained using the 
Tersoff intralayer and the Kolmogorov-Crespi interlayer potentials. Schematic 
representation of achiral DWCNTs showing their structure and local registry patterns 
before (upper row) and after (lower row) geometry relaxation. Each frame includes 
seven DWNTs with diameters in the range of 5-20 nm. Four groups of DWNTs are 
presented (from left to right): ZZ@ZZ (n,0)@(n+8,0); AC@AC (n,n)@(n+4,n+4), 
(n,n)@(n+5,n+5), and (n,n)@(n+6,n+6). For the ZZ@ZZ systems we choose n=55, 80, 
105, 130, 155, 180, and 243; For the AC@AC systems we use n=31, 46, 60, 75, 89, 
104, and 140. The LRI color bar is shown on the right. 
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2. AC@ZZ DWCNTs 

In Fig. 1 of the main text we have presented optimized structures of achiral 

DWCNTs. In the case of the mixed achiral ZZ@AC systems it was shown that the 

interlayer registry patterns are homogeneous and hence no faceting occurs. For 

completeness we have repeated these calculations on the (144,144)@(258,0) AC@ZZ 

DWCNT. Here, as well, a similar behavior was observed thus verifying that the mixed 

achiral nanotubes are not expected to exhibit facets. 

 

Figure S2: Structure and LRI patterns of an AC@ZZ DWCNT. Schematic 
representation of the (144,144)@(258,0) DWCNT before (upper panel) and after 
(lower panel) geometry optimization using the Airebo intralayer and Kolmogorov-
Crespi interlayer potentials. The LRI color bar is shown on the right. 

  

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

http://dx.doi.org/10.1038/nnano.2016.151


4 NATURE NANOTECHNOLOGY | www.nature.com/naturenanotechnology

SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2016.151

4 
 

3. Chiral DWCNTs optimized using the Aierbo intra-layer potential 

In Fig. 2 of the main text we presented optimized structures of chiral DWBNNTs 

obtained using the Tersoff interlayer potential and the h-BN ILP.4 For completeness, 

we present in Fig. S3 the corresponding relaxed chiral DWCNT structures obtained 

using the Airebo intralayer and Kolmogorov-Crespi interlayer potentials. Notably, 

despite the different nature of the intralayer covalent bonding of the two systems very 

similar faceting patterns appears for DWBNNTs and DWCNTs of the same identity. 

This further supports our conclusion that the origin of faceting is geometric. 

 

Figure S3: Relaxed chiral DWCNTs geometries, LRI patterns, and interlayer 
distances obtained using the Airebo Intralayer and Kolmogorov-Crespi interlayer 
potentials. Schematic representation of (120,100)@(126,105) (leftmost column), 
(60,60)@(66,65) (second column), (70,70)@(77,74) (third column), (68,68)@(75,70) 
(fourth column), and (71,71)@(80,72) (rightmost column) DWCNTs showing their 
local registry patterns before (upper row) and after (middle row) geometry 
relaxation. The lower row presents the interlayer spacing with the corresponding 
color bar appearing on the right (note that the colorbar scale here differs from that 
appearing in the main text for DWBNNTs). The LRI color bar is the same as in Fig. S1 
of the main text. The chiral angle difference between the inner and outer shells,   , 
is indicated above the respective columns. 
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4. The local registry index (LRI) 

The local registry index is a tool developed to quantify the degree of local inter-

surface registry matching at rigid material interfaces. The LRI is derived from the 

global registry index (GRI) concept that provides a quantitative measure of the overall 

interfacial registry matching.5 In the LRI scheme each atom is assigned a number 

between 0 (for optimal local stacking) and 1 (for worst local stacking) that 

characterizes the favorability of its local stacking configuration. To this end, each 

atomic position is given a circle (or, alternatively, a two-dimensional Gaussian 

function) lying in its respective surface plane. The projected overlaps of pairs of 

atomic circles (or Gaussians) lying in adjacent layers are then used to construct the 

registry index. In the original implementation of the registry index method for flat 

parallel surfaces, the pair circle overlaps were calculated using a simple analytic 

formula as a function of the lateral distance         between each atomic pair (i and 

n) in adjacent layers. Here, the lateral distance was defined as the distance between 

atom n of one layer and the surface normal at the position of atom i of the other layer. 

The latter was taken as the normal to the surface defined by the three nearest-

neighbors of atom i within the hexagonal lattice (see Fig. S4). Adopting this definition 

for the case of curved surfaces lifts the symmetry of the lateral distance such that 

       . To account for this, the circle pair overlap is taken as the mean overlap 

calculated using     and     in the following manner 

                        ,  

where        and        are the circle overlaps of atoms i and n calculated at lateral 

distances     and    , respectively, and     is the mean overlap area of the atomic 

pair. With this definition the pair overlap becomes dependent on the relative spatial 

orientation of the two circles and reduces with increasing inter-circle tilt angle. 
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Figure S4: Normal and lateral distance definitions. (a) The surface normal at the 
position of atom i,   , is defined as the normal to the plane formed by its three 
nearest-neighbors j, k and l. (b) The lateral distance     is taken as the shortest 
distance between atom n of one layer and the normal associated with atom i of the 
other layer. For the sake of simplicity and clarity we show here a bilayer graphene 
system and color the upper layer atoms in pink. The same definition holds for h-BN 
based systems. 

The local registry index of atom i is simply defined as the average global RI of this 

atom and its three nearest neighbors with the entire adjacent layer. As an example, for 

graphitic systems one needs to sum the pair overlaps of carbon atom i with all atomic 

carbon centers of the adjacent layer,     . Similarly, the corresponding pair overlaps 

of its three nearest neighboring atoms j, k, and, l with all atoms of the adjacent layer 

    ,     , and      are evaluated. With this, the local registry index of atom i is 

defined as: 

    
          

                 
                

   
                        

                       
  

where we have averaged over the contributions of all nearest neighboring atoms  ,  , 

and   of atom i. Here,          and            are the sum of pair overlaps of the circle 

associated with atom m on one layer and all circles of the adjacent layer obtained at 

the optimal and worst local stacking modes, respectively (see Fig. S5). This definition 

yields a value of 0 for the optimal local stacking mode and 1 for the worst local 

stacking mode. 

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

http://dx.doi.org/10.1038/nnano.2016.151


NATURE NANOTECHNOLOGY | www.nature.com/naturenanotechnology 7

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NNANO.2016.151

7 
 

Similarly, the normalized local registry index for h-BN is given by 

       

  
                  

                                  
                                  

                 
    

                        
         

             
                        

         
             

                        
         

               
  

where          and            are the sum of pair overlaps of the circle associated 

with atom m of type M on one layer and all circles of type N on the adjacent layer 

obtained at the optimal and worst local stacking modes, respectively. 

In the present calculations, we adopt the circle radii of the GRI method where  

         ,           , and          , and            and             

are the CC and BN intralayer covalent bond lengths, respectively. 

 

 

Figure S5: LRI optimal and worst stacking configurations. Schematic representation 
of the optimal (left) and worst (right) local stacking configurations of atom i and its 
three nearest neighbors j, k and l in bilayer graphene (top) and h-BN (bottom). Note 
that in the LRI definition of graphene the optimal configuration differs from the 
global minimum energy AB stacking mode. Pink and Blue circles represent boron and 
nitrogen atoms, respectively. 
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5. Frozen partial charges approximation in the h-BN ILP calculations 

For the geometry optimizations of the BNNTs we used our recently developed inter-

layer potential (ILP) for h-BN.4 In our original implementation of the h-BN ILP one 

of the most computationally intensive steps was the partial atomic charge calculation 

performed using the electronegativity equalization method (EEM). In order to reduce 

the computational burden in the present calculations we adopted the frozen charge 

approximation assuming constant partial charges of +0.47e and -0.47e for the boron 

and nitrogen atoms, respectively. This approximation was found to lower the 

interlayer sliding energy landscape corrugation and therefore the h-BN ILP was 

reparameterized to reproduce the TS-vdW corrected PBE sliding landscapes of bi-

layer h-BN reported in Ref. 6. To this end, the repulsive NN parameters     and    , 
representing the range of the repulsion term and the width of the Gaussian decay in 

the anisotropic term (see Ref. 4), were modified from 3.69 Å and 1.2 Å to 3.8 Å and 

0.8 Å, respectively. The above reparameterization yields a sliding corrugation of 6.54 

meV/atom (see Fig. S6) and a binding energy of 35.1 meV/atom (see Fig. S7), which 

are in good agreement with the reference values of 6.5 meV/atom and 38.1 

meV/atom, respectively, obtained using the TS-vdW dispersion corrected DFT 

approach.6 

 

Figure S6: Left: Sliding energy landscape of a periodic bi-layer h-BN system 
calculated within the frozen partial charge approximation using the h-BN ILP with the 
parameterization presented herein. For comparison purposes the reference sliding 
energy landscape calculated using the TS-vdW dispersion corrected PBE density 
functional approximation with the tier-2 basis set within the FHI-AIMS code is 
presented on the right.6 
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6. Many body dispersion effects 

The parameterization of the interlayer force-field terms used in the present study does 

not take into account many-body dispersion (MBD) effects. Recent results obtained 

via state of the art PBE exchange-correlation density functional calculations 

augmented by a MBD treatment of long-range correlation reported a binding energy 

of 25 meV/atom for bi-layer h-BN.7 As may be expected, this value is considerably 

lower than the original h–BN ILP binding energy of 35.1 meV/atom, neglecting MBD 

effects. To verify that our predictions are robust against the inclusion of such 

screening effects we have repeated our calculations for six of the achiral DWBNNTs 

studied in the main text while artificially reducing the interlayer binding energy to 

match the screened value. To this end, we have reduced all C6 coefficients by 17%. 

The resulting binding energy curves appear in Fig. S7. 

 

Figure S7: Binding energy curves of periodic bi-layer h-BN calculated with the original 
h-BN ILP parameterization (full black line) and after C6 coefficients reduction by 17% 
(full red line). 

 

The resulting relaxed structures that are shown in Fig. S8 demonstrate clear faceting 

of similar nature to those presented in the main text even with the reduced binding 

energy thus indicating the generality of our findings. More research on incorporating 

MBD effects in dedicated interlayer potentials is currently being pursued. 
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Figure S8:  Relaxed achiral DWBNNTs geometries and LRI patterns obtained using 
the h-BN ILP potential with reduced C6 coefficients (upper panels). Each frame 
includes 3 DWNTs with diameters in the range of 9-20 nm. Two groups of DWNTs are 
presented: ZZ@ZZ (n,0)@(n+8,0) (left) and AC@AC (n,n)@(n+5,n+5) (right). For the 
ZZ@ZZ systems we choose n=105, 180, and 243; For the AC@AC systems we use n= 
60, 104, and 140. For comparison purposes the corresponding relaxed structures 
appearing the main text obtained using the original h-BN ILP parameterization are 
presented in the lower panels. 
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7. Moiré superlattice unit cell characterization via 2D mapping 

Consider the               double walled nanotube having chiral vectors of 

           and               for the inner and outer shells, respectively. 

Here,     
 
  
  
    and     

 
   

  
    are the primitive unit-cell vectors of the 

hexagonal lattice written in the       coordinate system with the   axis pointing 

along the armchair direction and the   axis along the perpendicular zigzag axis and   

is the inter-site distance (see Fig. S9). In order to explain the interlayer registry 

patterns discussed in the main text the two tubes are first unrolled to obtain infinite 

ribbons of width         (see shaded green area) and           (see shaded blue 

area) representing the inner and outer walls, respectively. Next, the ribbon 

representing the outer wall is rotated by an angle        , where   

               and             
 

        are the chiral angles of the inner and outer 

shells, respectively, such that the chiral vectors of the two walls point in the same 

direction using the following rotation matrix: 

                  
                 

Finally, in order to mimic the curvature difference between the two tube layers the 

outer shell is now contracted along its finite dimension until the chiral vectors of the 

two ribbons fully overlap using the following operation:5,8,9 

       
   

     

This assures that radially aligned atoms in the cylindrical configuration are also 

eclipsed in the planar representation. Note that this matrix is written in the rotated 

coordinate system         whose x-axis is parallel to   . The corresponding 

transformation between the original and rotated coordinate systems is given by: 
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Figure S9: Planar representation of unrolled double walled nanotubes. 

 

The lattice vectors of the resulting Moiré supercell are given by:8 

  
                  

where   is the 2x2 unit matrix and     are the primitive graphene lattice vectors written 

in the rotated coordinate system         as                        and     

           
          

   . The inverse matrix of the rotation matrix is a rotation 

in the opposite direction given by: 

                    
                  

And the inverse of the contraction matrix is the corresponding expansion matrix: 

        
     
     

         

   
   

  
          

  

   

  

  

  
   

  

   

AC 

ZZ 

Inner 

Outer 
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With this we may write: 

             
     

              
                 

       
   

    
     

                      
                        

       
                    

                           

Inverting this we obtain: 

               

  
                                                

                
                                  

  
                      

                
                                   

 

The first Moiré supercell lattice vector     

The first Moiré supercell lattice vector is given by: 

                   

    
                      

                
                                   

      
       

    
                      

                               
                                                  

Looking separately on each vector element we get: 

                               
                                     
                                

          
 

      
    

        
    

      
    
  

                   

and 
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where we have defined the average chiral angle as        

  and used the relations 

        
  and        

 . 

With this we have: 

  
 

    
                      

                

                                                   
  

Since                      we have: 

  
 

    
                    

 
                

                                                   
 

    
                   

 
        

                                            

           
                   

 
 

                                     

           
                   

                                                 

Namely, 
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Since the         is orthogonal the size of     is given by: 

    
          

                     
                            

             
 

 

The angle that     forms with the main axis of the DWNT (     is given by: 

         
     
   

              
                                    

                                          
 

 

The second Moiré supercell lattice vector     

The second Moiré supercell lattice vector is given by: 

                   

    
                      

                
                                   

       
  

       
  
 

    
                      

                  
                

 
  

                       
         

                    
  
  

Looking separately on each vector element we get: 

                  
                

 
  

        
                 

 
                

 
   

        
            

 
         

 
        

   
  

         
 
   

    
        

 
   

    
           

 

   
      

    
  

          
      

  
   

and 
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Giving: 

  
 

    
                      

         
          

                  
                             

          
  

Since                      we have: 
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Namely, 

  
             

  
                   

                                            
         

Since the         is orthogonal the size of   
  is given by: 

  
              

  
                     

                                         
   

 
 

The angle that   
  forms with the main axis of the DWNT (     is given by:  

         
     
  
                

                                     
  

                                         
   

 
 

 

Achiral ACDWNTs 

For achiral ACDWNTs we have     
  and     . Taking the limit      for the 

length of the Moiré supercell lattice vectors gives: 
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Hence, the Moiré supercell lattice vectors become infinite in length for the case of 

achiral ACDWNTs. 

The alignment of the Moiré supercell lattice with respect to the axis of the DWNT can 

be obtained from the angles between the supercell lattice vectors and the translational 

vector of the tube. For   
  we have: 

                 
   

     
           

        
            

         
           

        
              

 

    
      

                  
   

      
           

        
        

         
           

        
         

    
    

     
           

  
      

           
   

          
           

   
    
        

Hence, for ACDWNTs        such that   
  is antiparallel with the axis of the tube. 

For   
  we have: 

                  
   

     
           

        
             

  

         
           

        
             

    

    
      

         
     

           
        

       

         
           

        
         

    
     

     
           

  
      

           
   

           
           

   
    
      

Hence, for ACDWNTs      such that   
  is parallel with the axis of the tube. 
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We therefore see that for achiral ACDWNTs the Moiré unit cell becomes infinitely 

long and infinitesimally thin and its vectors are parallel to the main axis of the tube 

thus forming continuous axial registry patterns. 

 

Achiral ZZDWNTs 

For achiral ZZDWNTs we have      and     . Taking the limit      for the 

length of the Moiré supercell lattice vectors gives: 

  
            

      
            

   
         

           
        

             
 
 

         
           

      
           

           
        

             
    
       

  
    

      
            

   
         

           
        

          
 

    
      

      
           

  
      

           
   

         
      

      
     

      
  

      
  

         
      

      
     

      
  

       
      

            
      

      
     

 
       

      
      

Hence, the Moiré supercell lattice vectors become infinite in length also for the case 

of achiral ZZDWNTs. 

The alignment of the Moiré supercell lattice with respect to the axis of the DWNT can 

be obtained from the angles between the supercell lattice vectors and the translational 

vector of the tube. For   
  we have: 
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Hence, for ZZDWNTs as well        such that   
  is antiparallel with the axis of 

the tube. 

For   
  we have: 

                  
   

     
           

        
             

  

         
           

        
             

    

         
         

     
           

        
         

         
           

        
               

    

 
     

           
  

      
           

   
           

           
   

    
      

Hence, for ZZDWNTs as well      such that   
  is parallel with the axis of the 

tube. 

We therefore see that like achiral ACDWNTs for ZZDWNTs the Moiré unit cell 

becomes infinitely long and infinitesimally thin and its vectors are parallel to the main 

axis of the tube thus forming continuous axial registry patterns. 

 

Monochiral DWNTs 

For monochiral DWNTs we have       
  and     . Taking the limit      

for the length of the Moiré supercell lattice vectors gives: 
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Hence, the Moiré supercell lattice vectors become infinite in length also for the case 

of monochiral DWNTs. 

The alignment of the Moiré supercell lattice with respect to the axis of the DWNT can 

be obtained from the angles between the supercell lattice vectors and the translational 

vector of the tube. For   
  we have: 

      

           
   

     
           

        
            

         
           

        
                    

      
           

     
           

  
      

           
   

          
           

       

Hence, for monochiral DWNTs as well        such that   
  is antiparallel with the 

axis of the tube. 
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For   
  we have: 

      

            
   

     
           

        
             

  

         
           

        
             

          
      

          

 
     

           
  

      
           

   
           

           
      

Hence, for monochiral DWNTs as well      such that   
  is parallel with the axis 

of the tube. 

We therefore see that similar to the achiral AC and ZZDWNTs, the Moiré unit cell of 

the monochiral DWNTs becomes infinitely long and infinitesimally thin and its 

vectors are parallel to the main axis of the tube thus forming continuous axial registry 

patterns. 
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