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ABSTRACT: At dry and clean material junctions of rigid materials the corrugation of the sliding energy landscape is dominated
by variations of Pauli repulsions. These occur when electron clouds centered around atoms in adjacent layers overlap as they slide
across each other. In such cases there exists a direct relation between interfacial surface (in)commensurability and superlubricity,
a frictionless and wearless tribological state. The Registry Index is a purely geometrical parameter that quantifies the degree of
interlayer commensurability, thus providing a simple and intuitive method for the prediction of sliding energy landscapes at rigid
material interfaces. In the present study, we extend the applicability of the Registry Index to nonparallel surfaces, using a model
system of nanotube motion on flat hexagonal materials. Our method successfully reproduces sliding energy landscapes of carbon
nanotubes on graphene calculated using a Lennard-Jones-type and the Kolmogorov−Crespi interlayer potentials. Furthermore, it
captures the sliding energy corrugation of a boron nitride nanotube on hexagonal boron nitride calculated using a recently
developed interlayer potential for hexagonal boron nitride (h-BN). Finally, we use the Registry Index to predict the sliding energy
landscapes of the heterogeneous junctions of a carbon nanotubes on h-BN and of boron nitride nanotubes on graphene that are
shown to exhibit a significantly reduced corrugation. For such rigid interfaces this is expected to be manifested by superlubric
motion.

■ INTRODUCTION

Nanoelectromechanical systems (NEMS) present the ultimate
miniaturization of electromechanical devices.1,2 Their realiza-
tion has paved the path for the design of molecular scale
devices with unique properties and functionality.3,4 Nanotubes
(NTs) have often been suggested to serve as active components
in such systems due to their cylindrical geometry and
remarkable mechanical and electronic properties.5−9 Such
setups often involve junctions of NTs and atomically flat
surfaces where the detailed lattice structure at the interface
determines its tribological properties.10−12 Gaining a clear
understanding of the NT−surface interactions has thus been
the focus of several recent computational studies exhibiting the
importance of a full atomic-scale description.13 The tool of
choice in such studies is often classical mechanics simulations
based on dedicated force-fields that are designed to reproduce
the properties of specific junctions as obtained either
experimentally or via higher accuracy computational meth-
ods.14−17 These provided important insights regarding the

interplay between lattice commensurability and preferred NT
orientations as well as the different mechanism underlying
various types of motion including sliding, rolling, and spinning.
While such descriptions are highly valuable for the
interpretation of experimental observations and the prediction
of new phenomena, they may turn computationally demanding
with increased force-field sophistication and system dimensions
and tend to blur the atomic-scale origin of tribological
phenomena in nanoscale junctions.
Recently, an alternative that quantifies the interlayer registry

in rigid interfaces has been proposed for modeling the
interlayer sliding energy surfaces of a variety of hexagonal
layered materials including graphene,18 hexagonal boron nitride
(h-BN),19,20 molybdenum disulfide,21 and multilayered nano-
tubes thereof.7,22−24 Within this approach, one defines a
registry index (RI) as a geometrical parameter that gives a
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quantitative measure of the degree of commensurability
between two lattices. The method focuses on describing the
repulsive Pauli interactions that dictate the potential energy
landscape for sliding in these systems via simple circle overlap
calculations. Hence, it provides a clear and intuitive description
of the origin of sliding energy corrugation with negligible
computational cost.
Thus far, the RI was successfully applied to parallel surfaces

either flat18−21,25−27 or curved.7,22 Here we extend its
applicability to treat nonparallel surfaces. As a model system
we choose to study the motion of NTs on flat surfaces of
hexagonal layered materials. By defining an atom-dependent 2D
Gaussian function (replacing the original atomic centered
circles) we mimic the effect of reduced Pauli repulsions with
increasing distance between atoms belonging to the NT and to
the surface. This allows us to fully reproduce the potential
energy variations during carbon NT (CNT) spinning, rolling,
and sliding on graphene13 and the sliding motion of a boron
nitride nanotube (BNNTs) on h-BN as obtained using
elaborate force-field calculations. Finally, we use our approach
to predict the tribological properties of the heterogeneous
interfaces formed between CNTs and h-BN or BNNTs and
graphene.

■ COMPUTATIONAL METHODS

In the original RI approach each lattice center was assigned a
circle of radius ri that depended on the atomic identity.28 In the
present implementation, to obtain smoother and more physical
registry index surfaces we replace these circles by atomic-
centered 2D Gaussian functions whose standard deviations
relate to the original circle radii via σi = γri, where γ is chosen to
reproduce the sliding energy RI landscapes obtained using the
original circle-based definition and typically assumes a value of
γ = 0.75 (see Supporting Information). Projected Gaussian
overlaps between atomic centers belonging to adjacent surfaces
are then analytically calculated to evaluate the local degree of
repulsive interactions. A simple formula involving sums and
differences of the local overlaps is used to define a numerical
parameter aimed to quantify the overall interfacial registry
mismatch between the two lattices. To generalize the definition
of the RI to nonparallel surfaces one should take into account
the intersite distance dependence of the repulsive interactions.
To this end, we scale each pair overlap contribution according
to the relative distance between the corresponding sites. This
follows the spirit of our RI treatment of planar 2H−MoS2
where the circle radii were chosen to reflect the distance
between the relevant pair of sublayers.21

To demonstrate this, we start by considering the
homogeneous junction of a CNT on graphene. First, we assign
to each atomic position within the tube and the surface a 2D
Gaussian parallel to the graphene surface. The Gaussian
standard deviation is chosen to be σC = 0.75 × rC = 0.75 ×
(0.5LCC), where LCC = 1.42 Å is the covalent intercarbon bond
in graphene. Next, the projected overlaps between the
Gaussians of the tube and those of the surface (see Figure
1b) are calculated according to

∫ ∫
πσ σ

σ σ

= ×

= ×
+

×

σ σ

σ σ

−∞

∞

−∞

∞
− − − −

−| − | +

S f h x y

f h

( ) e e d d

( ) e

C C

i j

i j

r r r r

r r

( ) /2 ( ) /2

2 2

2 2
/2( )

j i i j j

i j i j

t
i

g

2 2 2 2

2 2 2

(1)

where ri and rj are 2D vectors representing the projected
positions of atoms Ct

i of the tube and Cg
j of the graphene

surface on the XY plane parallel to the graphene surface,
respectively, and f(h) = H(R − h) × exp[−αg(h − hg)] is a
dimensionless scaling factor serving to effectively reduce the
interatomic overlap contribution with increasing vertical
distance, h. With this definition f(h) obtains the value of 1
when the vertical distance equals the equilibrium graphene
interlayer distance of hg = 3.33 Å and decays exponentially with
a (system-dependent) factor of αg = 3.0 Å−1 set to reproduce
reference data.29 The Heaviside step function, H(R−h), serves
to cut off all overlap contributions of atoms of the upper tube
section, which are assumed to be screened from the surface by
the lower tube section. The RI is defined to be proportional to
the total overlap area obtained by summing all atomic pair
overlaps, SCC

tot = ∑i=1
Nt ∑j=1

Ng SCt
i
Cg
j and normalizes to the range [0,1]

similar to its planar system definition18
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To calculate the overlap value at the optimal (SCC
AB) stacking

mode, we position the tube on the graphene surface such that

its translational vector forms an angle of θ−π( )6
, θ being the

chiral angle of the tube, with the zigzag graphene direction and
the lower hexagon stripe of the tube forming an AB (Bernal)
stacking configuration with the graphene surface (see Figure 1).
For the worst stacking mode overlap (SCC

AA), we merely shift the
tube from the optimal position by −LCC in the armchair
direction.

Figure 1. (a) Schematic representation of the optimal configuration of a (20,10) carbon nanotube on a graphene surface. The lower hexagon stripe
of the tube is AB-stacked with the underlying flat hexagonal lattice. For clarity, the graphene carbon atoms are colored in cyan, and only the lower
half of the tube is presented. (b) Illustration of the projected overlap between two 2D Gaussian functions, one associated with an atom of the tube
and another with an atom of the graphene surface.
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A similar procedure is used for BNNTs on h-BN and for the
heterogeneous junctions of CNTs on h-BN and BNNTs on
graphene with the corresponding RI expressions.20,30 For these
systems as well the Gaussian standard deviations are obtained
from the circle radii of the original planar RI definitions with γ
= 0.75, and the corresponding optimal and worst planar
stacking modes are used for normalization.19,25 Specifically, for
the heterogeneous junctions normalization procedure,
stretched unrolled bilayers with matching lattice constants are
used.25

■ RESULTS AND DISCUSSION

We first demonstrate the performance of the suggested
approach by showing that it can successfully reproduce the
energy landscapes for various types of CNT motion on flat
graphene surfaces calculated using classical force-fields. In

Figure 2a we compare the energy variations recorded during
the spinning of (10,10), (30,0), and (20,10) CNTs on a
graphene surface as obtained by Buldum et al. using a Lennard-
Jones (LJ) type potential13 and the corresponding RI changes.
As can be seen, for all three systems considered the RI
calculation fully reproduces the different force-field results
down to fine details with a negligible computational cost.
Similarly, when considering the sliding and rolling motions of
the (20,10) CNT on graphene (Figure 2b), excellent
agreement is achieved between the calculated force-field energy
variations and the corresponding RI changes. This excellent
agreement between the two types of calculations results from
the fact that the dominating interactions determining the
calculated energy landscape are of short-range repulsive nature
and hence can be readily captured by the simple RI picture,
even when the surfaces are not parallel. Importantly, because

Figure 2. (a) Lennard-Jones energy (black) and RI (red) variations as a function of the spinning angle for (10,10), (30,0), and (20,10) CNTs on
graphene (upper, middle, and lower panels, respectively). The RI calculations, performed with NT lengths of 29.5, 38.3, and 22.5 nm for the (10,10),
(30,0), and (20,10), respectively, are slightly shifted upward for clarity. Illustration of the spinning motion around the perpendicular axis is presented
in the inset of the upper panel. (b) Lennard-Jones energy (black) and RI variations as a function of the sliding (green) and rolling (red) distance for
a 56.3 nm long (20,10) CNT on graphene. For clarity, the RI sliding curve is slightly shifted upward. Illustrations of the sliding and rolling motions
are provided in the upper left and right insets, respectively. The 2D Gaussian standard deviation for the carbon atoms was taken as σC = 0.375LCC.
Sample coordinates for each system are provided in the Supporting Information. The Lennard-Jones reference results were adopted with permission
from ref 13. © 1999 American Physical Society.

Figure 3. Nanotube sliding energy landscapes calculated using anisotropic interlayer potentials. (a) KC sliding energy (black) and RI (red) variations
of a (20,10) CNT of length 56.3 nm as a function of the sliding distance. The LJ landscape (green) and the corresponding RI trace (blue) are
presented for comparison purposes. (b) h-BN ILP sliding energy (black) and RI (red) landscapes of a (20,10) BNNT of length 56.3 nm as a
function of the sliding distances. In the initial configuration the CNT (BNNT) atoms closest to the surface are positioned at the AB (AB1) stacking
mode of graphene (h-BN); see Figure 1a. The 2D Gaussian standard deviations used in these calculations are σC = 0.375LCC, σB = 0.1125LBN, and σN
= 0.375LBN for the carbon, boron, and nitrogen atoms, respectively, where LBN = 1.45 Å is the covalent boron−nitrogen bond length in h-BN. The
RI results are multiplied by the appropriate scaling factors and vertically shifted to match the force-field diagrams (see main text).
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we use the same RI parameters and normalization scheme for
all motion types, a single scaling factor is sufficient to relate the
RI and the force-field results.
To further evaluate the robustness of the RI method for

nonparallel surfaces, we repeated the force-field calculations
using the anisotropic Kolmogorov−Crespi (KC) potential that
was shown to be superior over LJ type expression in describing
the interlayer interactions in graphitic systems.15 Figure 3a
presents the corresponding energy variations (black line)
during the sliding motion of a (20,10) CNT on a graphene
surface. We note that the energy variations are normalized to
the number of interacting atoms defined as N ≡ 2∑i=1

Ntubef(hi),
where hi is the vertical height of atom i of the tube above the
graphene surface, Ntube is the total number of tube atoms, and
the factor 2 in front of the sum is introduced to account for the
number of interacting surface atoms. The latter is approximated
to be identical to the number of tube interacting atoms due to
the similar surface atom densities that they exhibit. For
comparison purpose, we present the LJ energy variations of
Figure 2b normalized using the same procedure. The main
differences observed when switching to the KC force-field are
(i) increased sliding energy corrugation31 and (ii) decreased
weight of the smaller peak appearing at a sliding distance of 5.7
Å. The former can be accounted for by replacing the RI scaling
factor of 1.97 meV/atom appropriate for the LJ sliding
corrugation by 6.12 meV/atom for the KC case. The latter
results from the anisotropic contribution introduced in the KC
potential and requires a slight modification of the RI definition
to be captured. To this end, the orientation of the radial p
orbital associated with each tube or surface atom is defined as
the normal to the surface formed by its nearest-neighboring
sites. For each pair of atoms, one residing on the tube and
another on the surface, two lateral distances are calculated
between the tube atom and the normal to the surface atom and
between the surface atom and the normal to the tube atom.
The corresponding pair Gaussian overlap is then defined as the
average of Gaussian overlaps calculated using the two lateral
distances (for more details see the Supporting Information).
With this, the RI is able to reproduce both the LJ and KC
traces, thus demonstrating its robustness.
Next, we turn to study the motion of a BNNT on a flat h-BN

surface. To this end, we utilize our recently developed h-BN
interlayer potential16 as a benchmark for the RI calculations.
Similar to the graphitic case studied above, we consider the
sliding motion of a (20,10) BNNT on h-BN. In Figure 3b we
plot the force-field (black) and RI (red) variations during the
sliding motion. The BN system shows general features that
resemble those of the graphitic junction with a three-peak
periodic structure. We note that the position of the peaks is
slightly shifted due to the longer BN covalent bond leading to a
larger tube diameter. Here, as well, the RI successfully
reproduces the force-field results, with a scaling factor of 8.67
meV/atom. Notably, this good agreement is obtained with an
overlap downscale rate identical to the one used for modeling
the graphitic systems (αh−BN = αg). This indicates that the
dominating interactions are associated with the surface-facing
tube atoms, resulting in weak dependence of the results on the
choice of overlap downscale rate as discussed above.
Having validated the ability of the RI to describe the energy

landscape of nanotube motion on flat hexagonal surfaces of
homogeneous systems we may now use it to predict the
behavior of the heterogeneous junctions of CNT/h-BN and
BNNT/graphene. As before, we consider a 56.3 nm long

(20,10) nanotube initially positioned, as depicted in Figure 1a.
The corresponding RI variations are presented by the green
and blue curves in Figure 4 for the CNT/h-BN and BNNT/

graphene junctions, respectively. For comparison we also
present the corresponding results for the homogeneous
CNT/graphene (black) and BNNT/h-BN (red) systems.
Because of the in-plane lattice vectors mismatch between
graphene and h-BN the heterojunctions exhibit significantly
reduced RI variations. We note that care should be taken when
comparing the RI landscapes of the various junctions as they
require different scaling factors to capture the calculated sliding
energy variations. Nevertheless, because the scaling factors of
the homogeneous systems differ by <30% and because the
corresponding scaling factors of the heterogeneous junctions
are expected to be similar or lower (due to the intrinsic lattice
vectors mismatch) we can deduce that the latter will present a
much less corrugated sliding energy landscape. Therefore,
assuming that the interface is clean and that the motion is
wearless one may expect lower friction or even superlubric
behavior of the rigid heterogeneous junctions.

■ SUMMARY AND OUTLOOK
In this study, the applicability of the Registry Index method has
been extended to the realm of nonparallel rigid interfaces. By
rescaling the overlap terms according to the corresponding
interatomic distance we were able to capture the energy
variations during the sliding, rolling, and spinning motions of
CNTs on graphene calculated using both the Lennard-Jones
and Kolmogorov−Crespi classical force-fields. Furthermore, the
generalized RI was able to reproduce the sliding energy
landscape of a BNNT on h-BN calculated using the h-BN ILP.
To model anisotropic interactions introduced by the KC and h-
BN ILP potentials the calculations of the inter−atomic lateral
distance entering the RI overlaps explicitly involve the local
surface normal vectors. Furthermore, the circle associated with
each atom in the original RI implementation were replaced by
Gaussians to allow for smoother and more physical RI
landscapes at no extra computational cost. Finally, the sliding

Figure 4. Comparison of sliding RI landscapes for homogeneous and
heterogeneous interfaces of 56.3 nm long (20,10) nanotubes and
hexagonal surfaces. The tubes are initially positioned at the AB
stacking mode with the main axes aligned at an angle of π/6−θ with
the zigzag direction (see Supporting Information for sample
coordinates). The 2D Gaussian standard deviations of the
homogeneous interfaces was taken as σC = 0.375LCC, σB =
0.1125LBN, and σN = 0.375LBN for the carbon, boron, and nitrogen
atoms, respectively. For the heterogeneous junctions the correspond-
ing standard deviations used are σC = 0.375LCC, σB = 0.15LBN, and σN
= 0.3LBN.
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behavior of a CNT on h-BN and a BNNT on graphene were
studied using the developed approach, indicating that super-
lubric behavior may be expected to occur at such heteroge-
neous interfaces.
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