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ABSTRACT: The Driven Liouville von Neumann approach [J. Chem.
Theory Comput. 2014, 10, 2927−2941] is a computationally efficient
simulation method for modeling electron dynamics in molecular
electronics junctions. Previous numerical simulations have shown that
the method can reproduce the exact single-particle dynamics while
avoiding density matrix positivity violation found in previous
implementations. In this study we prove that in the limit of infinite
lead models the underlying equation of motion can be cast in Lindblad
form. This provides a formal justification for the numerically observed
density matrix positivity conservation.

■ INTRODUCTION

Since its inception over 40 years ago1 the field of molecular
electronics has held the promise to use individual molecular
entities and their assemblies as active components in electronic
devices.2−4 Molecules are often characterized by their miniature
size, quantum-mechanical nature, well-defined chemical com-
position, highly efficient and accurate synthesis procedures, as
well as self-assembly capabilities. These properties open the
door for the design of novel molecular-scale electronic
components that may present unique functionality with high
sensitivity toward external perturbations and fast response time.
Furthermore, such systems are expected to be energetically
efficient and to allow for cost-effective reproducible device
fabrication.
Steady-state transport properties of molecular junctions

remain the main focus of both experimental and theoretical
efforts in this field. Nevertheless, the study of dynamical
transport phenomena in nanoscale junctions has recently
ga ined increas ing a t tent ion f rom the sc ient ific
community.5−32 Research in this direction explores the effects
of time-dependent perturbations such as alternating currents,
bias pulses, and external electromagnetic fields on the transient
response of the system. This involves complex physical
processes that can be harnessed for the design of miniaturized
electronic devices such as optoelectronic ultrafast molecular
switches and nanoscale rectifiers.7,8,14,22,24−27,29,31

Considering the temporal degree of freedom poses new
challenges on the experimental efforts that theory and
simulation may help resolve via the prediction of optimal
junction configurations and operation conditions and the
interpretation of experimental findings. To this end, various
methods aiming to simulate electron dynamics in molecular
junctions have been developed.31−90 These approaches either
consider the detailed atomistic structure of the junction or
introduce model Hamiltonians to study specific transport

phenomena. Furthermore, they vary in the level of treatment of
electron−electron interactions and effects of bath memory.
Recently, we proposed the Driven Liouville von Neumann

approach that imposes dynamic nonequilibrium boundary
conditions on finite atomistic models of realistic molecular
junctions.91,92 This method was shown to provide a decent
compromise between computational efficiency and physical
accuracy when modeling single-electron dynamics in molecular
junctions subjected to time-dependent external perturbations.93

Notably, the underlying equation of motion was numerically
shown to solve the density matrix positivity conservation
violation found in previous related implementations.80 This
gained further formal support when the equation was explicitly
derived as an approximate form of nonequilibrium Green’s
function formalism.93 Nevertheless, no direct rigorous proof
was offered to support the general validity of the positivity
condition for this method. In the present study, we show that in
the limit of infinite lead models the Driven Liouville von
Neumann equation can be written in Lindblad form. The latter
guarantees preservation of density matrix positivity94−96 as well
as N-representability of the N-electron density matrix and,
under certain conditions, also of the one-electron reduced
density matrix97 throughout the dynamics thus justifying the
numerical findings.

■ DERIVATION

Consider the system depicted in Figure 1. Here a molecule
bridges the gap between two leads that are connected to two
external baths. We formally divide the system into five sections
including the left and right semi-infinite reservoirs, the left and
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right leads, and the extended molecule region, which is the
molecule itself augmented by its adjacent lead sections. The size
of these lead sections is chosen such that the electronic
properties of the full extended molecule converge to within a
desired accuracy. In the present derivation we do not treat the
reservoirs explicitly and instead we take them into account
implicitly by considering their effect on their adjacent lead
sections. So, in practice, we consider a system constructed from
the finite left and right lead models connected by the extended
molecule. The corresponding sets of orthonormal eigenstates of
each individual section are marked as {|l⟩}, {|r⟩}, and {|m⟩},
respectively.
We aim at showing that the driven Liouville von Neumann

equation that was previously derived both heuristically91 and
explicitly93 can be written in Lindblad form, thus proving that
the corresponding nonunitary evolution of the density matrix is
indeed completely positive. To this end, we start from the
Lindblad super operator that has the following general form

∑ρ ρ ρ ρ̂ = ̂ ̂ ̂ − ̂ ̂ ̂ − ̂ ̂ ̂
α

α α α α α α
† † †⎡

⎣⎢
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⎦⎥L L L L L L{ }

1
2

1
2 (1)

where ρ̂ is the density operator and L̂α are Lindblad operators
that we choose in the form previously suggested by Dubi and
Di Ventra98

γ μ̂ = ⟩⟨ ′′ ′L f E k k( , )k k k k K k K, , (2)

Here |k⟩ ∈ {|l⟩} or {|r⟩} are single-particle states in the left (K =
L) or right (K = R) noninteracting lead sections, respectively.
The action of these operators is to exchange charge between
each finite lead model levels with (real) transition rates {γk,k′}
so as to maintain, as close as possible, their Fermi−Dirac
equilibrium distribution μ = + μ− −f E( , ) [1 e ]K K

E k T( )/( ) 1K KB

induced by their implicit coupling to the corresponding
reservoirs. Here, TK and μK are the electronic temperature
and chemical potential of reservoir K and kB is Boltzmann’s
constant. With this choice the Lindblad superoperator can be
split into the individual contributions of the left and right leads

ρ ρ ρ̂ = ̂ + ̂{ } { } { }L R with

∑ ∑ρ ρ ρ

ρ

̂ = ̂ ̂ ̂ − ̂ ̂ ̂

− ̂ ̂ ̂

= ′= ′≠
′ ′

†
′

†
′

′
†

′

⎡
⎣⎢

⎤
⎦⎥

L L L L

L L

{ }
1
2

1
2

K
k

N

k k k

N

k k k k k k k k

k k k k

1 1,
, , , ,

, ,

K K

(3)

where the sums run over all NK levels of lead K with k′ ≠ k. To
obtain the driven Liouville von Neumann equation we write
this superoperator in matrix form. Using eq 2, the first term in
the double sum can be written as
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where we have denoted the matrix element ρk′,k′ ≡ ⟨k′|ρ̂|k′⟩.
The second term is given by
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where we introduced the identity operator within the subspace
of system states: I ̂ = ∑n∈{|l⟩},{|m⟩},{|r⟩}|n⟩⟨n|. Accordingly, the
third term can be written as
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Substituting eqs 4−6 in eq 3 we obtain an expression for the
Lindblad superoperator of lead K
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where we have added and subtracted the terms with k′ = k. The
eigenstates of each section ({|l⟩}, {|m⟩}, {|r⟩}) form an
orthogonal set within themselves by construction. Furthermore,
assuming a tight-binding approximation, the overlap between
states of different sections is neglected, thus making them
mutually orthogonal. Therefore, the diagonal elements of the
matrix representation of ρ ̂{ }K are given by

Figure 1. Real-space representation of a typical molecular junction model divided into the extended molecule, left and right leads, and external
reservoirs.
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Clearly, if |i⟩ does not belong to the set of eigenstates {|k⟩} of
lead K this term completely vanishes, whereas when |i⟩ ∈ {|k⟩}
the second sum vanishes and the only terms that survive are
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where, for brevity, we have replaced the summation index k′ by
k in the first sum.
For the off-diagonal matrix elements of ρ ̂{ }K we obtain
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where terms involving δikδkj have been omitted. When |i⟩, |j⟩
∈{|k⟩} this expression yields

∑

γ μ γ μ

γ γ μ ρ

⟨ ⟩ = +

− +
=

i j f E f E

f E

1
2

[ ( , ) ( , )

( ) ( , )]

K i i K i K j j K j K

k

N

k i k j K k K i j

, ,

1
, , ,

K

(11)

For |i⟩ ∈{|k⟩} and |j⟩ ∉{|k⟩} this term gives
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Similarly, for |i⟩ ∉{|k⟩} and |j⟩ ∈{|k⟩} we obtain
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and when |i⟩, |j⟩ ∉ {|k⟩}

⟨ ⟩ =i j 0K (14)

Collecting all of the terms appearing in eqs 9 and 11−14 we
obtain the following expression for the matrix elements of the
Lindblad super operator defined by eqs 2 and 3 on the basis of

single-particle states of the separate system sections (left and
right leads and the extended molecule)
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At this point we assume that all interstate transition rates are
equal and constant such that γk,k′ = γK = Const giving
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The partial trace of the density matrix over the states of lead K
appearing in the expression for the nonzero diagonal terms in
eq 16 provides the instantaneous number of electrons in the
finite lead model∑k=1

NK ρk,k = NK. Similarly, the sum over Fermi−
Dirac weights results in the corresponding equilibrium number
of electrons ∑k=1

NK f K(Ek, μK) = NK
Eq. Hence, for i ∈ {|k⟩} we
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In the limit of infinite lead models the effect of the extended
molecule on the leads becomes negligible and the Lindblad
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operators of eq 2 drive the lead occupations toward their

equilibrium state such that → 1N
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K
Eq , and thus we obtain
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Accordingly, for the off-diagonal terms with |i⟩, |j⟩ ∈ {|k⟩} we
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Because f K(Ei, μK) and f K(Ej, μK) are both positive fractions, in

the limit of infinite lead models the first term in the square

brackets in eq 19 vanishes, leaving
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The remaining nonzero off-diagonal terms of K have either

the form

∑

∑

γ
μ ρ

γ
μ μ ρ

γ
μ ρ

γ μ
ρ

γ
ρ

⟨ ⟩ = −

= − −

= − −

= − − ⎯ →⎯⎯⎯⎯⎯⎯⎯ −

≠

=

→∞

⎡
⎣⎢

⎤
⎦⎥

i j f E

f E f E

N f E

N f E

N

N

2
[ ( , )]

2
[ ( , ) ( , )]

2
[ ( , )]

2
1

( , )

2

K
k i

N

K k K i j

K

k

N

K k K K i K i j

K
K K i K i j

K K K i K

K
i j N

K K
i j

K
,

1
,

Eq
,

Eq

Eq ,

Eq

,

K

K

K
Eq

(21)

when i ∈ {|k⟩}, j ∉ {|k⟩} or
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when i ∉ {|k⟩}, j ∈ {|k⟩}, thus yielding the same expression.

Collecting all terms appearing in eqs 18 and 20−22 and

substituting in eq 16, we finally obtain

Figure 2. Current versus time of a tight-binding atomic chain calculated using the driven Liouville von Neumann equation (black, red, and green)
and the Lindblad equation (blue, violet, and brown). Three different lead model sizes with increasing length of 74 (black and blue), 150 (red and
violet), and 300 (green and brown) sites are considered. The Landauer stead-state value is presented for reference as the red ×. The extended
molecule length is 110 sites with 10 sites representing the molecular bridge and 50 sites on each of the bridge sides to represent the lead sections
within the extended molecule region. All onsite energies are set to zero, the hopping integrals within the left, right, and extended molecule sections
are taken to be −0.2 eV, and the hopping integral between the two edge sites of the molecular bridge and the corresponding edge sites of the lead
sections in the extended molecule is taken as −0.02 eV (see illustration above the diagram). The bias voltage considered is 0.2 V and the lead
electronic temperatures are set to 0 K. The inset provides a zoom-in on the steady-state transport region.
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In matrix form the Lindblad superoperator is thus given by
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where we have defined ρK
0 ≡ diag{f K(Ek , μK)} as a diagonal

matrix of dimensions K × K, whose kth diagonal element is
given by f K(Ek , μK) and ΓK ≡ γKNK

eq. If we further assume that
ΓL = ΓR ≡ Γ, eq 24 reduces to
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which has the exact same structure as the driving term of the
driven Liouville von Neumann equation,91−93 thus completing
the derivation.

■ NUMERICAL DEMONSTRATION
To demonstrate the correspondence between the Lindblad
superoperator defined by eqs 1 and 2 and the driving term
appearing in eq 25, we used both to perform comparative
numerical simulations of the electronic transport through a
tight-binding atomic chain with increasing lead models size. To
this end, we propagate the quantum master equation

ρ ρρ ̇ = −
ℏ

+Ht
i

( ) [ , ] { }
(26)

where the matrix elements of the superoperator are given by
either eq 16 or eq 25. Figure 2 compares the time-dependent
current obtained by the two methods for increasing lead model
systems.99 The model parameters are detailed in the Figure
caption. Constant driving rates of γL = γR = γ = 1 × 10−4 fs−1

are used in all Lindblad equation calculations, and the
corresponding driving rate used for the driven Liouville von
Neumann equation calculations is Γ = 0.015 fs−1. The two
values are related via Γ ≡ γNeq for the 150 sites lead model
system where the average lead equilibrium occupation is Neq =
150. As can be seen, the results of the driven Liouville von
Neumann calculations quickly converge with lead size such that
already for a lead of 150 sites good agreement is obtained with

the Landauer steady-state current value. The Lindblad currents,
which are consistently smaller than the Driven Liouville von
Neumann results, gradually approach the correct steady-state
value and the Driven Liouville von Neumann current traces
with increasing lead size. This indicates that indeed at
sufficiently large lead models the methods become equivalent.
Nevertheless, even at a lead size of 300 sites the Lindblad
results are not fully converged and deviate from the Landauer
value.
To better understand this behavior we analyze the steady-

state populations as obtained by the two methods with
increasing lead size. In Figure 3a we present the lead and

extended molecule-state occupations obtained at steady-state
using the Driven Liouville von Neumann equation of motion
for the three tight-binding chain lead sizes. Notably, all
populations are between 0 and 1, indicating that N
representability is conserved. Furthermore, the molecular
occupations are converged already for the shortest lead
model considered of 74 sites, while the lead occupation
deviations from the target equilibrium distribution reduce with
increasing lead size.
The corresponding results for the Lindblad equation are

presented in Figure 3b. As may be expected, all state
occupations are positive. Nevertheless, large deviations of the
lead steady-state occupations from the target Fermi−Dirac
distributions appear. These are characterized by clear violations

Figure 3. Steady-state occupations of the left lead (black), extended
molecule (red), and right lead (green) single-particle states as obtained
using the driven Liouville von Neumann (a) and the Lindblad (b)
master equations for increasing lead sizes of 74 (dotted lines), 150
(dashed lines), and 300 (full lines) sites. The model parameters are
detailed in the caption of Figure 2.
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of the N-representability condition leading to occupations that
exceed one particle per state in disagreement with Pauli’s
exclusion principle.97 The deviations reduce with increasing
lead size but are still quite significant, even at a lead model size
of 300 sites. Accordingly, the extended molecule steady-state
occupations, that resemble those obtained by the driven
Liouville von Neumann approach, are not fully converged at
this lead size. These results further indicate the robustness of
the driven Liouville von Neumann equation for describing
time-dependent transport in molecular junctions.
It is important to note that in order to provide an appropriate

comparison between the driven Liouville von Neumann and
the Lindblad equations we restrict the calculation to a single
driving rate applied uniformly to all lead model eigenstates.
Reference 98 provides a scheme to calculate state-dependent
transition rates within the Lindblad formalism. These may
reduce deviations from N-representability conservation and
improve convergence of the Lindblad calculation. In fact, the
reason that a single driving rate description works well for the
driven Liouville von Neumann approach within the tight-
binding Hamiltonian is the uniform density of states of the
finite lead models. From an energy perspective, the driving
parameter serves to broaden the lead eigenstates so as to obtain
a continuous spectrum as required from any descent lead
model. When the lead density of states is uniform, a single
broadening factor is sufficient to achieve this goal. For more
advanced Hamiltonian models, such as those obtained within
nonorthogonal basis set representations, that produce a
nonuniform density of states, the single driving rate description
is insufficient and more advanced schemes to calculate state-
dependent broadening factors are required. This, indeed, is a
subject of current research.

■ SUMMARY AND CONCLUSIONS

We have shown that in the limit of infinite lead model size the
driven Liouville von Neumann equation of motion can be
written in Lindblad form. This rationalizes the numerical
observation of density matrix positivity conservation exhibited
by this equation. Furthermore, it establishes a link between the
exact equation of motion, to which the driven Liouville von
Neumann equation was shown to be an approximation,93 and
the Lindblad operators adopted herein.
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(16) Kleinekathöfer, U.; Li, G. Q.; Welack, S.; Schreiber, M.
Coherent Destruction of the Current Through Molecular Wires Using
Short Laser Pulses. Phys. Status Solidi B 2006, 243, 3775−3781.
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