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ABSTRACT: A computational scheme, based on a time-
dependent extension of noncollinear spin density functional
theory, for the simultaneous simulation of charge and
magnetization dynamics in molecular systems is presented.
We employ a second-order Magnus propagator combined with
an efficient predictor-corrector scheme that allows us to treat
large molecular systems over long simulation periods. The
method is benchmarked against the low-frequency dynamics of
the H−He−H molecule where the magnetization dynamics
can be modeled by the simple classical magnetization
precession of a Heisenberg−Dirac-van Vleck Hamiltonian.
Furthermore, the magnetic exchange couplings of the
bimetallic complex [Cu(bpy)(H2O)(NO3)2(μ-C2O4)] (BISD-
OW) are extracted from its low-frequency spin precession dynamics showing good agreement with the coupling obtained from
ground state energy differences. Our approach opens the possibility to perform real-time simulation of spin-related phenomena
using time-dependent density functional theory in realistic molecular systems.

1. INTRODUCTION
Time-dependent density functional theory (TDDFT) provides
an efficient theoretical framework for the evaluation of excited-
state properties in molecules and extended systems where wave
function based methods are computationally unaffordable.1−4

Advanced computational methods based on TDDFT either in
the linear-response regime or via explicit time-evolution are
becoming the tool of choice for tackling a variety of problems
in the fields of chemistry, biology, and materials science.3,5 In
particular, numerical simulations based on explicit time-
evolution have been utilized to calculate nonlinear optical
absorption spectra in molecular systems,6−9 charge transfer
dynamics in biomolecules,10,11 excited state electron dynamics
in extended systems,5 cluster dynamics under strong laser
fields,12 as well as the simulation of time-dependent
phenomena in molecular conductance.13−17 In most cases,
computational schemes focus on spin-compensated systems
and employ the same exchange-correlation kernel as ground-
state DFT (adiabatic approximation) to determine the time-
dependent electronic charge density n(t). These schemes are
based on numerical integration of the equations of motion for
the time evolution of the occupied Kohn−Sham (KS) orbitals
(atomic units will be used herein)
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or equivalently integrating the Liouville-von Neumann equation
for the charge density n(t)
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where ĤKS is the KS Hamiltonian and = ⟨ ̂ ⟩n t n t( ) ( ) is
expanded in terms of ψk(t) as in standard KS theory. Despite
the success of these schemes, much less attention has been
given to the dynamics of the spin degrees of freedom that are
responsible for a wealth of important chemical and physical
phenomena.18−20 It should be pointed out that including the
spin-density in TDDFT simulations in the most general form
necessarily implies dealing with noncollinear magnetization to
properly account for both, n(t) and the magnetization density
vector m(t) (see Section 2.2 for a detailed definition).21,22

Noncollinear magnetization has been introduced in DFT to
model systems where the spin density adopts noncollinear
structures, such as helical spin density waves or spin spirals for
the ground state of γ-Fe,23,24 geometrically frustrated systems
like, for instance, the Kagome ́ antiferromagnetic lattice,25 and
systems with competing magnetic interactions, such as the
composite magnets LaMn2Ge2

26 and Fe0.5Co0.5Si.
27 In these
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cases noncollinear spin structures arise from the solutions of
the (time-independent) KS equations with 2-component
spinors. These 2-component KS equations require a noncol-
linear XC kernel. Developments of XC approximations for
noncollinear magnetization were early based on extensions of
the LSDA approximation,28−30 and later based on the
generalized gradient approximation (GGA) and meta-
GGA.29,31−33 For excited-states, noncollinear magnetization
has been employed in the linear-response formalism for the
evaluation of spin-flip type excitations.34−36 Beyond the linear-
response regime, a time-evolution scheme that involves
noncollinear magnetization dynamics has been proposed in
the framework of Hartree−Fock theory and for the adiabatic
LSDA in a basis-free real-space representation,37,38 as well as in
an all electron solid-state code based on plane-waves.39

The purpose of this paper is to present a computational
method for the simultaneous time propagation of charge and
spin density in molecular systems within the noncollinear spin
TDDFT formalism that provides the most general description
of excited state magnetization dynamics. We base our approach
on an atomic-centered Gaussian basis-set representation that is
highly suitable for performing calculations on molecular
systems.40 This allows us to efficiently follow the spin dynamics
in realistic molecular complexes over long simulation periods.
Particularly, we demonstrate the method on two model
systems: (i) a simple two-center HeH2 molecule and (ii) the
[Cu(bpy)(H2O)(NO3)2(μ-C2O4)] bimetallic complex. For
both systems we study the low-frequency magnetization
precession at the magnetic centers and extract the correspond-
ing magnetic exchange couplings.

2. METHODOLOGY
Two-component KS complex spinors are employed to calculate
the density and spin-density in analogy to the ground-state case.
These KS spinors can be expressed as
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where ψi
σ(r,t) are spatial molecular orbitals expanded as a linear

combination of (time-independent) standard atomic orbitals
(AO) ϕμ(r):

∑ψ ϕ σ α β= =σ

μ
μ
σ

μt c tr r( , ) ( ) ( ) ( , )i i
(4)

Note that the two-component spinors Ψi(t) are not necessarily
eigenfunctions of any component of the spin operator. In eq 4,
the time-dependence of ψi

α and ψi
β has been made explicitly

through the coefficients cμi
σ . From these coefficients, the one-

particle density matrix D can be expressed as

∑=μν
σσ

μ
σ

ν
σ′

∈

′*D t c t c t( ) ( ) ( )
i occ

i i
(5)

2.1. Time-Evolution. In our implementation, we consider
the time-evolution of the KS system as given by the Liouville-
von Neumann equation for the one-particle density matrix D of
eq 5 in the generally nonorthogonal AO basis

∂
∂

= −i
t

S
D

S H DS SDHKS KS (6)

where S is the (real) AO overlap matrix, and the KS
Hamiltonian HKS depends implicitly on t through ψi

α(r,t) and

ψi
β(r,t), and possibly explicitly through terms including for

instance memory kernels41−43 and time-dependent electro-
magnetic fields. Following ref 21, HKS can be cast as

= + + +H T V J V( )KS E XC (7)

where on the right-hand side of eq 7 are the matrix
representation of the (nonrelativistic) kinetic energy operator
T, the external potential (including the nuclei-electron
interaction, and possibly external magnetic or electric fields)
VE, the electron−electron Coulomb interaction J, and the
exchange-correlation (XC) potential VXC, which contains a
scalar and a magnetic vector components (described in Section
2.2).
Time propagation is carried out using a standard second-

order Magnus expansion.44,45 In short, starting from the density
matrix at time t, D(t), the time-evolved density D(t+dt) is given
by

+ = + +t dt t dt t t t dt tD U D U( ) ( , ) ( ) ( , ) (8)

where U(t+dt,t) is the time-propagation matrix that is
approximated by

+ ≈ − +t dt t i t dt dtU H( , ) exp[ ( /2) ]KS (9)

Here, the half-step KS Hamiltonian HKS(t+dt/2) is extrapolated
using the second-order predictor-corrector scheme proposed by
Cheng et al.46 This strategy has been proven to provide
reasonable accuracy and stability at moderate computational
cost for the type of simulations performed in this study.47 The
matrix exponential in eq 9 is evaluated using the “scaling and
squaring” algorithm with Taylor expansion.48 This algorithm
has been reported to be one of the most efficient and stable
alternatives for the exponential of a matrix, effectively reducing
the numerical error and computational cost associated with the
known problem of overcoming the “hump”.48 It should be
noted that the main two differences between a spin-
compensated and our noncollinear time-propagation algorithm
are the dimension of the matrices (they are doubled in our
case) and the formation of HKS. For the collinear (spin
unrestricted) case,49 on the other hand, the time-propagation
involves only the two same-spin diagonal KS Hamiltonian
blocks and therefore the dimension of the matrices and the
formation of HKS is similar to that of the standard spin-
unrestricted case.

2.2. Noncollinear Spin DFT. The methodology presented
in Section 2.1 is of general nature and can be applied in
conjunction with any density functional approximation,
including meta-GGAs and hybrid functionals, provided that
there is a prescription for the construction of VXC. For
simplicity, and in favor of conciseness, in this work we focus on
density functionals of the GGA family. The most general form
of a noncollinear GGA XC energy functional depends on the
magnetization m(r) = ∑i ∈occΨi

†(r)σΨi(r) and its gradients
∇m(r), where σ are the Pauli matrices.21 A straightforward
approach to obtain approximate functionals for the noncol-
linear magnetization case that are invariant under rotations of
the spin quantization axis and reduce to the spin collinear case
for collinear spin densities is to heuristically replace mz(r) from
the standard collinear case with |m(r)|, and ∇mz(r) with
∇|m(r)|.32,33,50 Here, we briefly review this approach. The XC
energy functional EXC can be generalized to the noncollinear
spin case as
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∫ ∇ ∇= + − + −E d rf n n n n( , , , )XC
3

(10)

where the subindices + and − refer to variables expressed in a
local (pointwise) reference frame along the local spin
quantization axis

= ± | |±n n m
1
2

( )
(11)

In the collinear spin case, n = nα + nβ and |m| = |nα −nβ|, and
thus n+ and n− become nα and nβ, respectively. This approach
provides a straightforward extension of existing collinear spin
approximations by assuming that EXC depends on the local
variables n+ and n− in the same way as in the standard collinear
case (where it depends on nα and nβ). The XC potential is
obtained as a functional derivative of EXC with respect to n and
m. A general prescription that considers GGAs, meta-GGAs,
and hybrid functionals for the noncollinear magnetization case
utilized in this work is given in ref 33, where the XC potential
matrix needed to construct HKS is also derived. The XC
potential can be expressed in terms of a scalar component,
VXC
0 (r), and a magnetic vector part, BXC(r)

σ= + ·V Vr r B r( ) ( ) ( )XC XC XC
0

(12)

Within this approach, BXC(r) is parallel to m(r) and hence the
XC magnetic torque BXC(r) × m(r) becomes zero. Since T, VE,
and J are block-diagonal in the 2-dimensional spin space, the
only term in eq 7 that couples the α and β spin components is
VXC (the spin−orbit operator is neglected in this work;
however, if present it also couples the two spinor
components).51−53 This approach is not the most general
possibility to define energy functionals for noncollinear
magnetic systems.21,54 Although the purpose of this work is
to focus on the spin dynamics rather than exploring alternatives
to extend XC functionals to the noncollinear regime, it should
be mentioned that an approach that incorporates (orbital
dependent) Hartree−Fock exchange using optimized effective
potentials22 and a generalization of the XC energy for the
noncollinear case that improves self-consistent convergence in
ground state calculations has been proposed recently.55−57

3. COMPUTATIONAL DETAILS
The choice of initial state and boundary conditions in dynamic
simulations should reflect the external perturbations that drive
the system out of equilibrium, the desired measurable property,
and/or the physical and chemical processes under consid-
eration. For example, transient electric fields have been used to
simulate the action of short laser pulses47 for spectral analysis
and in photodissociation processes,58 and charge density
constraints have been applied to simulate molecular con-
ductance.46

Since our purpose is to analyze the dynamics of the
magnetization, we need an initial state that sets off the proper
dynamics. To this end, we choose an initial state where the
local spins are in a noncollinear configuration (see, e.g., Figure
1). This is implemented by applying constraints introduced via
Lagrange multipliers in the same way some of us have done
previously59,60 for the static calculation of magnetic exchange
couplings. Using local projectors A,61,62 we write the local
magnetization at atom A as

∑=
μ ν

μν μνm PA
A

, (13)

where Pμν is the spin-density matrix vector whose Cartesian
components are

= +μν μν
αβ

μν
βαP D Dx

(14)

= −μν μν
αβ

μν
βαP i D D( )y

(15)

and

= −μν μν
αα

μν
ββP D Dz

(16)

In eq 13, μν
A is defined from the Löwdin partitioning as

∑=μν
λ

μλ λν
∈

S S( ) ( )A

A

1/2 1/2

(17)

where S is the AO overlap matrix. For each atom A for which
the local magnetization mA is to be constrained in a direction
eA, an additional term hA is included in HKS such that

λ σ= · ×h e( )A A
A A (18)

where eA is a unit vector to which mA is constraint to be parallel
to and λA is a Lagrange multiplier vector. The initial state for
the dynamics simulation is then generated by solving the KS
equations self-consistently while optimizing λA at each cycle so
that mA × eA = 0.
Having set the initial conditions, the total propagation time is

divided uniformly in small propagation steps dt. The time step
is reduced upon failure of idempotency and trace tests of the
density matrix (RMS error of 10−6), which are performed at
each step during the dynamics. In our experience, the largest
time step and total propagation time for which the
idempotency and trace conditions are satisfied moderately
depend on the basis set employed. We also check for
convergence during the matrix exponentiation (RMS of 10−14

in the last term in the series) to make sure that the error is
below a desired threshold.
For our benchmark calculations we consider two systems:

The linear H−He−H molecule with an H−He distance of 1.6
Å and the [Cu(bpy)(H2O)(NO3)2(μ-C2O4)] (BISDOW)
complex with the structure taken from the open-shell database
of Valero et al.63 We utilize the PBE functional64,65 within the
adiabatic approximation in conjunction with the 6-31G* basis
for the H−He−H molecule, and the 6-31G* for Cu and the 6-

Figure 1. Representation of the magnetization precession at each H
atom in the linear H−He−H molecule. The arrows represent the
magnetization orientation evaluated as described in the text.
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31G basis for the other elements of the BISDOW complex. The
total propagation times and time steps employed were 25,000
au and 0.5 au (605 fs and 12.1 as) for H−He−H, and 2,000 a.u
and 0.2 au (48.4 fs and 4.84 as) for the BISDOW complex,
respectively. The total propagation time for H−He−H was
chosen so that it contains approximately 10 precession cycles.
The propagation for the BISDOW complex is more computa-
tionally demanding than for H−He−H and hence we set the
total propagation time to approximately one full precession
cycle of the Cu magnetization.
To analyze the dynamics we calculated and recorded the

local magnetic moments of each atom at every time step. For
this purpose we use the well-known Hirshfeld partitioning of
the electron density and magnetization66,67 which shows low
variation with respect to basis set choice for magnetization
analyses.68 Within this scheme atomic weight functions wA(r)
are calculated as

=
−

∑ −≠

w
n

n
r

r R
r R

( )
( )

( )A
A A

B A B B

0

0
(19)

where nA
0 and nB

0 are the spherically symmetric atomic densities
of the isolated atoms and RA and RB are the nuclear positions.
Using this weight function, the Cartesian components of the
atomic magnetic moments can be evaluated as

∫ ∑ ϕ ϕ=
μν

μν μ νm d r w Pr r r( ) ( ) ( )A i A
i3

(20)

with i =x, y ,z.
The methodology described above was implemented and

tested in an in-house development version of the Gaussian suite
of programs.40 In all calculations no symmetry constraints
(“nosymm” keyword) were used, and the numerical integration
was performed using a pruned grid of 99 radial shells and 590
angular points per atomic shell (“grid=ultrafine”). No
relativistic effects (scalar or spin−orbit) were included in the
calculations.

4. RESULTS AND DISCUSSION
We first look into the dynamics of the linear H−He−H
molecule that has been employed as a simple model system to
assess different methods for the calculation of magnetic
exchange couplings due to its magnetic behavior, which follows
very closely that of a Heisenberg−Dirac-Van Vleck (HDVV)
Hamiltonian.69,70 The dynamics was initiated from an off-
equilibrium state in which the magnetization at each H atom
was constrained to form an angle α from the +z axis using the
methodology describe above (see Figure 1). Monitoring the
local magnetization at each H atom, mH = ⟨S⟩H, during the time
evolution we observe the expected classical spin precession of a
HDVV dimer, where each mH precesses harmonically around
the total spin ST (see Figure 2). This suggests that the
dynamical behavior of a HDVV dimer is fully captured by our
TDDFT simulations. In Figure 1 we show a snapshot of this
spin precession from our TDDFT GGA simulation. Our results
show that with the simple adiabatic GGA approximation we
recover the HDVV behavior for the low-frequency dynamics of
a spin dimer systems and are consistent with the observation of
Stamenova and Sanvito for the same system using the LSDA
and a different spin population method and initial conditions.38

These results provide a justification for the use of the HDVV
model for these type of systems from a dynamic point of view.

To further validate our approach it is useful to attempt a
more quantitative analysis of the exchange interactions obtained
from stationary DFT and from the dynamic simulations. From
the HDVV Hamiltonian for a spin dimer

̂ = − ̂ · ̂H JS SHDVV 1 2 (21)

where Ŝ1 and Ŝ2 represent the spin operators of two localized
particles of spin S1 and S2, respectively, the exchange coupling
constant J can be obtained from the energy difference between
the high-spin (HS) |↑↑⟩ and broken-symmetry (BS) |↑↓⟩ states
as

= Δ
J

E
S S2 1 2 (22)

where Δ = ⟨ ↑ ↓ | ̂ | ↑ ↓ ⟩ − ⟨ ↑ ↑ | ̂ | ↑ ↑ ⟩E H HHDVV HDVV . As-
suming that the HS and BS states can be accurately represented
by KS theory, this provides a route for the calculation of the
coupling constants from stationary DFT calculations.71−77

Alternatively, we can estimate the J coupling from our TDDFT
simulations. To this end, it is convenient to consider the
classical interaction Hamiltonian between two magnetic
moments S1 and S2

= − ·H JS SC 1 2 (23)

The equations of motion can be obtained from the Poisson
brackets of S1 and S2 with HC

= ×
d
dt

J
S

S S1
1 2 (24)

and

= ×
d
dt

J
S

S S2
2 1 (25)

which leads to the well-known harmonic precession of S1 and
S2 around a constant ST = S1 + S2 with frequency ω = J |ST|.
From the dynamic TDDFT simulation, J can therefore be
obtained from the precession frequency of the spin dimer and
the total (constant) magnetic moment. The frequency ω in this
case corresponds to the lowest frequency of the precession and
can be obtained by either fitting the local magnetic moments
(calculated in our case using the Hirshfeld partitioning

Figure 2. Time-evolution of the x-component of the magnetization of
the H-He-H system (see Figure 1) at each H atom, ⟨Sx⟩H, for
simulations starting from different out-of-equilibrium configurations.
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described in Section 3) for the first few periods with an
harmonic function, or by Fourier-transforming the local
magnetic moments dynamics for a sufficiently long simulation
covering several precession periods. Although both approaches
seem somewhat impractical for the sole purpose of obtaining
the J coupling, they provide a practical venue for analyzing
magnetic phenomena from TDDFT. The sign of the coupling
constant J = ω|ST| can be determined from the precession
direction, being positive for clockwise precession. The
precession frequency depends on the initial off-equilibrium
configuration, which also determines |ST|. In Figure 2 we show
the time-evolution of ⟨Sx⟩H for simulations starting from
different off-equilibrium configurations. From these simulations
we fit the frequencies and calculate the corresponding J
couplings in Table 1. The variation of J with the starting

configuration can be attributed to the ambiguous definition of
the local magnetization and is consistent with the results of
Stamenova and Sanvito38 and with our previous results
employing the second derivative of the KS energy with respect
to the constraint angle.78 In particular, we have found in ref 78
a smaller (negative) J value for the HS configuration (α = 0)
and a larger (negative) value for the BS solution (α = 90 deg)
with differences of ca. 6%. It should be noted that the J
coupling extracted from the dynamic simulation is expected to
depend on the particular choice of spin population, as
demonstrated in ref 38.
We have also tested our TDDFT code in the bimetallic Cu2

complex BISDOW (see Figure 3). This complex consists of two
Cu(II) centrosymmetric neutral atoms placed in a strongly
elongated octahedral environment, surrounded by two N atoms
of a bipyridine molecule and two O atoms of the bridging
oxalate group in the equatorial plane. The two Cu(II) centers
are coupled through the oxalate group leading to an
experimental J coupling of −47 meV (−382 cm−1) as
determined by variable temperature magnetic susceptibility
measurements.79 As in the linear H−He−H case, the
magnetization dynamics in the BISDOW complex also follows
closely the behavior of a classical HDVV system dominated by
a harmonic precession at the two Cu centers around the total
molecular magnetization.
In Figure 4 we show ⟨Sx⟩Cu for one of the Cu atoms as a

function of time. By fitting ⟨Sx⟩Cu with a harmonic function we
calculate the J coupling from TDDFT to be −201.2 meV,
which is in line with the J coupling obtained from energy
differences of −226.7 meV. These couplings are larger in

magnitude than the experimental value (−47 meV) due to the
well known tendency of GGAs to delocalize the magnetization.
It should be noted that other families of exchange-correlation
density functional approximations, such as hybrid functionals,
often yield J in better agreement with experimental values.80−84

In complexes such as BISDOW, the spin-density at the
transition metal atoms typically delocalizes into the neighboring
ligands, and this is expected to influence the dynamics. In
Figure 4 we show ⟨Sx⟩ summed over all the ligands of Cu1 (C2,
C4, N7, and N14 atoms in Figure 3). The magnetization at the
ligands precesses mostly parallel and at the same frequency as
that of the Cu1 center with some high-frequency features of
small amplitude on top of the main low-frequency harmonic
component. We interpret these features as a result of the
delocalization of the spin-density into the ligands (Figure 3),
which causes small deviations from the idealized HDVV
behavior.

Table 1. Calculated H−H Magnetic Exchange Couplings J
(meV) in H−He−H from TDDFT Dynamic Simulations
from Different Starting Configurationsa

α ST ω J =−ω/ST
13 0.97 496 −138.5
26 0.90 468 −141.3
37 0.80 424 −145.0
66 0.41 235 −156.2

aEach starting configuration corresponds to an off-equilibrium state
with the magnetization at each H atom forming an angle α (deg.) with
the +z axis in opposite directions (in the x−z plane). Frequencies ω
(au/105) were obtained by fitting the time-evolution of the first four
cycles with a harmonic function. The exchange coupling value
calculated from the total (spin collinear) energy differences is J =−
148.4 meV. ST values are in au.

Figure 3. Representation of the magnetization precession for Cu
atoms and their ligands in the BISDOW complex. The arrows
represent the magnetization direction evaluated as described in the
text and are not to scale.

Figure 4. ⟨Sx⟩ for the Cu1 atom (full blue line) and its ligands (full
green line, ⟨Sx⟩ summed over C2, C4, N7, and N14 atoms in Figure 3)
as a function of time from the TDDFT simulation. A best harmonic fit
to a classical spin dimer is included for comparison (dotted lines).
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5. CONCLUDING REMARKS
We have presented a computational approach for the
simultaneous dynamics of charge and magnetization in
molecular systems in the context of the TDDFT formalism.
Our method employs a second-order Magnus propagator with
the efficient predictor-corrector scheme proposed by Cheng et
al.46 combined with a general extension of noncollinear ground-
state spin DFT proposed previously.33 This results in a
powerful computational tool to study problems where spin
dynamics is relevant. We have tested this method to model the
low-frequency spin dynamics of a H−He−H model. Our
simulations employ a noncollinear extension of the GGA PBE
functional and make use of constraints that precondition the
local spin out of equilibrium to initiate the propagation. In line
with the observations of Stamenova and Sanvito with the
LSDA,38 we find that the dynamics of the H−He−H molecule
can be modeled by the simple classical magnetization
precession of a Heisenberg−Dirac-van Vleck system. The
dynamics is characterized by noncollinear ⟨S⟩ at each hydrogen
atom precessing about the total spin ⟨ST⟩. We have also
analyzed the magnetization dynamics of the bimetallic complex
[Cu(bpy)(H2O)(NO3)2(μ-C2O4)] (BISDOW), where ⟨S⟩ at
each Cu atom and its ligands precesses as a whole, similar to
the H−He−H case, indicating that the main features of a
HDVV Hamiltonian are recovered for this complex as well. In
this case, however, the precession is not purely harmonic and
high-frequency features of small amplitude appear on top of the
main low-frequency harmonic component. We hypothesize that
these features originate from the delocalization of the spin-
density toward the ligands. In both cases, H−He−H and
BISDOW, we were able to to extract magnetic exchange
couplings from the low-frequency precession given by our
TDDFT simulations and compare with good agreement to the
traditional energy differences method.
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(28) Kübler, J.; Höck, K.-H.; Sticht, J.; Williams, A. R. Density
Functional Theory of Non-collinear Magnetism. J. Phys. F: Met. Phys.
1988, 18, 469−483.
(29) Nordsröm, L.; Singh, D. J. Noncollinear Intra-atomic Magnet-
ism. Phys. Rev. Lett. 1996, 76, 4420−4423.
(30) Oda, T.; Pasquarello, A.; Car, R. Fully Unconstrained Approach
to Noncollinear Magnetism: Application to Small Fe Clusters. Phys.
Rev. Lett. 1998, 80, 3622−3625.
(31) Yamanaka, S.; Yamaki, D.; Shigeta, Y.; Nagao, H.; Yoshioka, Y.;
Suzuki, N.; Yamaguchi, K. Generalized Spin Density Functional
Theory for Noncollinear Molecular Magnetism. Int. J. Quantum Chem.
2000, 80, 664−671.
(32) Kurz, Ph.; Förster, F.; Nordsröm, L.; Bihlmayer, G.; Blügel, S.
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