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We present a real-space method for first-principles nanoscale electronic transport calculations. We use the
nonequilibrium Green’s function method with density functional theory and implement absorbing boundary
conditions (ABCs, also known as complex absorbing potentials, or CAPs) to represent the effects of the semi-
infinite leads. In real space, the Kohn-Sham Hamiltonian matrix is highly sparse. As a result, the transport
problem parallelizes naturally and can scale favorably with system size, enabling the computation of conductance
in relatively large molecular junction models. Our use of ABCs circumvents the demanding task of explicitly
calculating the leads’ self-energies from surface Green’s functions, and is expected to be more accurate than the
use of the jellium approximation. In addition, we take advantage of the sparsity in real space to solve efficiently
for the Green’s function over the entire energy range relevant to low-bias transport. We illustrate the advantages
of our method with calculations on several challenging test systems and find good agreement with reference
calculation results.
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I. INTRODUCTION

First-principles transport calculations based on the nonequi-
librium Green’s function (NEGF) approach [1–3] and density
functional theory (DFT) [4–8] are popular in the field of
molecular electronics and spintronics. This has fueled a grow-
ing demand for large first-principles transport calculations, in
order to address increasingly sophisticated nanostructures.

Many quantum mechanical transport methods make use
of localized orbital basis sets so that the system can easily
be delineated into electrode and scattering regions [4–7].
However, for large systems, localized basis set representations
may suffer from both scalability and parallelizability prob-
lems, especially when diffuse orbitals are used. Moreover,
large basis sets with diffuse, overlapping orbitals have been
suggested to lead to ghost transmission [9] and to related
theoretical shortcomings [10]. While matching approaches
exist for transport in a plane-wave basis [11], they require
a large basis set and are difficult to parallelize. Therefore,
particularly for large-scale transport calculations, it is desirable
to consider transport in a real-space basis, which is simple to
converge and straightforward to parallelize.

The advantages of real-space calculations for transport are
similar to those of electronic structure calculations [12–17]:
(i) Compared to both plane-wave and localized basis sets,
real-space calculations offer a very sparse Hamiltonian. The
method is therefore highly parallelizable, since little com-
munication is required to apply the parallelized Hamiltonian
to a trial state vector. Such a matrix-vector operation is
the bottleneck in iterative eigensolution. This renders the
real-space basis useful for computation of large systems. (ii)
Compared to localized or Gaussian basis calculations, the
real-space “basis” is objective, and convergence with respect
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to basis size is straightforward. (iii) Compared to plane-wave
calculations, a real-space basis can handle nonperiodic systems
naturally, and net charges or dipoles present neither conceptual
nor computational difficulties. Because of its large basis set
and unambiguous convergence, a real-space transport method,
such as the one presented here, may be thought of as a
benchmark against which other transport calculations can
be tested, as long as any additional approximations (to be
described in detail later) are controlled. Because of its ease
of parallelization, a real-space transport method is expected
to contribute to the development of transport theory by taking
advantage of the growing computational resources.

Previously, Fujimoto, Hirose, Ono, and collaborators
[17,18] have developed a real-space formalism for both
electronic structure and transport, and have applied their
method to atomic chains [19] and to some larger test systems
[20]. Extending this theoretical framework, Kong et al. [21,22]
employed a Lippmann-Schwinger-like matching approach to
the real-space transport problem, which allowed them to avoid
explicit matrix inversion by instead solving a system of linear
equations and taking better advantage of sparsity.

Ono et al. and Kong et al. expressed the Green’s function
G in real space, leading to very large computational demand.
Both groups, in practice, restricted their computations, for
systems larger than atomic chains, to the jellium model for
the leads (although self-energy calculations are possible in
their framework), and to a minimal atomic description of
the extended molecule [20–22]. Therefore, there is room
for refinement of real-space transport methods in order to
make them efficient for fully atomistic calculations on highly
extended systems. Naturally, to make the method competitive,
it is desirable to make the best possible use of the sparsity of
the Hamiltonian and other matrices in this basis.

In this paper, we present a real-space, highly parallel
method for first-principles Green’s function based electronic
transport calculations, using absorbing boundary conditions
[23–32] (ABCs, also known as complex absorbing potentials,
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or CAPs) to mimic the proper outgoing-wave boundary
conditions. We base our implementation, which we call
TRANSEC, on the PARSEC (pseudopotential algorithm for
real-space electronic-structure calculations) real-space DFT
code [12,13]. We note that while some approaches to electronic
transport calculations do not rely on pseudopotentials [33], use
of the latter has been well justified at the level of electronic
structure calculations [15,34,35]. Because electronic transport
is governed by the underlying electronic structure, the use of
pseudopotentials in electronic transport calculations is widely
accepted as reliable [4,5,7].

Instead of directly solving for a large submatrix of the
Green’s function G, we have chosen to take advantage of
real- and energy-space sparsity by iteratively diagonalizing
the subspace of the Kohn-Sham (KS) Hamiltonian most
relevant for transport. This approach accurately yields the
relevant submatrices of G(E) for a dense set of energies E

in significantly less time than full solution at a single energy.
In addition, our use of ABCs allows the treatment of large,
realistic contact regions from first principles.

The next section presents our method. In Sec. III we present
test calculations with our method on atomic chains and on large
Au(111) electrodes with an Au atomic contact, the benzene
dithiol molecule, and the C60 molecule. These are found to be
in good agreement with analytical expectations. We conclude
in Sec. IV with a discussion of the method’s strengths and
weaknesses, as well as planned future improvements.

II. COMPUTATIONAL METHODS

A. Landauer approach

We use the Landauer approach [1,2] to calculate the current
flowing through a molecular junction, I ,

I = 2e

h

∫ ∞

−∞
T (E)[f (E − μL) − f (E − μR)]dE, (1)

where e is the electronic charge, h is Planck’s constant, T (E) is
the transmission probability through the junction at energy E,
f is the Fermi-Dirac distribution function, and μL,R = ±eV/2
are the chemical potentials of the left and right electrodes at
bias V , respectively.

The transmission function T is given by [1,3]

T (E) = Tr{Gr (E)�RGa(E)�L}, (2)

where �L,R are matrices that couple electrons to the left and
right electrodes, Gr is the retarded single-particle Green’s
function,

Gr (E) ≡ [E1 − Hop − iη]−1, (3)

Ga = Gr† is the advanced Green’s function, Hop is the matrix
representation of the Hamiltonian for the open system which,
in our case, is represented by the KS-DFT single-particle
picture, and η → 0+. Equation (3) implies that the transport
problem requires a large matrix inversion which may become
a bottleneck in real-space calculations.

We next discuss our approach to treating Hop based on a
DFT framework.

B. Absorbing boundary conditions (ABCs)

Typically, first-principles electronic transport calculations
in the NEGF formalism make use of self-energies computed
from surface Green’s functions [1,4,6] to incorporate the
effects of the semi-infinite leads in Hop. However, computing
self-energies can be time consuming, and must be done
independently at each energy E. To reduce this burden, several
previous works, and in particular the real-space transport
studies of Ono et al. and Kong et al. [20–22], used the jellium
approximation to represent semi-infinite electrodes (although,
in the latter case, their formalism can also be used with
self-energies).

We wish to use realistic electrode models, while also
avoiding the computational cost of explicitly calculating
self-energies. To this end, we adopt the absorbing boundary
condition method, where local ABCs are added to the KS
effective potential, VKS , near the edges of the lead models.
ABCs have been previously used in combination with a
variety of approaches for electron transport and for effectively
mimicking self-energies in nonequilibrium Green’s function
approaches [23–32]. In this approach, Hop is represented by

Hop ≡ HKS − i�, (4)

where HKS is the usual Kohn-Sham Hamiltonian for the (finite)
model system and � = �L + �R . For simplicity we choose a
Gaussian form for the ABCs,

�L,R(x,y,z) = �0e
−(z−zL,R )2/σ 2

L,R , (5)

where x,y,z are the quantum mechanical position operators,
and therefore � is diagonal in the real-space representation.
The ABC strength �0 and characteristic width σL,R are
parameters that need to be tuned to absorb outgoing electrons
in a given electrode structure and energy range. The location
zL,R of the ABC center is typically set to the edge of the
electrode. Here we choose, without loss of generality, the
main axis of the leads to be aligned along the z direction.
Because HKS is Hermitian and purely real and because �L,R

are purely diagonal in real space, Hop is a complex symmetric
(non-Hermitian) operator:

H †
op = H ∗

op. (6)

If the transmission function T (E) only needs to be
investigated over a small energy range (low bias), the “wide-
band limit approximation” [9], namely, taking the ABCs
as independent of energy, applies. (This is quantified, for
example, by numerical results in Ref. [25].) Moreover, because
the ABCs are diagonal and purely imaginary, they can play
the role of the anti-Hermitian part of the self-energies, and
therefore are used as the coupling matrices �L,R of Eq. (2)
[6,26].

Aside from the advantages relative to jellium or self-energy
treatments of the open system emphasized above, the use
of ABCs results in an advantage in the implementation and
scaling of real-space T (E) calculations. Using the complex
symmetry of Gr , Ga and the fact that �L,R are diagonal in the
formula for transmission, Eq. (2), yields (see Appendix)

T (E) =
∑

i∈L,j∈R

|Gr
ij (E)|2�Rjj�Lii, (7)
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where i,j are real-space grid points in the left and right ABC
regions, respectively [24]. Therefore, only a submatrix of Gr

coupling �L to �R needs to be computed. This results in
advantageous scaling of the T (E) calculation with system
length when the length is increased beyond the extent ∼σL,R

of the ABCs.

C. Complex energy diagonalization

At this point, the remaining task is to obtain the relevant
subblock of the Green’s function via Eq. (3). This implies
the inversion of a matrix that is closely related to the KS
Hamiltonian matrix. In real space, the KS Hamiltonian matrix
is highly sparse, with the only off-diagonal elements given by
the high-order finite-difference expansion for the Laplacian
operator and the nonlocal part of the pseudopotentials (which
are nevertheless constrained by a cutoff radius) [12]. This
sparseness leads to good parallelizability in the diagonalization
of the KS matrix, because communication is only required
when off-diagonal blocks connect grid elements on different
processors [13–16]. Unfortunately, these advantages do not
carry over to direct inversion because the inverse of a sparse
matrix is generally nonsparse.

To take advantage of both the sparseness of HKS and
the small energy window around EF that governs low-bias
transport, we avoid direct inversion by partially diagonalizing
(Gr )−1 = (E1 − HKS + i�) using an iterative eigensolver.
This approach allows us to find eigenpairs near EF with a
computational cost that can scale very slowly with the size of
HKS . Because (Gr )−1 is non-Hermitian, we should note that
diagonalizability is not strictly guaranteed, but is expected in
numerical practice [36].

First, we define U as the matrix whose columns Ui are right
eigenvectors of Hop [and therefore of (Gr )−1]:

(HKS − i�)Ui = εiUi, εi ∈ C. (8)

Complex conjugation of (8) requires that U ∗
i are the eigenvec-

tors of H
†
op (and therefore of [Ga]−1) with eigenvalues ε∗

i . Note
that due to the complex symmetry (6) of Hop, U is complex
orthogonal [36]:

U † = (U−1)∗.

As a result, the basis {Ui} is biorthogonal, rather than
orthonormal under the standard positive-definite inner product
[36,37].

The representation of Gr in this basis is diagonal:

G̃r (E) ≡ U−1Gr (E)U = [U−1(E1 − Hop)U ]−1

= diag{1/(E − εi)}, (9)

where the notation diag refers to a diagonal matrix with the
given elements. Having found U and ε, our task is reduced to
computing

Gr (E) = UG̃r (E)U−1,

Ga(E) = (Gr (E))∗, (10)

with G̃r the diagonal matrix given in Eq. (9). Therefore, once
U and ε are calculated, we are equipped to find G over a whole
range of energies E with little additional computation.

Let us consider how this facilitates the computation of the
transmission function T (E). Substituting Eq. (10) into Eq. (2)
and applying the cyclic property of the trace yields

T (E) = Tr{G̃r (E)�̃RG̃a(E)�̃L}, (11)

where we have made the new definitions

�̃L ≡ U †�LU,

�̃R ≡ UT �RU ∗. (12)

While G has become diagonal, � no longer is. However,
only the blocks of G̃ and �̃L,R that correspond to the same
eigenpairs multiply each other, as can be seen from explicitly
evaluating Eq. (11), which gives the equivalent of Eq. (7) in
the new basis (see Appendix):

T (E) =
N∑
i,j

�̃Lij �̃Rji

(E − εj )(E − ε∗
i )

, (13)

with N the dimension of the real-space grid. The denominator
of Eq. (13) implies that eigenvalues εi far from E contribute
only weakly to T (E). Thus, we need only the blocks of
�̃L,R with indices corresponding to eigenvalues near the bias
window

EF − eV

2
< E < EF + eV

2
.

Evaluating (12) explicitly and using the fact that �L,R are
diagonal in real space yields

�̃Lij =
N∑
k

U ∗
kiUkj�Lkk , �̃Rji =

N∑
k

U ∗
kiUkj�Rkk.

Therefore, in order to find the needed blocks of �̃L,R , we also
need to compute only the restricted set of eigenvectors Ui that
correspond to the eigenvalues εi near the bias window.

Thanks to this fact, we need to diagonalize iteratively
just a small fraction p (typically ∼1%) of the total space.
Strictly, p should be tested for convergence of T (E), as
we have observed that missing eigenpairs tend to produce
a polelike behavior in Eq. (13). [This is understood because
the left-hand side of Eq. (13) is typically a smooth function,
while the right-hand side is a sum of terms with poles.] We
have indeed performed convergence tests for the calculations
presented in Sec. III. But as a rule of thumb, since U is
complex orthogonal, we may expect that typical elements in
�̃L,R and �L,R are of comparable magnitude, and one may
simply exclude eigenpairs for which

|E − εj |2 � �2
0,

with �0 the ABC strength as in Eq. (5). Even this approximate
criterion cannot be predicted with certainty because the
complex eigenvalues ε are unknown in advance, but it can
be checked after the diagonalization. Alternatively the (real)
KS eigenvalues can be inserted in this test as approximations
of the complex ones. This is valid because, through much
of the simulation cell, i� is a small perturbation to the
KS potential VKS , so the complex eigenvalues ε correspond
roughly to the (real) KS eigenvalues, |ε| ∼ |εKS |, and generally
|Im{εi}| 	 |εi |.
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D. Computational details

In our real-space transport code, TRANSEC, we imple-
mented the complex eigensolution of Eq. (8) using the complex
iterative diagonalization routines in the package ARPACK
[38,39].

In the computations presented in Sec. III, we used typically
a grid spacing of 0.6 to 0.7 a0 [where we use atomic units,
a0 = 1 bohr]. We tested these values for convergence of the
KS eigenvalues, and, in the case of the atomic chains, of T (E),
as well. Note that the scaling of the Hamiltonian dimension N

with grid spacing h and domain volume V is N ∼ V/h3, but
the time for fully solving for G scales even more strongly with
V, thus making use of sparsity crucial. To this end, we used a
fraction of the total number of complex eigenpairs, p ∼1%
to 2.5%, and also tested these for convergence of T . The
computational cost of the iterative diagonalization of Eq. (8)
scales like Nn2

r , where N is the dimension of the Hamiltonian,
and nr = pN equals the total number of eigenpairs found
[41]. Here only a single factor of N comes from applying
the Hamiltonian, which is a critical source of parallelization
in real-space methods [12,13]. Note that N depends on both
the system volume (number of atoms) and the grid spacing,
whereas nr typically scales only with the number of electrons
in the system.

We used the local density approximation [42] for the atomic
chain tests described below, involving C and H, and the
generalized gradient approximation of Perdew, Burke, and
Ernzerhof (PBE) [43] for the chain calculations involving Au,
as well as for the larger calculations with Au(111) nanowire
electrodes.

III. RESULTS AND DISCUSSION

A. Atomic chain tests

We start by considering simple atomic chain models to test
the performance of our method. First, we calibrate the ABC
parameters (height �0 and width σL,R; peak locations zL,R are
set to the ends of the chains) by comparing the transmission
probability to an analytical expression and by identifying
regions where T (E) is robust against small modifications in
the parameters. Typical results are shown in Fig. 1 for an Au
monatomic chain structure with interatomic spacing of 5.5 a0

and a single Au atom “device” separated from the electrodes by
a gap of twice the atomic spacing. With an appropriate choice
of ABC parameters it is found that the transmission probability
of this system is robust against changes of 100% in the ABC
height and ∼20% in its width. This insensitivity simplifies
calibrating the ABCs for a given set of electrodes, as well
as making the ABC tuning more predictive. Once calibrated
for a single well-known lead model, the ABC parameters can,
in principle, be used with any (extended) molecule inserted
between the calibrated electrodes.

Figure 2 shows results for hydrogen and carbon monatomic
chains with a single- or several-atom “device” as the scattering
region, separated by a gap (larger than the interatomic spacing
in the leads) from the atomic chain leads. We have chosen
these systems because they are readily computable with both
TRANSEC and localized-orbital reference transport codes,
and because their physics is well understood. For hydrogen,

FIG. 1. (Color online) Robustness of T (E) with respect to
ABC (equivalently, CAP) parameters for a monatomic Au
chain/atom/chain structure (shown as inset). First parameter in the
legend is �0, the ABC strength; second parameter is σ , the ABC
width along the transport direction. Lines are shown to guide the eye
only. Note that the behavior seen in the last data set (red squares) may
be caused by different convergence with respect to the fraction p of
calculated eigenpairs than for the other ABC parameter sets shown.

the inter-atomic spacing used was 2 a0 and the electrodes were
12 atoms long (note that both hydrogen systems have identical
electrodes, and therefore use the same ABC parameters). For
carbon, the spacing was 2.6 a0 and the electrodes were 14
atoms long. The gaps were (a) 4 a0, (b) 4.7 a0, and (c) 3 a0,
giving a total chain length of (a) 52 a0, (b) 77 a0, and (c) 54
a0. The ABC parameters used were �0 = 265 mRy and σ =
6 a0 for both hydrogen chain systems, and �0 = 265 mRy,
σ = 10.4 a0 for the carbon chain. All calculations used a grid
spacing of 0.6 a0, giving Hamiltonian dimensions N from
13 000 to 22 000. Also shown are reference calculations using
the TIMES transport code [44] to compute T (E) in the linear
response regime based on OpenMX [45] electronic structure.
The OpenMX calculation used a basis set of 17 orbitals per
atom for both the hydrogen and carbon chains.

As is well known, the transmission probability for a single
energy level coupled weakly to two baths can be modeled
analytically by a Lorentzian, where the peak width depends
on the coupling strength [1]. Because the device is coupled
weakly to the electrodes, we expect a T (E) peak near E = EF

of height equal to the number of conductance channels (1
for H, 2 for C) and width dependent on the electrode-device
distance. As can be seen from the figure, the calculations agree
well with these expectations and with the OpenMX + TIMES
results.

We note that in some test cases, agreement was found to be
worse than shown in Fig. 2 for energies away from EF . We
found that this was caused by basis set convergence in the DFT
part of the atomic orbital calculation, leading to disagreement
in the electronic spectrum. We found that improving the
convergence of the OpenMX + TIMES calculations typically
improves its agreement with the real-space results.

B. Au(111) nanowire/Au atom/Au(111) nanowire

Following the calculations for simple atomic chain models,
we now present the results of our benchmark calculations for
a larger Au(111) nanowire electrode/atom/electrode junction.
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FIG. 2. (Color online) TRANSEC calculated transmission prob-
ability curves in the vicinity of the Fermi energy for monatomic
chain/device/chain configurations with device = (a) H, (b) C, and
(c) 3H (structures shown in insets), together with reference results
obtained using OpenMX + TIMES [44,45].

We chose this system to benchmark our method’s capabilities
because its large size and the presence of Au atoms make it
challenging, particularly when using localized orbital repre-
sentations.

The test geometry used is shown in Fig. 3. The electrodes
were formed of Au(111) nanowires with 72 atoms each. The
simulation cell’s lateral dimensions were 25 a0 × 20 a0, and
the dimension along the transport axis was 161 a0. We used
a norm-conserving Troullier-Martins pseudopotential [46] for
Au with electronic configuration of 5d106s16p0 and s/p/d

FIG. 3. (Color online) (a) Geometry of the Au(111)
nanowire/atom/nanowire system. The Au atom is weakly coupled to
two Au(111) nanowire leads (separated by 9 a0 on each side). (b)
Isosurface of a low-lying partially filled orbital of the system shown
in (a), with isovalue 3 × 10−3a

−3/2
0 .

cutoff radii of 2.77/2.60/2.84 a0 [47]. The grid spacing was
h = 0.7 a0, giving a total Hamiltonian dimension of N ≈
234 500. Using a fraction p = 1.25% of the total eigenpairs, the
TRANSEC calculation took approximately 41 hours of wall
time running on 24 cores (980 core-hours) of Intel E5-2630 at
2.3 GHz clock speed with a total of 128 GB RAM.

We used Gaussian ABCs [Eq. (5)] centered on the outer-
most Au monolayers, with �0 = 100 mRy and σ = 8.5 a0

(so that the ABC has sufficiently decayed before the central
atom). To calibrate the ABCs, and as a test of our method
applied to a large system, we placed a single Au atom in the
device region, separated from the electrodes by 9 a0 on each
side. Because the electrodes are large enough to have a virtually
continuous KS eigenvalue spectrum, and since the central atom
is weakly coupled to the leads, transmission is limited by
the energy levels of the (isolated) “device” atom. Therefore,
we expect T (E) to display a narrow peak with height 1 near
E = εKS , where εKS is the (real) KS eigenvalue of an orbital
isolated on the central atom, and with width dependent on the
electrode-atom gap. Note that even in the limit of zero physical
coupling between the device atom and the electrodes, KS-DFT
requires all subsystems to be filled to a common Fermi level,
EF . Therefore, EF of the full nanowire/atom/nanowire system,
as computed by KS-DFT, must lie between the HOMO and
LUMO KS eigenvalues for the (isolated) central atom. So an
orbital largely localized on the device atom is expected to
be found within ∼1 eV of EF . One of the first few partially
occupied orbitals of the electrode/atom/electrode system is
such an orbital with significant amplitude on the isolated atom,
as shown in Fig. 3(b). Transmission through this orbital is
expected to be responsible for a Lorentzian peak in T (E) near
E = EF , like in the case of the atomic chains.

Figure 4 shows the calculated T (E) results. The calculation
is in good agreement with our prediction: as expected, a peak
appears near EF with a height of 1. We also verified, by varying
the electrode-atom gap distance, that the peak width displays
the expected dependence on the electrode-device coupling,
as shown in the figure. To explain further the features seen
in T (E), we also plot in Fig. 4 the location of the (real)
KS eigenvalues together with several representative orbitals.
Typically, large T (E) peaks coincide with delocalized KS
molecular orbitals that bridge the Au atom “device” to the
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FIG. 4. (Color online) (Solid curve) TRANSEC calculated re-
sults for transmission, T , for the Au(111) nanowire/atom/nanowire
system shown in Fig. 3, together with the locations of the (real)
KS eigenvalues (red circles), and isosurfaces of representative KS
orbitals. Also shown (dash-dotted curve) is the effect on T (E) of a
smaller gap between nanowire and central Au atom. A smaller gap
corresponds to stronger lead-atom coupling, and displays a broader
main peak.

leads. More localized orbitals contribute much less to the
transmission. Note, for example, that the KS orbital near
EF − 0.18 eV vanishes in the left electrode and therefore
contributes negligibly to T (E).

C. Benzene dithiol molecule

Having validated our approach for atomic point contacts,
we now turn to demonstrate it on molecular junctions. We
have applied the method to compute T (E) for the ben-
zene dithiol (BDT) molecule between Au(111) electrodes,
shown in Fig. 5, a system that has been extensively studied
computationally [8,48–52]. The results of the T (E) com-
putation are shown in Fig. 5, together with the (real) KS
eigenvalues and representative orbital isosurface plots. The
Au(111) nanowire electrodes are the same as those we
used in the Au nanowire/atom/nanowire configuration shown
previously. We note that we did not have to recalibrate
the ABC parameters from that calculation, so these results
[as well as the H chains in Figs. 2(a) and 2(c)] provide
an illustration of the transferability of ABC parameters for
different (extended) molecules using the same lead models.
We used norm-conserving Troullier-Martins pseudopotentials
with s/p/d cutoff radii of 1.69/1.69/1.69 a0 for S, s/p

cutoff radii of 1.46/1.46 a0 for C, and s cutoff radius of 1.28 a0

for H.
We based our geometry (Fig. 5) on the structure considered

by Stokbro et al. [48], including the Au-S separation of 3.2 a0

along the transport direction, and the placement and angle of
the BDT molecule relative to the Au FCC (111) face. However,
there remain important differences, such as Stokbro et al.’s use
of periodic boundary conditions in the lateral dimension, thus
modeling the transport through a molecular monolayer while
we address single-molecule transport. Qualitatively, our T (E)
results show peaks near EF − 1 eV and several eV above EF ,
as do theirs, and the remaining quantitative differences are
within the spread of results reported in other computational

FIG. 5. (Color online) Au(111) nanowire/benzene dithiol (BDT)/
Au(111) nanowire: (a) Geometry of the system. The plane of the
BDT molecule is oriented along the nanowire axis, and the separation
between S and the Au(111) plane is 3.2 a0, as in the study of Stokbro
et al. [48]. (b) TRANSEC calculated results for transmission, T (E),
for the above system, together with the locations of the (real) KS
eigenvalues (red circles), and isosurfaces of representative KS
orbitals.

studies [48–52]. To validate further our T (E) curve for the
given DFT-computed electronic structure, we performed the
(real) KS eigenvalue analysis shown in Fig. 5, which shows
agreement between the locations of the peaks and the KS
eigenvalues corresponding to delocalized molecular orbitals.

D. C60 molecule

Having applied our method to a relatively simple molecular
junction, we now demonstrate it on a more complex molecular
scattering region. Figure 6 shows the Au(111) leads of
Secs. III B and III C together with a C60 buckminsterfullerene
molecule scattering region. It also shows the computed T (E)
curve for this system.

To validate these results, we again show a KS eigenvalue
analysis, similar to those presented in the last two sections.
Here again, large T (E) peaks coincide with delocalized
molecular orbitals that support transport. For example, the
large multiple peak between EF + 1.2 eV and EF + 1.5 eV
coincides with several orbitals possessing highly delocalized
probability densities, two of which are shown in the figure.
The peak near EF − 0.76 eV may be associated with the
corresponding eigenvalue at the same location. However, when
examining its KS orbital, it seems to be highly localized on the
C60 molecule with little contribution from the Au lead sections.
Hence, we believe that this peak corresponds to the adjacent
eigenvalue near EF − 1 eV, which presents a delocalized
orbital (also shown) that is more likely to support current.

E. Discussion and future work

Having demonstrated the reliability of our approach, we
reiterate its advantages and weaknesses. We remark that the
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FIG. 6. (Color online) (a) The Au(111) nanowire/C60/nanowire
system. The separation between the molecule and the Au(111) plane
is 7.2 a0. (b) TRANSEC calculated results for transmission, T (E), for
the Au(111)/C60/Au(111) system, together with the locations of the
(real) KS eigenvalues (red circles), and isosurfaces of representative
KS orbitals.

TRANSEC calculation can be considered as a benchmark
to test other linear-response transport results using smaller
basis sets, just as a converged real-space or plane-wave DFT
calculation is customarily used to benchmark DFT results. In
addition, the real-space method does not suffer from ghost-
state transmission [9,10] and has other favorable convergence
properties, as mentioned earlier.

Methodologically, we note that the use of ABCs allows
TRANSEC to simulate realistic electrodes with extensive
contact regions at an affordable computational cost. This
is mainly due to avoiding the explicit calculation of the
self-energies representing the semi-infinite leads, although
the use of ABCs does require longer (and more realistic)
contact regions. Compared to the jellium approximation, the
ABCs absorb outgoing waves, and are therefore more likely
to avoid spurious reflections from the edges of the finite lead
models. In addition, as we noted in Sec. III A, tuning the ABC
parameters to a set of electrodes is robust (although in general
the parameters may depend on energy).

We note that despite the real-space method’s suggested
status as a benchmark for other transport calculations, it
remains a computationally expensive method when applied to
small systems where significant parallelization is unnecessary.
However, for large calculations, the number of complex eigen-
pairs needed (see discussion at the end of Sec. II C) can grow
more slowly than the system size, so the problem becomes
favorable. The method’s high parallelizability allows the fast
evaluation (with sufficient processors) of transport problems
that would be highly challenging with other representations.
As computational resources become more available with time,
the real-space method should help meet the demand for more
realistic transport calculations on large systems.

One direction for further work is to implement a more
efficient form [25] for the ABCs than Eq. (5). As mentioned

near Eq. (7), only a submatrix of G between the two
ABCs is needed. Furthermore, the decay of the ABC itself
influences the overall size of the simulation cell needed.
Therefore, a form of ABC that occupies less volume in the
simulation cell will considerably lower the computational
demand.

A different improvement is to parallelize the diagonaliza-
tion of Eq. (8) also over the energy range, allowing further
significant improvement in parallelization efficiency and total
computational time. Work along this line is ongoing. Another
possible improvement that takes good advantage of the sparsity
of H is a divide and conquer method for transport [53,54].
Previous work has shown that transport through a long,
nearly homogenous system can be computed in a time that
scales linearly with the number of scatterers. This approach
has the added advantage that it works well with the natural
parallelizability of the real-space method.

Performing self-consistent NEGF transport calculations
(beyond linear response to bias) [1,6] is another direction
for future work. In our formalism this would pose several
challenges. As emphasized in the previous discussion (see also
Sec. II), our algorithm takes advantage of the fact that evalu-
ating T requires only a subset of the possible Green’s function
elements. This may not be the case when performing fully self-
consistent NEGF. It typically requires the evaluation of a larger
portion of G as well as its integration over a very large energy
range, in each self-consistent iteration. The latter integration
would be a challenge because the larger energy domain could
require finding more eigenpairs in Eq. (8). Also, the wide-band
approximation for the ABCs could break down, especially if
complex energies are used for a contour integration.

IV. CONCLUSIONS

We have presented a real-space method, which we call
TRANSEC, for highly parallelized, first-principles electronic
transport calculations in nanostructures. We have also demon-
strated the validity of the method with several applications,
including both small and large systems. These applications
displayed good agreement with both reference calculations
and analytical expectations. Finally, we have considered some
potential directions for future extensions.
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APPENDIX: DERIVATION OF EQUATIONS (7) AND (13)

Starting from Eq. (2) and using the diagonal form of �L,R ,
we find

T (E) = Tr{Gr (E)�RGa(E)�L}

≡
N∑

ijkl

Gr
ij�RjkG

a
kl�Lli =

N∑
ij

Gr
ij�RjjG

a
ji�Lii . (A1)

Applying Ga = Gr†, we recover

T (E) =
N∑
ij

Gr
ij�RjjG

r∗
ij �Lii =

N∑
ij

|Gr
ij |2�Rjj�Lii, (A2)

noting that, by definition, �Lii �= 0 only for i ∈ L, and
similarly for �R , which completes the derivation of Eq. (7).

The derivation of Eq. (13) proceeds the same way, ex-
cept that now G is diagonal instead of �, and we sub-
stitute an explicit form for G. Starting from Eq. (11), we
obtain

T (E) = Tr{G̃r (E)�̃RG̃a(E)�̃L}

≡
N∑

ijkl

G̃r
kj �̃RjiG̃

a
il �̃Llk =

N∑
ij

G̃r
jj �̃RjiG̃

a
ii �̃Lij , (A3)

where we used the diagonal property of G̃, G̃r
kj = G̃r

jj δkj , to
set k = j and l = i. Finally, substituting Eq. (9) for Gr and
Ga , we obtain Eq. (13).
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