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Strained unit cell calculations 

For the definition of the registry index given in the main text we have used a 

strained graphene/h-BN bilayer unit-cell where the lattice vectors of both layers are 

forced to be identical. The strained unit-cell was constructed at the optimal C stacking 

mode with an interlayer distance of 3.3 Å in accordance with the results of Sachs et 

al.1 obtained using the adiabatic connection fluctuation-dissipation theorem within the 

random phase approximation (ACFDT-RPA). Applying two dimensional periodic 

boundary conditions the system's geometry was optimized using density functional 

theory (DFT) calculations at the HSE/6-31G* level of theory.2-8 Since we do not use a 

dispersion corrected functional approximation the interlayer distance was fixed at its 

initial value during the optimization process. The optimized structure is depicted in 

Fig. S1 where the inter-atomic distance obtained is ܮ஼஼ ൌ ஻ேܮ ൌ 1.431 Å which is 

approximately the average value between the inter-atomic separations of the 

individual layers ܮ஼஼=1.42 Å and ܮ஻ே=1.446 Å. The sliding energy surface of the 

strained graphene/h-BN bilayer system presented in Fig. 2(a) of the main text was 

obtained by performing relative interlayer lateral shifts of the optimized coordinates 

and conducting single point calculations at each interlayer configuration. 
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Figure S1: Schematic representation of the optimized strained graphene/h-BN system. 
The interlayer distance was kept fixed at 3.3 Å. 
 
The optimized coordinates of the strained unit-cell with a fixed interlayer distance of 
3.3 Å are given below: 
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N  -0.617303  -0.336971  0.0 
B 0.621933 0.378571 0.0 
C -0.617401 -1.77737 3.3 
C 0.622006 -1.061760 3.3 
Tv 2.478620 0.00029 0.0 
Tv 1.239341 2.146468 0.0 

We note that throughout the paper we neglect possible out of plane corrugation of 

both graphene and h-BN layers as these are expected to be of marginal effect.1 
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