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ABSTRACT: Graphite and hexagonal boron nitride (h-BN) are two prominent members of the family of layered materials
possessing a hexagonal lattice structure. While graphite has nonpolar homonuclear C−C intralayer bonds, h-BN presents highly
polar B−N bonds resulting in different optimal stacking modes of the two materials in the bulk form. Furthermore, the static
polarizabilities of the constituent atoms considerably differ from each other, suggesting large differences in the dispersive
component of the interlayer bonding. Despite these major differences, both materials present practically identical interlayer
distances. To understand this finding, a comparative study of the nature of the interlayer bonding in both materials is presented.
A full lattice sum of the interactions between the partially charged atomic centers in h-BN results in vanishingly small
contributions to the interlayer binding energy. Higher order electrostatic multipoles, exchange, and short-range correlation
Kohn−Sham contributions are found to be very similar in both materials and to almost completely cancel out by the kinetic
energy term, which partly represents the effects of Pauli repulsions, at physically relevant interlayer distances, resulting in a
marginal effective contribution to the interlayer binding. Further analysis of the dispersive energy term reveals that despite the
large differences in the individual atomic polarizabilities, the heteroatomic B−N C6 coefficient is very similar to the homoatomic
C−C coefficient in the hexagonal bulk form, resulting in very similar dispersive contribution to the interlayer binding. The overall
binding energy curves of both materials are thus very similar, predicting practically the same interlayer distance and very similar
binding energies. The conclusions drawn here regarding the role of electrostatic interactions between partially charged atomic
centers for the interlayer binding of h-BN are of a general nature and are expected to hold true for many other polar layered
systems.

I. INTRODUCTION
Layered materials are playing a central role in a variety of key
scientific fields, including nanoscale materials science, condensed
matter physics, molecular electronics and spintronics, tribology,
and chemistry. While their intralayer interactions are often well
characterized and dominated by covalent bonding, the interlayer
interactions are determined by a delicate balance between dis-
persion forces, electrostatic interactions, and Pauli repulsions.
Understanding the relative contribution of each of these
interactions to the interlayer binding is therefore essential for
the characterization of their mechanical, electronic, and electro-
mechanical properties and for the design of new materials with
desired functionality.2−8

In recent years, the most prominent member of the family of
layered materials has been graphene,9−12 which serves as a
building block for few-layered graphene and graphite as well as
for single- and multi-walled carbon nanotubes.13 Here, each
layer is an atomically thin hexagonal sheet of sp2 bonded carbon
atoms, where the unpaired pz electrons on each atomic site join
to form a collective π system, turning the material into a
semimetal. The main factors expected to dominate graphene
interlayer binding are electrostatic interactions, dispersive inter-
actions, and Pauli repulsions between the electron densities of
each layer. Focusing on electrostatic interactions, the complex
electron density profile around each atomic center may be
characterized by its deviation from spherical symmetry via its
higher-order (beyond the monopole) multipoles.5 Due to the
nonpolar nature of the homonuclear carbon−carbon bond a

zero effective charge resides on each atomic center. Thus, the
classical interlayer monopole−monopole electronic interactions
are completely canceled out by the corresponding nuclear−
nuclear electrostatic contributions. This leaves higher order
electrostatic multipole interactions, dispersion interactions, and
Pauli repulsion as the leading factors governing the stacking and
registry of the layered structure.14−26 Here, the complex interplay
between these factors dictates the equilibrium interlayer dis-
tance16 and the optimal AB staking mode (see Figure 1) where
consecutive layers are shifted with respect to each other such
that half of the carbon atoms of one layer reside above the
hexagon centers of the adjacent layers.7,8

The inorganic analog of graphene, sometimes referred to as
“white graphene”,27−29 is hexagonal boron nitride.30−40 Struc-
turally, a single layer of h-BN is very similar to a graphene sheet
having a hexagonal backbone where each couple of bonded
carbon atoms is replaced by a boron−nitride pair, making the
two materials isoelectronic. Nevertheless, due to the electro-
negativity differences between the boron and the nitrogen atoms,
the π electrons tend to localize around the nitrogen atomic
centers,41−44 thus forming an insulating material. Furthermore,
the polarity of the B−N bond results in the buildup of effective
charges on the atomic centers, thus allowing for interlayer
electrostatic interactions between partially charged atoms to
join higher order electrostatic multipole interactions, dispersion
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interactions, and Pauli repulsion in dictating the nature of the
interlayer binding. This, in turn, stabilizes the AA′ stacking
mode (see Figure 1) where a boron atom bearing a partial
positive charge in one layer resides between the oppositely
charged nitrogen atoms on the adjacent layers.
On the basis of the above considerations, one may generally

deduce that electrostatic interactions between partially charged
atomic centers may play a crucial role in the interlayer binding
of polar layered materials.41 Specifically, the electrostatic attrac-
tions between the oppositely charged atomic centers in adja-
cent h-BN layers are expected to result in a considerably shorter
interlayer distance than that measured for graphite. Never-
theless, the interlayer distances in graphite (3.33−3.35 Å)45−47

and h-BN (3.30−3.33 Å)48−53 are essentially the same, suggest-
ing that electrostatic interactions between partially charged
atomic centers, which exist in h-BN and are absent in graphite,
have little effect on the interlayer binding. This is consistent
with a recent study showing that van der Waals (vdW) forces,
rather than electrostatic interactions, are responsible for
anchoring the h-BN layers at the appropriate interlayer
distance.8 Further support for this argument is found when
comparing the optimal AA′ stacking mode with the AB1
stacking mode where the partially positively charged boron
sites are eclipsed and the nitrogen atoms reside atop hexagon
centers in adjacent layers (see Figure 1). From a naıv̈e electrostatic

viewpoint, one would expect the AA′ mode, where opposite
charges reside atop each other, to be considerably lower in
energy than the AB1 mode, whereas according to advanced ab
initio calculations, the latter is found to be only 0.875−
2.0 meV/atom higher in energy.8,29,54 Furthermore, when
considering the AB2 stacking mode (see Figure 1), which in
terms of electrostatic interactions between partially charged
atomic centers is equivalent to the AB1 mode, its total energy is
higher by as much as 6.5−12.0 meV/atom than both the AA′
and the AB1 modes.8,54,55 This may be related to enhanced
Pauli repulsions between the more delocalized overlapping
electron clouds of the nitrogen atoms.5,29,41,54,56−58

To add to the puzzle, even if one accepts that electrostatic
interactions between partially charged atomic centers do not
contribute to the binding in the polar h-BN system, the differ-
ences in spatial distribution of the charge densities in graphene
and h-BN would suggest that the contribution of higher order
electrostatic multipoles as well as Pauli repulsions would be
different in both materials. Furthermore, the large differences in
the values of the static polarizabilities of the boron, carbon, and
nitrogen atoms suggest that the dispersive contribution to the
binding would behave differently in the two materials. Several
questions thus arise: Why is the effect of electrostatic interactions
between partially charged atomic centers on the interlayer
binding of h-BN negligible? Why is the effect of higher-order
electrostatic multipoles in both graphene and h-BN similar?
Why is the dispersive attraction similar in both materials? And
more generally, is the fact that the interlayer distances of
graphite and h-BN are so similar a mere coincidence or an
effect of a more generic nature? To answer these questions,
we present, below, a thorough comparative analysis of the
different energy contributions to the interlayer binding in
graphene and h-BN. We start by explaining why classical
electrostatic interactions between partially charged atomic
centers have a negligible contribution to the interlayer binding
in h-BN. This is followed by a comparative study of the classical
electrostatic contributions from higher order electrostatic
multipoles, nonclassical electrostatic effects, and Pauli repulsions
in the two materials, as captured by the electrostatic, exchange
and short-range correlation, and kinetic energy terms of standard
Kohn−Sham density functional theory approximations. Finally,
we compare the long-range interlayer dispersive interactions in
both materials.

II. ELECTROSTATIC INTERACTIONS BETWEEN
PARTIALLY CHARGED ATOMIC CENTERS

We start by addressing the question regarding the marginal effect
of electrostatic interactions between partially charged atomic
centers on the binding energy of h-BN. Here, the answer lies in
the long-range nature of the Coulomb interactions. Our intuition
for enhanced electrostatic binding in h-BN stems from the
attraction of oppositely charged boron and nitrogen atoms
residing opposite each other on adjacent layers at the optimal
AA′ stacking mode. Nevertheless, the interlayer Coulomb
interactions between laterally shifted atomic sites are non-
negligible and must be appropriately taken into account.
Specifically, when placing a test charge above a h-BN layer, as
the lateral distance r from this test charge is increased, the
Coulomb interaction decays as α/(r2 + h2)1/2 which follows
α/r as r → ∞, where α is the effective partial charge on each
atomic site and h the fixed distance between the charge and
the h-BN plane. However, the number of atomic sites inter-
acting with the test charge at the given lateral distance r is

Figure 1. High symmetry stacking modes in hexagonal lattices. (a)
The optimal AB stacking of graphite has a carbon atom in a given layer
residing atop the center of a hexagon of the adjacent layers. (b) The
optimal AA′ stacking mode of h-BN has a partially negatively charged
nitrogen atom in one layer residing on top of a partially positively
charged boron atom in the adjacent layers. This configuration
minimizes the electrostatic energy. (c) The metastable AB1 stacking
mode of h-BN has eclipsed boron atom positions, whereas the
nitrogen atoms appear on top of hexagon centers of adjacent layers.
(d) The unstable AB2 stacking mode of h-BN has eclipsed nitrogen
atom positions whereas the boron atoms appear on top of hexagon
centers of adjacent layers. Lower (upper) layer hexagons are indicated
by larger (smaller) circles representing the atoms and dashed (full)
lines representing sp2 covalent bonds. Blue (orange) circles represent
boron (nitrogen) atoms. From a naıv̈e electrostatic viewpoint, the AB1
and AB2 stacking modes of h-BN should be energetically equivalent;
however, due to the vanishing electrostatic interactions between partially
charged atomic centers on adjacent layers and enhanced Pauli repulsions
between eclipsed nitrogen centers, the AB1 configuration is close in total
energy to the AA′ stacking mode, whereas AB2 is an unstable high energy
mode.
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approximately proportional to the circumference of a ring of
radius r and thus increases linearly with the r. Thus, as
previously discussed,5,6,59−69 in order to map the classical electro-
static potential above an infinite h-BN layer resulting from the
atom-centered electronic monopole contributions and the
nuclear charges, it is necessary to perform a full lattice sum
over all partially charged lattice sites within the sheet. This
sum is given by the following general expression:
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where, φ(r)⃗ is the electrostatic potential, in atomic units, at
point r ⃗ = (x,y,z) in space due to qi=1,...,d charges located at
points ri⃗ = (xi,yi,zi) within the two-dimensional periodic unit
cell with lattice vectors T⃗1 = (T1

x,T1
y) and T⃗2 = (T2

x,T2
y). We

note that φ(r)⃗ diverges when measured at the lattice sites. For
simplicity, we choose a rectangular unit cell (see right panel of
Figure 2) with lattice vectors T⃗1 = (√3,0)a and T⃗2 = (0,3)a,
a = 1.446 Å being the B−N bond length, atomic positions
r1⃗ = (0,0,0), r2⃗ = (0,1,0)a, r3⃗ = (1/2)(√3,3,0)a, and r4⃗ =
(1/2)(√3,5,0)a, and charges q1 = −q2 = q3 = −q4 = δ where
δ = −0.5.8,59 Unfortunately, for charge neutral unit cells
(∑i=1

d qi = 0), the sum appearing in eq 1 is conditionally conver-
gent and therefore challenging to evaluate using direct sum-
mation. An elegant way to circumvent this problem was
proposed by Ewald where the conditionally convergent lattice
sum is converted into two absolutely converging sums, one in
real space and the other in reciprocal space.70,71 Using this
technique (see Supporting Information for a detailed deri-
vation), one is able to efficiently calculate the electrostatic
potential due to all partially charged atomic centers at any point
above the two-dimensional infinite h-BN lattice.
To study this electrostatic contribution at the optimal AA′

stacking mode, the potential above a nitrogen atomic site
is plotted as a function of the distance from the h-BN layer.
In the left panel of Figure 2, the full lattice-sum results are
compared to the electrostatic potential produced by an isolated

partially charged nitrogen atomic center. Clearly, the collective
electrostatic potential decays exponentially (see Supporting
Information) and much faster than − δ/r, becoming extremely
small at the equilibrium interlayer distance in agreement with
similar results obtained by Green et al.6 At shorter distances,
Pauli repulsions become dominant and prevent the layers from
approaching each other, thus rendering the region, where par-
tial atomic charges contributions become substantial for binding,
physically irrelevant. At the optimal AA′ stacking mode with the
interlayer distance set to 3.33 Å, the calculated electrostatic
potential energy due to the partially charged atomic centers is
8.4 × 10−4 eV/atom, which is merely a negligible fraction of the
total bilayer binding energy in the presence of vdW interactions
calculated to be 26.0−38.1 meV/atom.8,24 A full map of this
electrostatic potential 3.33 Å above the h-BN surface is presented
in the right panel of Figure 2. Due to symmetry considerations,
the potential vanishes identically above the centers of the hexa-
gons and above the centers of the B−N bonds regardless of the
distance from the surface. At other positions along the surface,
the potential is nonzero and preserves the hexagonal lattice
symmetry with values not exceeding 8.4 × 10−4 eV/atom.

III. FULL NON-DISPERSIVE INTERLAYER INTERACTION
ANALYSIS

On the basis of the above considerations, it is now clear that
due to the long-range nature of the Coulomb potential, the
overall classical electrostatic interactions between partially
charged atomic centers have only a marginal effect on the
interlayer binding in h-BN. One may therefore conclude that
the main classical electrostatic contribution to the interlayer
binding in both graphene and h-BN comes from higher order
multipole interactions.5 Since the intralayer hexagonal lattice
structures of the two materials are nearly identical, it is tempt-
ing to assume that these contributions would be very similar.
This, however, is not trivial, as both the optimal stacking mode
and the overall density profile in the two materials are quite
different.54,56 Furthermore, other nonclassical contributions
such as Pauli repulsions which prevent the layers from sticking
together16 and the exchange-correlation terms appearing in

Figure 2. Electrostatic potential (atomic units) due to all partially charged atomic centers above a h-BN surface. Left panel: Electrostatic potential above
a partially negatively charged (−0.5e−) nitrogen site as a function of the vertical distance from the plane of the h-BN layer (solid black curve) calculated
using eq 1. For comparison purposes, the potential above a corresponding partially charged isolated nitrogen atom is presented by the dashed red line.
Right panel: Full electrostatic potential surface 3.33 Å above the h-BN layer calculated using eq 1. Boron (nitrogen) atomic positions are represented by
blue (orange) circles. For the optimal AA′ stacking mode at the equilibrium interlayer distance of 3.33 Å, the lattice summed electrostatic potential
becomes extremely small (left panel). Due to symmetry considerations, the electrostatic potential above the center of the hexagon and above the center
of a B−N bond vanishes identically (right panel).
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density functional theory (DFT) calculations can considerably
differ between the two materials. Thus, in order to gain a better
understanding of the separate roles of the different contribu-
tions to the interlayer binding, DFT-based binding energy cal-
culations for bilayer graphene and h-BN have been performed.
In order to avoid ambiguities in the definition of the different
components of the total energy resulting from the lattice sums
performed in periodic boundary conditions calculations, a set of
finite-sized bilayer clusters with hexagonal symmetry and
increasing diameter has been chosen. For the h-BN system,
zigzag edged hydrogen terminated hexagonal clusters have been
considered (see right panel of Figure 3); test calculations with

armchair h-BN clusters revealed similar results to those
obtained with the zigzag clusters (see Supporting Information).
In order to prevent the occurrence of edge states in the bilayer
graphene system,12,72−76 hydrogen terminated armchair gra-
phene dimers have been considered (see left panel of Figure 3).
Each hexagonal cluster was cut out of the relevant pristine
periodic layer with C−C and B−N bond lengths of 1.420 Å and
1.446 Å, respectively. The bare edges were hydrogen termi-
nated with benzene C−H and borazine B−H and N−H bond
lengths of 1.101 Å, 1.200 Å, and 1.020 Å, respectively. The
individual flakes were then appropriately combined to form a
finite sized AB stacked graphene dimer and AA′ stacked h-BN
dimer. No geometry optimization was performed. The cluster
size was increased until edge effects on the calculated binding
energies became marginal (see Supporting Information). All
calculations were carried out using the Gaussian 09 suite of pro-
grams77 with the double-ζ polarized 6-31G** Gaussian basis
set78 utilizing the counter-poise correction79,80 to eliminate
possible basis set superposition errors. Tests for convergence of
the results with respect to the basis sets were performed for the
smaller flakes, indicating convergence of the total binding
energy down to ∼1 meV/atom at physically relevant interlayer
separations (see Supporting Information).
Figure 4 presents the dependence of the different com-

ponents of the total DFT energy on the interlayer distance in
graphene and h-BN. Here, EEl is the sum of classical electrostatic
contributions (nuclear−nuclear repulsion, electron−nuclear
attraction, and the Hartree term), Exc is the sum of exchange
and correlation DFT contributions, Ek is the kinetic energy

term, and ET is the total energy. Three exchange-correlation
density functional approximations are considered:81 (i) the
generalized gradient corrected PBE functional82 representing
semilocal functionals, (ii) the hybrid B3LYP functional83 aimed
at partly eliminating the self-interaction error appearing in
semilocal functionals and regaining some of the correct long-
range exchange behavior, which is relevant for the present study,
and (iii) the semiempirical hybrid meta-GGA M06 functional84,85

parametrized to mimic some of the nonlocal correlation required
to describe dispersion interactions. All functional approximations
considered lack the proper treatment of long-range correlation
effects responsible for dispersive vdW interactions and are
therefore limited to a description of classical electrostatic,
exchange, short (or middle)-range (SR) correlation, and Pauli
repulsions effects on the interlayer binding.86

As can be seen, all three functional approximations predict that
the EEl contributions (red squares) are much larger than the
classical electrostatic energy due to the partially charged atomic
centers in h-BN (brown x marks) at physically relevant interlayer
distances of the two materials. Nevertheless, PBE and B3LYP
predict that the combined electrostatic, exchange, and SR-
correlation (green diamonds) contributions to the total binding
energy at these distances are almost completely canceled out by
the kinetic energy term (blue triangles) partly manifesting the
effects of Pauli repulsions.16 As a result, the total binding energy
curves (black circles) calculated by both functionals, which, as
described above, lack the dispersive component, are completely
nonbonding for graphene and very weakly bonding for h-BN.
This is consistent with recently reported results for graphite87 and
molecular graphene derivatives adsorbed on graphene.16 As may
be expected, the binding energy curve of the M06 functional,
which by construction incorporates some middle-range correla-
tion, is binding throughout the interlayer distance regime
considered for the two materials.86

The PBE calculations suggest that the dependence of the
exchange-SR-correlation contributions on the interlayer dis-
tance in both materials is very similar, whereas the electrostatic
and kinetic energy terms of graphene and h-BN behave quite
differently. This implies that the similarity of the total (vdW
lacking) binding energy curves of the two materials results from
a coincidental cancellation of the different terms. The B3LYP
results reveal a completely different picture where the interlayer
distance dependences of all calculated energy components in
both materials are very similar (with minor deviations between
the kinetic energy terms). This suggests that the similarity be-
tween the total nondispersive interlayer binding curves
originates from the physical similarity of the two materials
and not from a fortuitous cancellation of the different terms.
Notably, the overall differences between the total binding ener-
gies calculated using the two nondispersive functional ap-
proximations at the equilibrium interlayer distance are merely
5 meV/atom, which is close to the accuracy limit that can be
expected from such calculations.
The interlayer distance dependence of the M06 energy com-

ponents considerably differs from that obtained by the other
two functional approximations. Nevertheless, similar to the
B3LYP results, the two materials exhibit very similar electro-
static behavior throughout the entire interlayer distances regime
studied apart from some deviations at very short distances.
Interestingly, despite the differences in the M06 exchange-
correlation and kinetic energy terms of the two materials, the
overall difference between the two M06 binding energy curves
is ∼5 meV/atom at the equilibrium interlayer distance. These

Figure 3. Top (upper panels) and side (lower panels) views of the
largest bilayer graphene armchair flakes (left) and bilayer h-BN zigzag
flakes (right) used in the present study. The graphene system consists
of a total of 528 atoms, and the h-BN system has a total of 672 atoms.
Cyan, blue, pink, and gray spheres represent carbon, boron, nitrogen,
and hydrogen atoms, respectively.
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findings along with the results of the nondispersive functionals
suggest that the similarity in the interlayer interactions of gra-
phene and h-BN results from a simultaneous similarity between
their nondispersive and dispersive interaction terms.
It should be noted that in principle DFT should give the true

electron density, and thus the Hartree and electron−nuclear
terms appearing in EEl should provide accurate measures of the
classical interlayer electron−electron and electron−nuclear
energies.88 However, when using approximate exchange-correla-
tion density functionals, care should be taken when ascribing a
direct physical interpretation to the calculated electrostatic (and
kinetic) Kohn−Sham energy trems.89 This is clearly evident from
the differences in the calculated electrostatic energies obtained
using the PBE, B3LYP, and M06 functionals in Figure 4. These
differences arise from variations in the intralayer electron density
profile obtained by the various functional approximations and the
different long-range behaviors, resulting in a functional dependent
self-consistent balance between the obtained interlayer electro-
static, exchange-correlation, and kinetic energies. Nevertheless,
the notable similarity between all B3LYP binding energy
components and the M06 electrostatic energies of the two
materials does provide an indication that higher order classical
electrostatic multipole interlayer interactions in the two materials
should be similar as well. Furthermore, the mutual cancellation of
the different energy components of both nondispersive func-
tional approximations at the equilibrium interlayer distance

suggests that vdW interactions are responsible for anchoring the
layers in both materials.1,8,16

IV. VAN DER WAALS INTERACTIONS
The analysis presented above establishes the fact that electro-
static interactions between the partially charged atomic cores in
h-BN, which are absent in graphene, have a minor contribution
to the interlayer binding due to the rapid decay of the potential
into the vacuum above the layer. Furthermore, it shows that at
physically relevant interlayer distances in graphene and h-BN,
the overall classical electrostatic and exchange-SR-correlation
DFT contributions (which by themselves can be quite significant)
almost completely cancel out with the kinetic energy term,
partly manifesting the effect of Pauli repulsions. This suggests,
as we previously concluded, that vdW interactions are a crucial
ingredient for anchoring the graphene and h-BN layers at their
equilibrium interlayer distance.1,8 Since the experimental
interlayer distances in both systems are essentially the same,
one may deduce that the attractive vdW interactions in both
systems are similar. As mentioned above, this conclusion is
somewhat surprising in light of the different static polarizabi-
lities presented by the carbon, boron, and nitrogen atoms.
In order to gain quantitative understanding regarding the role

of vdW interactions for the interlayer binding in the two
materials, the C6/R

6 leading dispersion term should be
considered. To this end, the Tkatchenko−Scheffler vdW

Figure 4. Dependence of the total (black circles), electrostatic (red squares), exchange-SR-correlation (green diamonds), and kinetic (blue triangles)
DFT energy components on the interlayer distance of bilayer h-BN (solid lines, full symbols) and bilayer graphene (dashed lines, open symbols)
calculated using the PBE (upper left panel), B3LYP (upper right panel), and M06 (lower panel) density functional approximations. The electrostatic
energy due to interlayer interactions between partially charged atomic centers is presented for comparison (brown x marks). Zero energy is defined
as the value of the relevant component at infinite separation. Insets: zoom on the interlayer dependence of the calculated total energies. PBE results
for bilayer graphene (h-BN) were obtained using the 528 (672) atom cluster presented in the left (right) panel of Figure 3. B3LYP and M06 results
for bilayer graphene and h-BN were obtained using 528 and 240 atom clusters, respectively (see Supporting Information).

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct200880m | J. Chem. Theory Comput. 2012, 8, 1360−13691364



(TS-vdW) correction scheme to density functional theory may
be used.90,91 Here, the pairwise bulk C6 coefficients between
atoms A and B are calculated using the following relation:90

=
+α
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where Vi
eff is the effective volume of atom i in the bulk system

referenced to the free atom volume in vacuo, Vi
free. The relative

effective volume, in turn, is estimated using the Hirshfeld par-
titioning scheme applied to the electron density obtained from
a density functional theory calculation.92

The free-atom parameters may be obtained from the data-
base presented by Chu and Dalgarno,93 constructed using self-
interaction corrected time dependent density functional theory
calculations. Values for the relevant atoms are summarized in
the Table 1.

Table 2 summarizes the numerical values for the pairwise
bulk (graphite and h-BN) C6 coefficients obtained using eqs 2

and 3 with the parameters presented in Table 1. At the optimal
AA′ stacking mode of h-BN and the AB mode of graphite, the
most prominent C6 contributions come from the eclipsed
boron−nitrogen (in h-BN) and carbon−carbon (in graphite)
atomic centers attraction on adjacent layers. As can be seen,
despite the large differences between the C−C, B−B, and N−N
coefficients, the C−C and B−N coefficient agree to within less
than 2%, indicating that indeed the vdW interactions in
graphite and h-BN should be very similar in nature.
To further investigate the vdW contribution beyond the

eclipsed atom interactions, an analysis of the full vdW interaction
scheme of the bilayer systems is presented in Figure 5 where the
h-BN bilayer is assumed to be at the AA′ stacking mode and the
bilayer graphene at the AB mode. Different components of the
vdW energy are considered separately. The term “mixed sub-

lattice” interactions in h-BN refers to the vdW energy contri-
bution of a single boron (nitrogen) atom in one h-BN layer with
all nitrogen (boron) atoms in the other layer (marked as BN). In
bilayer graphene, this term refers to the interaction of a single
carbon atom located at a given sublattice site of one graphene
layer with all carbon atoms belonging to the other sublattice sites
of the second graphene layer (marked as CC′ or C′C).
Respectively, the term “same sublattice” interactions in h-BN
refers to the vdW contribution of a single boron (nitrogen) atom
in one h-BN layer with all boron (nitrogen) atoms in the other
layer (marked as BB or NN). In bilayer graphene, this term refers
to the interaction of a single carbon atom located in a given
sublattice site of one graphene layer with all carbon atoms
belonging to the same sublattice sites of the second graphene
layer (marked as CC or C′C′).
Panel a of Figure 5 shows the vdW energy contribution of

the mixed sublattice interactions of a single atom in one layer
with all relevant atoms in the other layer of the bilayer systems.
While graphite and h-BN present different optimal stacking
modes, the vdW energy only weakly depends on the exact
stacking of the hexagonal lattices.17 Therefore, since the C−C

Table 1. Values for the Free Atom Dipole Polarizabilities,
C6 Coefficients, and Relative Effective Hirshfeld Volumes
of Carbon, Boron, and Nitrogen Atoms Relevant for the
Present Study

C B N

α0 (a.u.)93 12.0 21.0 7.4
C6

0 (a.u.)93 46.6 99.5 24.2
Vi
eff/Vi

free94 0.850 (graphite) 0.811 (h-BN) 0.879 (h-BN)

Table 2. Values (in Hartree·Bohr6) for the Pair-Wise Bulk C6
Coefficients Obtained Using eqs 2 and 3 and the Parameters
of Table 1 for Carbon, Boron, and Nitrogen Atomsa

B−B N−N C−C B−N C−B C−N

65.4 18.7 33.7 33.1 46.2 24.8
aValues relevant for the present study are presented in bold.

Figure 5. vdW contributions to the binding energy curves of graphite
and h-BN in the AB and AA′ stacking modes, respectively. (a) Mixed
sublattice contributions to the vdW energy of the bilayer systems. CC′
represents the interaction of a single carbon atom located on sublattice
1 of the first layer with all carbon atoms located on sublattice 2 of the
second layer. C′C represents the interaction of a single carbon atom
located on sublattice 2 of the first layer with all carbon atoms located
on sublattice 1 of the second layer. CC′+C′C represents the overall
sum of the CC′ and C′C contribution per atom. BN stands for the
interaction of a single boron (nitrogen) atom in one h-BN layer with
all nitrogen (boron) atoms in the other layer. (b) Same sublattice
contributions to the vdW energy of the bilayer systems. CC+C′C′
represent the overall sum of the interaction of a single carbon atom
located on sublattice 1 of the first layer with all carbon atoms located
on the same sublattice of the second layer and the interaction of a
single carbon atom located on sublattice 2 of the first layer with all
carbon atoms located on sublattice 2 of the second layer. Due to the
symmetry of the hexagonal lattice, the CC and C′C′ contributions are
identical to each other and therefore also to the CC+C′C′ contribution
per atom. NN (BB) represents the interaction of a single boron
(nitrogen) atom in one layer with all boron (nitrogen) atoms in the
second layer. BB+NN represents the sum of the BB and NN vdW
contributions per atom. (c) Total vdW energy per atom of the bilayer
systems. See Supporting Information for further details regarding this
calculation. (d) Full binding energy curves of bulk graphite1 (solid
black line) and bulk h-BN8 (red dashed line) as calculated using the
TS-vdW method. Results for the graphite binding energy calculations
have been provided courtesy of Felix Hanke.
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and B−N C6 coefficients were found to be very similar, the
vdW contributions of the mixed interactions of both systems
are nearly identical. Similarly, panel b of Figure 5 shows the
vdW energy contribution of the same sublattice interactions.
Here, due to the large differences between the C−C, B−B, and
N−N C6 coefficients, the separate contribution of each of the
sublattice interactions is quite different. Nevertheless, when
adding the contributions of the BB and NN interactions in
h-BN and the CC and C′C′ interactions in bilayer graphene, the
overall contributions are very similar, reflecting the fact that the
C−C C6 coefficient is close to the average value of the B−B and
N−N coefficients. Thus, as shown in panel c of Figure 3, owing
to the isoelectronic nature of the two materials, their similar
intralayer bond lengths and lattice structures, and the ordering
of the atomic static polarizabilities, the overall vdW attraction
per atom in the unit cell of bilayer graphene and
h-BN are very similar despite the differences in the individual
C6 coefficients of the different atoms.
Finally, these results are clearly manifested in the full binding

energy curves presented in panel d of Figure 5 for bulk graphite
(calculated by Hanke1) and h-BN (calculated by Marom et al.8)
as obtained using the TS-vdW scheme. As can be seen, both
binding energy curves predict the same interlayer distance
of 3.33 Å, in excellent agreement with the experimental
values45−53 and similar binding energies (graphite, 84.7 meV/atom;
h-BN, 85.9 meV/atom). The dispersive attractive part of both
systems is very similar, whereas the main deviations between the
two curves appear in the short range where Pauli repulsions due
to overlap of the B−N electron clouds in h-BN and C−C
electron clouds in graphite become dominant. These deviations
are to be expected, as the two materials possess different optimal
stacking modes and since the effective volumes of carbon in
graphite and boron and nitrogen in h-BN are different.

V. SUMMARY AND CONCLUSIONS
To summarize, in the present study, the interlayer binding in
graphene and h-BN was compared. It was found that despite
the polar nature of the B−N bond in h-BN, the full lattice sum
of the electrostatic contributions from the effective charges on
all atomic sites within the layer results in rapid exponential
decay of the electrostatic potential into the vacuum. As a result,
at the equilibrium interlayer distance, the overall classical elec-
trostatic contribution from the interaction between all partially
charged atomic centers to the interlayer binding is merely a
small fraction of the total calculated binding energy. At physi-
cally relevant interlayer distances, the contribution of electro-
static and exchange-SR-correlation DFT energy terms elegantly
cancels out the kinetic energy term partly manifesting the effect
of Pauli repulsions. Nonetheless, when considering relative
lateral shifts of the layers at the equilibrium interlayer distance,
the residual electrostatic potential along with the Pauli repul-
sions are sufficient to set the AA′ stacking mode as the optimal
configuration of h-BN. The opposite holds true for the dis-
persive component, which has a minor effect on the corrugation
of the interlayer sliding energy surface8,17 but is a crucial factor
for the interlayer anchoring in both systems.8,16 Here, despite
notable differences between the free-atom as well as the bulk
homonuclear C6 coefficients of the two materials, the hetero-
atomic bulk coefficients in h-BN agree to within 2% with the C−C
coefficients in bulk graphite. This translates to very similar binding
energy curves for both materials (deviating mainly at distances
shorter than the equilibrium interlayer distance where Pauli
repulsions become dominant), thus resulting in similar binding

energies and practically identical equilibrium interlayer distances
for graphene and h-BN. These conclusions are further supported
by recent studies of h-BN/graphene hybrid structures,95−101

which, similar to graphite and h-BN, should present an interlayer
distance of ∼3.3 Å.96

Some notes regarding the calculations presented in this
study should be made: (i) When performing the electrostatic
(and vdW) sums only the pristine systems have been considered.
Defects, such as lattice vacancies,33,102 may introduce long-range
effective Coulomb potentials which decay asymptotically as α/r
rather than exponentially into the vacuum. (ii) The bulk TS-vdW
calculations presented above lack a proper description of the
screening of the pairwise interaction by the dielectric medium
and nonadditive many-body vdW energy contributions. The
neglect of screening effects usually results in too large bulk C6
coefficients and therefore overestimates binding energy values,
but it often still produces accurate structural properties for
molecular dimers, molecular crystals, and layered materi-
als.1,8,15,16,23,24,86,90,91,103−107 As screening effects on the
unscreened C6 coefficients are expected to be similar in
graphite and h-BN, which have the same intralayer hexagonal
lattice structure, the inclusion of such effects is expected to in-
fluence the binding energy curves of both materials in a similar
manner, thus leaving the conclusions drawn here, based on the
unscreened coefficients, valid. (iii) The TS-vdW approach,
which relies on additive pairwise contributions, does not cap-
ture the correct asymptotic form of vdW interactions between
graphene layers.15 However, the present study focuses on the
region near the interlayer equilibrium separation where, as
mentioned above, the ability of this approach to accurately treat
dispersive interactions is well established. We note that the
proper description of the above-mentioned effects is a subject
of ongoing research.
Finally, a note should be made regarding the general nature

of the conclusions drawn above. The rapid decay of the electro-
static potential due to the partially charged atomic centers into
the vacuum above the two-dimensional layer is not a unique
property of the hexagonal lattice of h-BN.61 While its fine
details are expected to depend on the chemical composition
and structural topology of the underlying material, the general
nature of the exponential decay is expected to prevail in many
layered systems (see Supporting Information). In contrast, the
contribution of higher-order classical electrostatic multipole
interactions, exchange-SR-correlation energies, Pauli repulsions,
and vdW attraction at different interlayer distances may heavily
depend on the specific chemical nature of the material and its
lattice structure. Therefore, when studying the interlayer
binding in such materials, a careful balance between electro-
static, dispersive, and Pauli interactions should be considered.
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summation method for the electrostatic potential above an
infinite two-dimensional h-BN layer due to the partially charged
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