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A theory for a nanometer-scale pump based on the ratchet concept
is presented. A lattice gas model with a set of moves that satisfy
hydrodynamic equations is used to describe an asymmetric nano-
meter channel connecting two reservoirs of fluid. The channel,
which is coupled to an external oscillatory (or stochastic) driving
force, pumps fluid from one reservoir to the other. The frequency
of the external driving force, the fluid density, and the channel
dimensions are used to control the fluid flow. We observe a
nonmonotonic behavior of the flow with respect to some model
parameters and discuss the efficiency of the device.

M atter confined in nanometer-scale channels has been the
subject of numerous theoretical studies over the past
decade (1-4). Much of the theoretical attention has been given
to the drying transition that occurs in confined water (5-7), with
strong connection to biological channels. Intuition would lead
one to assume that water confined in hydrophobic channels is
unfavorable, and as a result of the reduction of the number of
hydrogen bonds compared with the bulk fluid the density of
water inside a hydrophobic channel would be very low. Appar-
ently this is not the case as shown recently by Hummer et al. (8)
and Maibaum and Chandler (9).

Currently we have a good understanding of the phase behavior
of liquid confined in nanometer-scale channels. Hummer ez al.
(8) used molecular dynamics simulation to study the density
fluctuation of water inside a single-wall carbon nanotube as a
model for a hydrophobic channel. Their results were rationalized
by a simple coarse-grained model developed by Maibaum and
Chandler (9), who showed that the occupation number inside the
hydrophobic channel depends mainly on the ratio of solvent—
solvent interaction strength to solvent—tube interaction strength,
in agreement with the molecular dynamics simulations. In
contrast, there is still a debate regarding the dynamics of
emptying or filling the channel (8§-11). Hummer et al. (8) and
Becksteinet al. (11) argued that water flow through the nanotube
occurs in bursts. On the other hand, the simple lattice gas
approach indicates that the bursts arise from the definition of a
conductance event (9).

The major goal of the present study is to develop a useful
approach to control the flow of a fluid (water, for example)
through a confined channel. In contact with the aforementioned
studies the only (well supported) assumption made is that the
density of the fluid confined in the channel can be controlled by
adjusting the relevant interactions (8, 9). The mechanism by
which transport occurs, i.e., the mechanism of emptying or filling
the channel is of minor importance for the present application.

To illustrate how one can control the flow of a fluid through
a channel we focus on a simple model system where a channel
connects two reservoirs of fluid. Following the work of Maibaum
and Chandler (9), we use a coarse-grained lattice gas model on
a triangular lattice to describe the system. The dynamics of the
fluid are approximated by the Frisch-Hasslacher-Pomeau
(FHP) model (12, 13) with a set of moves that satisfy the
Navier-Stokes equation (14). We assume that the fluid can wet
the inside of the channel and use no-slip boundary conditions to
model the couplings between the fluid and the nanotube and
between the fluid and the wall separating the two reservoirs. The
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geometry of the system and the detailed description of the model
are given in Model.

We adopt the ratchet concept to control the flow of fluid
through the channel (15-19). The basic idea behind the ratchet
effect is simple (20). A Brownian particle can undergo net
transport on an asymmetric periodic potential energy surface
that fluctuates periodically between its different states. In the
present study we introduce structural asymmetry along the
channel (asymmetric potential) and apply an external periodic
force on the channel connecting the two reservoirs. This simple
geometry leads to a net transport of fluid from one reservoir to
the other despite the fact that it is not periodic.

Similar ratchets have been used in many ways, including for the
separation of particles based on diffusion (21-26). Of particular
relevance to the present study is the work of Miller and
coworkers (24, 25) and Siwy and Fulifiski (26). Miiller and
coworkers (24, 25) showed how a net transport of micrometer-
sized particles through a silicon wafer can be tuned by period-
ically pumping a liquid through the silicon pores. Using an
asymmetric, ratchet-like, electric potential inside a conical pore,
Siwy and Fulifiski (21) synthesized a nano-device that transports
potassium ions against their concentration gradient. As will
become clear below, our approach combines several important
features discussed in refs. 24 and 25 for mesoscopic materials and
in ref. 26 for ionic systems.

We use simulation techniques to study the relevant parameters
that can be used to control the flow of fluid through the channel.
Specifically, we delineate the effects of the frequency of the
external driving force, the fluid density, and the dimensions of
the channel.

Model

We propose a simple coarse-grained 2D lattice gas model to
describe the nanometer channel (for example, a nanotube) that
is connected to a wall separating two reservoirs of fluid. A sketch
of the model is shown in Fig. 1.

The dynamics of the fluid is described within the FHP-III
model based on a triangular grid (13). In the FHP-III model,
identical fluid particles travel with unit speed from one site to the
other on the grid and collide when they meet on the same site,
conserving both particle density and particle momentum. Only
one particle is allowed to travel in each direction along the six
possible links connecting adjacent sites. Each site can also
include a rest particle that can take part in the collision process.
The equations of motion can be expressed in terms of a vector,
n(r, ) = {ny(r, t), . . ., ne(r, t)}, with binary variable components
that are proportional to the density of particles moving from site
r in one of the possible directions ¢;:

nj(r + cj, t+ 1) = nj(ra t) + Aj(n(r’ t)) ) [1]

where ¢; = (cos(2mj/6), sin(27/6)),j = 1, .. ., 6 for the six possible
direction, or ¢; = (0, 0) for the rest particle. The collision operator,
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Fig.1. Asketch of the triangular grid used in our lattice gas model. There are
six links connecting each site to its neighbors. The sites of the channel are
labeled by full circles connected by the thick solid line. The wall separating the
two reservoirs is labeled by a thick solid line. The diameter of the wide and
narrow ends of the channel is given by D and d, respectively, and the length
of the channel is given by L.

Aj(n(r, 1)), includes 76 possible two-, three-, four-, and five-particle
collisions. We also include straightforward higher order collisions.
These collisions conserve mass 2;Ai(n(r, )) = 0 and momentum
2;¢iAj(n(r, 1)) = 0 and are described elsewhere (14).

The channel is introduced to the model by labeling certain
lattice sites and introducing different collision rules at these sites.
The choice of the asymmetric structure of the channel studied in
this work is shown in Fig. 1. The channel sites are labeled by black
circles connected by a thick solid line. The diameter of the wide
(D) and narrow (d) ends, and the length of the channel (L) are
also shown in Fig. 1. We use no-slip conditions at the boundaries
by forcing any particle colliding with the channel to return along
the link on which it approached the channel (27). We apply
similar collision rules between the fluid particles and the wall
separating the two reservoirs. The walls are labeled by the thick
solid line in Fig. 1.

We start from a random initial configuration of fluid on the
lattice with uniform density (unless otherwise noted),’ at each
reservoir. The propagation in time involves the following three
steps: (i) a collision step, (if) a travel step, and (iii) a channel
movement step arising from the external driving force, with a
period w. The details are as follows:

(1) At each time step particles at all sites collide according to
the rules specified above and in ref. 14. These include particle—
particle, particle—channel, and particle-wall collisions.

(1) After the collision step each particle travels in a straight
line along one of the lattice links (according to its velocity
vector), unless it is a rest particle, until it arrives to the next site.

(#ii) The channel movement step arising from the applied
external force is slightly more involved. First, we apply colli-
sion rules at the predicted new sites of the channel. Particles

The density p = 1/NoccZjnj is defined as the sum over the occupation numbers of the links
at each site (n) divided by the maximum occupation number at each site (Nocc).
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are not allowed to penetrate the channel through the walls or
move along the boundaries of the wall. An example for a
single collision of a particle moving along direction C; before
the collision, and along direction C'; after the collision
(G—C’}), with the upper wall moving to the right is given by:
{E—~E; SE—~E; SW—NE; W—E; NW—NE; NE—NE;
stationary—E}, where N, S, E, and W stand for north, south,
east, and west directions, respectively. If after the collision with
the walls of the channel a link is occupied with more than a single
particle, the excess particles are propagated along their new
direction. This procedure is repeated until all links with excess
particles are occupied by not more than a single particle. After
this step we move each channel site along a straight line in the
direction of the external force until it arrives to the next site,
preserving the structure of the channel.

Results and Discussion

To study the fluid dynamics through the channel we have
performed simulations based on the lattice gas approach de-
scribed above for different model parameters. The effects of
the dimensions of the channel (diameters d, D, and length L),
the frequency of the external driving force (w, defined as the
reciprocal time for one full cycle), and the density of the fluid on
the flow were studied in detail. We have used Ng.q = 500,000
lattice sites, unless otherwise stated, and imposed periodic
boundary condition at the grid edge perpendicular to the
channel axis. No-slip (reflection) boundary conditions were
imposed at the remaining edge, unless otherwise noted. Each
propagation step included a full cycle of the three steps described
in Model. The propagation was stopped after the system ap-
proached its steady-state solution.

In Fig. 2 we show a snapshot of the velocity field at each site
averaged over the initial 1,000 time steps. The frequency of the
external force is w = 0.1 (in units of reciprocal propagation
steps), the density of the fluid is p = 0.5, the diameters of the
narrow and wide ends are d = 5 and D = 11 lattice sites,
respectively, and the total length is L = 20 lattice sites. A net flow
of fluid through the channel from the narrow end to the wide
end, as indicated by the directions of the arrows, is clearly seen.
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Fig.2. Asnapshot, zoomed in the region of the channel, of the velocity field
at each site averaged over 1,000 time steps. The frequency of the external
force is @ = 0.1 (in units of reciprocal propagation steps), the density of the
fluid is p = 0.5, and the diameters of the narrow and wide ends are d = 5 and
D = 11 lattice sites, respectively. The arrows indicate the direction of the
velocity field at each site. The magnitude of the velocity is proportional to the
size of the arrow.
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Fig. 3. Plots of the average density in each reservoir versus time on a

semilogarithmicscale. The parameters are the same asin Fig. 2. Three different
initial conditions are considered: left (solid line), right (dashed line), and
uniform (dotted-dashed line) for an initial density in the left reservoir, an
initial density in the right reservoir, and a uniform initial density, respectively.
All three cases approach the same steady-state solution at long times. At
steady state, the density difference between the two reservoirs is nearly 100%
of the average density.

The direction of the flow can be traced to the fact that any
particle inside the channel placed near the boundary between
the narrow and wide ends can only be pushed by the channel in
the direction of the wide end. It is interesting to note that the
flow is more directional and the current is larger at the narrow
side of the channel. Similar behavior is expected for macroscopic
channels, where a narrow end is used to increase the current for
a given pressure gradient.

Typical kinetics of the time dependence of the average density in
each reservoir (p and p; for the left and right densities, respectively)
is shown in Fig. 3 on a semilogarithmic scale. The density, fre-
quency, and other parameters are identical to those of Fig. 2. The
buildup of density gradient follows exponential kinetics, with a
steady-state solution that is independent of the initial conditions. To
illustrate this we have used three different initial conditions that
result in the same steady-state solution. As can be seen in Fig. 3, the
final fluid density in each reservoir is the same in all three cases. We
have also studied the kinetics starting from the steady-state solution
and switched off the external oscillatory force (data not shown).
Typically, we find that the decay of the density to equilibrium is
faster than the buildup of density gradient in the presence of the
external driving force.

The fact that the density in each reservoir approaches a steady
state is a consequence of the finite size of the system, namely the
finite size of the two reservoirs. We find that steady-state
densities are independent of the dimensions of the reservoirs;
however, the rate of approach to steady state decreases as the
dimensions of the system increase. Therefore, a more meaning-
ful observable that is independent of the size of the reservoirs is
the average fluid flow through the channel, which can be
obtained from the short time dynamics of the density gradient.
The magnitude of the flow obtained this way is identical to the
flow (at steady state) for infinite reservoirs. (Note that for a
finite system the average flow approaches zero at long times.)

A 2D plot of the flow as a function of the density of the fluid
(p) and the frequency of the external oscillatory force (w) is
shown in Fig. 4. The diameters of the narrow and wide ends are
d =5 and D = 11 lattice sites, respectively, and the total length
is L = 20 lattice sites. The flow, J, is calculated fromJ = NoccNgia
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Fig. 4. A 2D plot of the flow versus fluid density (p) and frequency of the
external oscillatory driving force (w). Note the pronounced maximum of the
flow for a fixed density as a function of w. The dimensions of the channel are
the same as in Fig. 2

lim dAp/dt, where N,.. = 7 for the FHP-III model, and Ap =
pr — py is the average density difference between the two
reservoirs (namely, J < d(N; — N,)/dt). This definition of the flow
assures that J is independent of grid size. For a given fluid
density, a nonmonotonic behavior, with a well pronounced
global maximum, is observed for the average flow as a function
of w. At lower values of w the system has enough time to relax
back to the equilibrium state with equal densities at both sides
of the channel, so that the net flow is very small. At higher values
of w there is a separation of time scales between the motion of
the fluid and the channel. In this limit using a mean field
treatment, one finds that the flow through the channel is
sensitive to the average position of the channel. This leads to a
diminishing net current at higher values of w. In between these
limiting cases the flow is larger, giving rise to a maximum of flow
versus w. In addition, we find that the flow of the liquid through
the channel increases with increasing density for all values of w,
as can clearly be seen in Fig. 4.

We have also studied the effects of the dimensions of the
channel on the resulting flow and on the density of the fluid in
the reservoirs at steady state. The results for a set of simulations
of different channel dimensions are summarized in Tables 1 and
2. The particle density is p = 0.5, and the frequency of the
external driving force is w = 0.15 (in units of reciprocal
propagation steps). We observe a maximum value of flow when
we increase the width of the wide and narrow ends such that the
difference D — d = 6 is constant. This is a result of two

Table 1. Values of current (number of particles per time step)
and density difference at steady state for different channel
dimensions, d and D (in units of lattice sites)

d D J Ap

3 9 0.61 101%
5 11 3.30 110%
9 15 10.3 50.0%
17 23 18.6 14.8%
31 37 17.5 4.40%
61 67 8.20 1.00%

Note that D — d = 6 is constant. The particle density is p = 0.5, the frequency
of the external driving force is w = 0.15 (in units of reciprocal propagation
steps), and the length of the channel is L = 20.
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Table 2. Values of current (number of particles per time step) and
density difference at steady state for different channel length

L J Ap

20 3.30 110%
40 1.85 116%
60 1.17 113%

The particle density is p = 0.5, the frequency of the external driving force
is = 0.15 (in units of reciprocal propagation steps), and the width of the
channelis d = 5 and D = 11 lattice sites.

competing effects. On one hand, as the dimensions of the
channel increase the pressure gradient required for fluid flow
decreases (28). But at the same time, the efficiency of the pump
reduces with increasing dimensions, giving rise to a maximum of
flow at an intermediated channel width. Unlike the nonmono-
tonic behavior observed for the fluid flow, the difference in fluid
densities (Ap) at steady state decreases monotonically (within
the statistical noise) with the diameters of the channel.

We have also studied the effects of increasing the length of the
channel on the fluid current and on Ap at steady state. We find
that increasing the length of the channel always results in a
decrease in the fluid flow (see Table 2). We have tripled the
length of the channel from 20 to 60 lattice sites. Within this range
fluid current decreases linearly with the length of the channel.
On the other hand, increasing the size of the channel has a
negligible effect on the steady-state fluid densities at each
reservoir.

So far we have discussed the properties of our nanopump in
terms of its reduced lattice-gas dimensions. To make connec-
tions to a realistic system we have calculated the Reynolds
number for several simulation cases and used the definition of
this number to provide values for the relevant control parame-
ters. The Reynolds number, R., is given by

ud
R,=—, [2]
14

where u is the average fluid velocity in the pump region and is
proportional to u « Aw, where as before w is the frequency of the
external force and A is its amplitude. In the above equation, d is
the diameter of the pump and v is the kinematic viscosity of the
fluid. Thus, for a given fluid kinematic viscosity, and for a given
channel dimension, we can estimate the frequency of the driving
force, or vice versa.

For the FHP-III lattice gas model we have used the following
definitions to calculate the Reynolds number. The time averaged
velocity field is given by

Eé_ OCiN A(r)
u(r) = .

Ef) N(r) 7

i=0

[3]

where N;(r) is the mean occupation number calculated as a time
average of the occupation number #,(r, t) defined above. The
(scaled) kinematic viscosity is given by (29)

1 ! 1
28p(1—p)1—8p(1—p)/7 8
v = . [4]
ll —2p
121-p

The results for the Reynolds numbers for different simulation
conditions are summarized in Table 3. In these simulations we
have used periodic boundary conditions in both the longitudinal
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Table 3. Values of the average velocity within the pump (in
lattice-gas units) and the Reynolds number at steady state for
different channel dimensions, d and D (in units of lattice sites)
and densities p

) D d (w Re
0.05 11 5 0.027 0.11
0.05 23 17 0.045 0.63
0.05 37 31 0.032 0.82
0.25 11 5 0.018 0.30
0.25 23 17 0.099 5.57
0.25 37 31 0.070 7.20
0.45 11 5 0.009 0.06
0.45 23 17 0.141 3.34
0.45 37 31 0.087 3.73

The frequency of the external driving force is = 0.05 (in units of reciprocal
propagation steps), the length of the channel is L = 20 lattice sites, and the
oscillation amplitude is A = 5 lattice sites.

and transverse directions. The Reynolds number increases
monotonically with the dimensions of the channel. The values
obtained for the Reynolds number fall in intermediate range
(0.06—7.2) for the densities and channel dimensions studied.
These values correspond to a frequency of the external driving
force in the range of w ~ 0.5—50 GHz for liquid water (kinematic
viscosity v = 10~ %m?s~1), for pump diameter of d = 10 nm and
oscillation amplitude of 4 = 10 nm. Clearly, smaller pump
frequencies are required for smaller Reynolds numbers or larger
channel dimensions. We have also studied the effects of increas-
ing the amplitude of oscillation, 4. A sublinear increase of the
Reynolds number with 4 was observed, indicating that larger
amplitudes would also lead to lower frequencies of the driving
force. It is interesting to note that gigahertz oscillators based on
the motion of the inner shell of a multiwall carbon nanotube have
been discussed recently (30). This system maybe useful as a
building block for a nanometer-scale pump based on the con-
cepts introduced above.

Conclusions

A simple asymmetric geometry of a nanometer-scale channel
connecting two reservoirs of fluid, coupled to an external
periodic or stochastic driving force, can be used to pump material
on a nanometer-length scale. The rate of flow through the device
depends on the fluid density, the frequency and amplitude of the
external force, and the dimensions of the channel.

We have developed a simple coarse-grained lattice gas model
with FHP fluid dynamics that satisfy the Navier—Stokes equation to
study the dynamic flow of fluid through a nanometer channel. The
only well supported assumption made is that the fluid can wet the
inside of the channel. Using simulation techniques we have studied
the flow through the channel for different model parameters.

We showed that the flow is a nonmonotonic function of the
frequency of the external force (w) and the diameters of the
channel. At low and high values of w the fluid current through
the channel is very small, whereas in between these limiting cases
the flow is higher, giving rise to a maximum of flow at finite w.
Because of the competition between the pump efficiency and the
pressure gradient required to push the fluid through the channel,
a maximum in the current was also observed when the dimen-
sions of the channel were increased. On the other hand, a
monotonic behavior was observed for the fluid current with
respect to fluid density and length of the channel.
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discussions. O.H. thanks Prof. Israel Hod and Dr. Sergey Denysov for
stimulating discussions. This work was supported by the Israel Science
Foundation founded by the Isracl Academy of Sciences and Humanities.
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