
Magnetoresistance of nanoscale molecular devices based on Aharonov-Bohm interferometry

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys.: Condens. Matter 20 383201

(http://iopscience.iop.org/0953-8984/20/38/383201)

Download details:

IP Address: 132.64.1.37

The article was downloaded on 01/10/2008 at 17:27

Please note that terms and conditions apply.

The Table of Contents and more related content is available

HOME | SEARCH | PACS & MSC | JOURNALS | ABOUT | CONTACT US

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/0953-8984/20/38
http://iopscience.iop.org/0953-8984/20/38/383201/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/pacs
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 20 (2008) 383201 (32pp) doi:10.1088/0953-8984/20/38/383201

TOPICAL REVIEW

Magnetoresistance of nanoscale molecular
devices based on Aharonov–Bohm
interferometry
Oded Hod1, Roi Baer2 and Eran Rabani3

1 Department of Chemistry, Rice University, Houston, TX 77005-1892, USA
2 Institute of Chemistry, and the Fritz Haber Center for Molecular Dynamics, The Hebrew
University of Jerusalem, Jerusalem 91904, Israel
3 School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University,
Tel Aviv 69978, Israel

E-mail: oded.hod@rice.edu, roi.baer@huji.ac.il and rabani@tau.ac.il

Received 17 January 2008, in final form 11 July 2008
Published 27 August 2008
Online at stacks.iop.org/JPhysCM/20/383201

Abstract
Control of conductance in molecular junctions is of key importance in the growing field of
molecular electronics. The current in these junctions is often controlled by an electric gate
designed to shift conductance peaks into the low bias regime. Magnetic fields, on the other
hand, have rarely been used due to the small magnetic flux captured by molecular conductors
(an exception is the Kondo effect in single-molecule transistors). This is in contrast to a related
field, electronic transport through mesoscopic devices, where considerable activity with
magnetic fields has led to a rich description of transport. The scarcity of experimental activity is
due to the belief that significant magnetic response is obtained only when the magnetic flux is
of the order of the quantum flux, while attaining such a flux for molecular and nanoscale
devices requires unrealistic magnetic fields.

Here we review recent theoretical work regarding the essential physical requirements
necessary for the construction of nanometer-scale magnetoresistance devices based on an
Aharonov–Bohm molecular interferometer. We show that control of the conductance properties
using small fractions of a magnetic flux can be achieved by carefully adjusting the lifetime of
the conducting electrons through a pre-selected single state that is well separated from other
states due to quantum confinement effects. Using a simple analytical model and more elaborate
atomistic calculations we demonstrate that magnetic fields which give rise to a magnetic flux
comparable to 10−3 of the quantum flux can be used to switch a class of different molecular and
nanometer rings, ranging from quantum corrals, carbon nanotubes and even a molecular ring
composed of polyconjugated aromatic materials.

The unique characteristics of the magnetic field as a gate is further discussed and
demonstrated in two different directions. First, a three-terminal molecular router devices that
can function as a parallel logic gate, processing two logic operations simultaneously, is
presented. Second, the role of inelastic effects arising from electron–phonon couplings on the
magnetoresistance properties is analyzed. We show that a remarkable difference between
electric and magnetic gating is also revealed when inelastic effects become significant. The
inelastic broadening of response curves to electric gates is replaced by a narrowing of
magnetoconductance peaks, thereby enhancing the sensitivity of the device.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

In the past two decades molecular electronics has emerged as
one of the most active and intriguing research fields [1–23].
Scientifically, this field offers insights into fundamental issues
regarding the physics of low-dimensional and nanometer-scale
systems as well as their response to external perturbations
when embedded in complicated environments. From
a technological point of view, electronic functionality
at the molecular scale may revolutionize our current
conception of electronic devices and may lead to considerable
miniaturization of their dimensions [1, 13]. Interestingly, the
paradigm of molecular electronics was set by a theoretical
study long before the first experimental realization was
presented [24]. In their seminal work, Aviram and Ratner
suggested that a donor–bridge–acceptor type of molecule
could, in principle, act as a molecular rectifier. What designates
this study is the fact that for the first time a single molecule
was considered to act as an electronic component rather than
just being a charge transfer medium. Therefore, it could serve
as a potential building block for future nanoscale electronic
devices [6, 7, 13, 16, 22].

In recent years, a number of experimental techniques
have been developed for the synthesis and fabrication of
junctions that allow for the measurement of the electronic
transport through molecular-scale systems. These include
mechanically controllable break junctions [25–28], electro-
migration break junctions [29–32], electron beam lithogra-
phy [33, 34], feedback-controlled lithography [35], shadow

evaporation [36, 37], electrochemical deposition [38–40], mer-
cury droplet technologies [41–43], cross-wire tunnel junc-
tions [44], STM [45, 46] and conducting AFM [47] tip mea-
surements, and more [48–50]. In typical molecular electronics
experiments, a molecule (or a group of molecules) is trapped
within a gap between the electrodes while chemically or phys-
ically attaching to the conducting leads. Once the molecular
junction is obtained, a bias voltage is applied and the cur-
rent/voltage characteristics are recorded and analyzed. Certain
techniques can also utilize an electrical or chemical gate elec-
trode in order to control the response of the molecule to the
applied bias [51–58, 34, 59–68]. A simplified picture of the
effect of the gate voltage can be viewed as a shift in the energy
of the molecular states of the device with respect to the Fermi
energy of the conducting leads, allowing for fine tuning of the
conductance through pre-selected molecular energy states.

Unlike the common use of electrical gates as control
knobs for the transport characteristics of molecular junctions,
magnetic fields have rarely been used in conjunction with
molecular electronics. This is in contrast to a related
field, electronic transport through mesoscopic systems, where
considerable activity with magnetic fields has led to the
discovery of the quantum Hall effect [69] and to a rich
description of Aharonov–Bohm [70–87] magneto-transport
phenomena in such conductors [88–100].

The scarcity of experimental activity involving magnetic
fields in molecular electronic set-ups is due to the belief
that a significant magnetic response is obtained only when
the magnetic flux is of the order of the quantum flux,
φ0 = h/qe (qe being the electron charge and h Planck’s
constant) and attaining such a flux for molecular and
nanoscale devices requires unrealistically huge magnetic fields.
Nevertheless, several interesting experimental studies on the
effect of magnetic fields in nanoscale systems have been
published recently. The major part of these regard Zeeman
splitting of spin states in quantum dots [101] and in carbon
nanotubes [48, 102, 103], the Kondo effect measured for
mesoscale quantum dots [104, 105], fullerenes [106–109], and
single molecules [30, 34], and the quantum Hall effect in
graphene nanoribbons [110].

In this review we discuss recent theoretical work utilizing
magnetic fields as gates in molecular Aharonov–Bohm
interferometers [111–115]. We show how the combination of
electric and magnetic fields provide additional control over the
electrical current. The unique symmetry breaking nature of the
magnetic field allows for the design of novel logical devices
such as multi-terminal electron routers [113] which are not
feasible when electrical gating is applied alone. We also show
that, when inelastic scattering effects are taken into account, a
remarkable difference between electric and magnetic gating is
revealed [114]. The inelastic broadening of response curves to
electric gates is replaced by narrowing of magnetoconductance
peaks, thereby enhancing the sensitivity of the device.

This review starts with a brief introduction to the
Aharonov–Bohm (AB) effect and its feasibility in nanoscale
systems (section 2). The basic concepts are described in
section 3 for two- and three-terminal devices. The analysis
of these AB interferometers is based on adopting a simple
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continuum model. Next, in section 4 we described detailed
atomistic calculations motivated by the results of the simple
continuum approach. We illustrate that molecular AB
interferometers based on a variety of systems can be used as
switching devices at relatively low magnetic fields. We also
illustrate a parallel molecular logic gate based on a three-
terminal device. Finally, we describe the effect of inelastic
scattering on the behavior of the molecular AB interferometers
in section 5. Conclusions and a brief summary are given in
section 6.

2. Defining open questions

2.1. Aharonov–Bohm interferometry

In classical mechanics the force exerted on a charged particle
traversing a region in space which incorporates an electric
and/or a magnetic field is given by the Lorentz force law
F = q(E + v × B), where q is the charge of the particle, E
is the electric field, v is the particle’s velocity and B is the
magnetic field [116]. It can be seen that the electric field
operates on a particle whether static or not and contributes a
force parallel to its direction and proportional to its magnitude,
while the magnetic field operates only on moving particles and
contributes a force acting perpendicular to its direction and
to the direction of the particle’s movement. When solving
Newton’s equation of motion F = dP

dt , the resulting trajectories
for a classical charged particle entering a region of a uniform
magnetic field will thus be circular. One can define scalar and
vectorial potentials using the following definitions: E(r, t) =
−∇V − ∂A(r,t)

∂ t and B(r, t) = ∇ × A(r, t), respectively. When
defining the following Lagrangian L = 1

2 mv2−qV (r)+qv·A,
and deriving the canonical momentum using the relation Pi =
∂L
∂ ṙi

one can, in principle, solve the Euler–Lagrange or Hamilton
equations of motion. This procedure, even though easier to
solve for some physical problems, is absolutely equivalent to
solving Newton’s equations of motion and will produce the
exact same trajectories.

The influence of electric and magnetic fields on the
dynamics of quantum charged particles was investigated by
Aharonov and Bohm in a seminal work from 1959 [71],
revealing one of the fundamental differences between the
classical and the quantum description of nature. According
to Aharonov and Bohm, while in classical mechanics the
transition from using electric and magnetic fields to using
scalar and vectorial potentials is ‘cosmetic’ and may be
regarded as a mathematical pathway for solving equivalent
problems, in quantum mechanics the fundamental quantities
are the potentials themselves.

In order to demonstrate this principle consider a double-
slit experiment applied to electrons. The experimental set-
up consists of a source emitting coherent electrons which are
diffracted through two slits embedded in a screen. The electron
intensity is measured in a detector placed on the opposite side
of the screen. In the absence of a magnetic field the intensity
measured by the detector when placed directly opposite to
the source will be maximal due to the positive interference
between the two electron pathways which are of equal length.

Figure 1. An Aharonov–Bohm ring-shaped interferometer
connecting a coherent electron source and a detector.

When applying a point magnetic field perpendicular to the
interference plane, the interference intensity is altered. Unlike
the classical prediction, this change in the interference pattern
is expected even if the magnetic field is excluded from both
electron pathways. This can be traced back to the fact that,
even though the magnetic field is zero along these pathways,
the corresponding vector potential does not necessarily vanish
at these regions.

A more quantitative description of this phenomenon can
be obtained by considering an analogous model consisting of
a ring-shaped ballistic conductor forcing the bound electrons
to move in a circular motion connecting the source and the
detector as shown in figure 1. The Hamiltonian of the electrons
under the influence of electric and magnetic potentials is given
by

Ĥ = 1

2m

[
P̂ − qA(r̂)

]2 + V̂ (r̂). (1)

Field quantization is disregarded in the entire treatment and we
assume that the potentials are time-independent. In the above,
m is the mass of the particle, P̂ = −ih̄∇̂ is the canonical
momentum operator and h̄ is Planck’s constant divided by 2π .
In the absence of electrostatic interactions, the Hamiltonian
reduces to the free particle Hamiltonian with the appropriate

kinetic momentum operator ˜̂P = P̂ − qA(r̂).
In the set-up shown in figure 1 the wavefunction splits into

two distinct parts, one traveling through the upper arm and the
other through the lower arm of the ring. Since the magnetic
field is excluded from these paths (∇ × A = 0) and both are
simply connected in space, it is possible to write a solution to
the stationary Schrödinger equation with this Hamiltonian at
each path as follows:

�u/d = ei
∫

u/d (k− q
h̄ A)·dl

, (2)

where k is the wavevector of the charged particle and the
integration is taken along its pathway, with u/d standing for
the upper (up) and lower (down) pathways, respectively. Due
to the circular symmetry of the system, the spatial phase factors
accumulated along the upper or the lower branches of the ring
can be easily calculated in the following manner:

�k =
∫ 0

π

k · dl = πRk. (3)
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Here k is taken to be along the ring and k = |k| is the
wavenumber of the electron. When a uniform4 magnetic
field is applied perpendicular to the cross section of the ring,
B = (0, 0, Bz), the vector potential may be written as A =
− 1

2 r × B = 1
2 Bz(−y, x, 0) = RBz

2 (− sin(θ), cos(θ), 0). Thus,
the magnetic phase accumulated by the electron while traveling
from the source to the detector in a clockwise manner through
the upper path is given by

�u
m = −q

h̄

∫ 0

π

A · dl = π
φ

φ0
. (4)

Here, φ = Bz S is the magnetic flux threading the ring, φ0 = h
q

is the flux quantum and S = πR2 is the cross-sectional area
of the ring. For an electron traveling through the lower path in
a counterclockwise manner the magnetic phase has the same
magnitude with an opposite sign:

�l
m = −q

h̄

∫ 2π

π

A · dl = −π φ
φ0
. (5)

The electron intensity measured at the detector is
proportional to the square absolute value of the sum of the
upper and lower wavefunction contributions:

I ∝ ∣∣�u +�d
∣∣2 =

∣∣∣∣e
iπ
(

Rk+ φ

φ0

)
+ e

iπ
(

Rk− φ

φ0

)∣∣∣∣
2

= 2

[
1 + cos

(
2π

φ

φ0

)]
. (6)

The intensity measured at the detector is, therefore, a periodic
function of the magnetic flux threading the ring’s cross section.
As mentioned before, this general and important result holds
also when the magnetic field is not applied uniformly and
measurable intensity changes may be observed at the detector
even if the applied magnetic field is excluded from the
circumference of the ring to which the electrons are bound.

2.2. Length scales

The model described above presents an idealized system for
which the charge carrying particles travel from the source to
the detector without losing either momentum or phase. When
considering the issue of measuring the AB effect in a realistic
system, a delicate balance between three important length
scales is needed: (a) the Fermi wavelength, (b) the mean free
path and (c) the coherence length scale. In what follows, we
shall give a brief description of each of these length scales and
their importance for transport.

4 The calculation given here assumes a uniform magnetic field even though
it was claimed that equation (2) holds only in regions in space where B = 0.
Nevertheless, due to the fact that the electrons are confined to move on the one-
dimensional ring, there is no essential difference between the case of a singular
magnetic field and a homogeneous magnetic field. Therefore, the usage of the
phases calculated here in equation (6) is valid. Furthermore, it should be noted
that, due to Stokes’ law, the line integration of A over a closed loop will always
give the magnetic flux threading the ring whether the field is uniform, singular
or of any other form.

2.2.1. Fermi wavelength. As in the optical double-
slit experiment, the wavelength of the conducting electrons
determines the interference intensity measured at the detector.
At low temperatures and bias voltages the net current is carried
by electrons in the vicinity of the Fermi energy and thus
by controlling their wavelength one can determine whether
positive or negative interference will be measured at the
detector in the absence of a magnetic field.

In order to achieve positive interference, an integer
number of Fermi wavelengths should fit into half the
circumference of the ring [117, 115] (figure 1): L = nλF.
Here, n is an integer, L = πR is half of the circumference
of the ring and λF is the Fermi electron’s wavelength given by
the well-known de Broglie relation λF = h

PF
= 2π

kF
, where PF is

the momentum of the Fermi electrons and kF is the associated
wavenumber. For such a condition to be experimentally
accessible, the Fermi wavelength should be approximately
of the order of magnitude of the device dimensions. Too
short wavelengths will give rise to extreme sensitivity of the
interference pattern on the Fermi wavenumber, while too long
wavelengths will show very low sensitivity. We shall return to
the importance of controlling the wavelength of the conducting
electrons in realistic systems measurements in sections 3.1
and 4.5.

2.2.2. Momentum relaxation length—static scatterers. An
electron traveling in a perfect crystal can be viewed as a free
particle with a renormalized mass [118]. This mass, which
is usually referred to as the effective mass of the electrons in
the crystal, incorporates the net effect of the periodic nuclei
array on the conducting electrons. When impurities or defects
exist in the crystalline structure the electrons may scatter
on them. Such scattering implies a random change in the
electron’s momentum and thus destroys the ballistic nature of
the conductance [119, 120]. The mean free path for momentum
relaxation, Lm, is the average distance an electron travels
before its momentum is randomized due to a collision with
an impurity. It is typically connected to the momentum of
the conducting electrons (h̄kF), their effective mass m∗ and the
collision time (τ , which is connected to the imaginary part of
the self-energy of the quasiparticle): Lm = h̄kF

m∗ τ .
If the scattering taking place at the impurities sites

is elastic, such that the energy of the electron and the
magnitude of its momentum are conserved and only the
direction of the momentum is randomized, then for a given
trajectory a stationary interference pattern will be observed.
However, different electron trajectories will give rise to
different interference intensities and the overall interference
pattern will not be stationary and thus will be averaged to
zero [119].

2.2.3. Phase relaxation length—fluctuating scatterers.
Inelastic scattering may occur when the impurities have
internal degrees of freedom, which may exchange energy
with the scattered electrons. Such scattering events alter
the phase of the conducting electron. AB interferometry
requires that a constant phase difference exists between the
trajectories of electrons moving in the upper and the lower
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arms of the interferometer ring. Thus, for stationary inelastic
scatterers which shift the phase of the electrons in a persistent
manner, a constant interference pattern will be measured at the
detector. Although the intensity at zero magnetic field will not
necessarily be at its maximal value, AB oscillations will be
observed [119]. When the scatterers are not stationary, and
the phase shifts they induce are not correlated between the two
arms of the ring, the coherent nature of the conductance is
destroyed and the AB interference pattern is diminished [119].
A length scale, Lφ , is assigned to this process and its
physical meaning is that length electrons travel before they lose
their phase. Apart from impurities, inelastic scattering may
occur due to electron–phonon processes and electron–electron
interactions. The latter conserve the total energy but allow
energy exchange and thus phase randomization.

2.2.4. Regimes of transport. There are several different
regimes for transport, depending on the values of the above
length scales. If we denote the length of molecular device by
L, then the ballistic regime is achieved when L � Lm, Lφ .
When Lm � L � Lφ the transport is diffusive and is
reduced relative to the ballistic regime. Localization occurs
when Lm � Lφ � L and when the device is larger than both
Lm and Lφ the system is considered to be classical with ohmic
resistance.

2.3. Open questions

The design of a realistic AB interferometer requires a careful
consideration of the typical length scales of the conducting
electrons. In order to measure a significant AB periodicity
it is necessary to reduce the dimensions of the interferometer
below the momentum and phase relaxation lengths, and make
it comparable to the de Broglie wavelength.

As an example, consider a ring made of GaAs/AlGaAs-
based two-dimensional electron gas. The typical de Broglie
wavelength is of the order of ∼30 nm, the mean free
path (momentum relaxation length scale) is three orders of
magnitude larger (∼30 μm) and the phase relaxation length is
∼1 μm [119]. Thus, one can expect to observe AB oscillations
in the conductivity in loops with dimensions that are smaller
than ≈1 μm with an AB period in the range of millitesla:

h
qπ R2 ≈ 1 × 10−3 T [117].

For molecular rings these scales are quite different. The
typical de Broglie wavelength is of the order of several
chemical bonds (sub-nanometer) [111], while the mean free
path of electrons and phase relaxation length are considerably
larger than the dimensions of the ring. Thus, molecular
AB interferometers at the nanometer scale are expected to
show many AB oscillations, as long as the temperature is
low enough so that inelastic effects arising from electron–
phonon couplings are suppressed. However, in addition to the
engineering challenge of fabricating such small and accurate
devices, another substantial physical limitation becomes a
major obstacle. When considering a nanometer-sized AB loop
the period of the magnetic interference oscillations increases
considerably and becomes comparable to h

qπ R2 ≈ 1 × 103 T.
Magnetic fields of these orders of magnitude are, by far, not

accessible experimentally and thus AB interferometry is not
expected to be measured for systems of small dimensions, at
the nanometer scale.

In view of the above, several open questions arise:

(i) Can nanometric electronic devices based on an AB
interferometer be made despite the large magnetic field
required to complete a full AB period?

(ii) If such devices can be made, what are their physical
properties? At what range of parameters (temperature,
contact coupling, dimensions, etc) will they be able to
operate?

(iii) What are the advantages/disadvantages of such magneti-
cally gated devices over conventional electric gating?

In the remainder of this review we attempt to provide
answers to the above problems. Despite the fact that the
treatment described herein is theoretical, we believe that future
technology will enable the development of realistic devices
based on the concepts present below.

3. Basic concepts

In this section we describe the basic concepts of Aharonov–
Bohm interferometry at the nanometer molecular scale. We
consider two- and three-terminal devices. Transport is
modeled within a simple continuum model that has been
considered in mesoscopic physics for a two-terminal device
only [89, 121, 90–92, 95, 122, 119, 123]. An exact solution for
the conduction in both cases and analysis of the role of different
model parameters is described. The two-terminal device is
used to establish the necessary condition for switching a
molecular Aharonov–Bohm interferometer at reasonably small
magnetic fields, while the three-terminal device is used to
demonstrate one of the advantages of magnetic gating in
molecular AB interferometers.

3.1. Two-terminal devices

Consider a simple continuum model of an AB interferometer
[89, 121, 90–92, 95, 122, 119, 123, 124]. The model consists of
a one-dimensional (1D) single-mode conducting ring coupled
to two 1D single-mode conducting leads as depicted in figure 2.
The transport is considered to be ballistic along the conducting
lines. Elastic scattering occurs at the two junctions only. Even
though this model disregards the detailed electronic structure
of the molecular device and neglects important effects, such as
electron–electron interactions and electron–phonon coupling,
it succeeds in capturing the important physical features needed
to control the profile of the AB period.

The main feature differing the current arrangement from
the one shown in figure 1 is that an ‘outgoing’ lead replaces the
absorbing detector. Hence, the interference intensity measured
at the detector is replaced by a measurement of the conductance
between the two leads through the ring. Although it might
seem insignificant, this difference is actually the heart of the
approach developed to control the shape of the AB period.
In the original setting, an electron arriving at the detector is
immediately absorbed and therefore the intensity measured is

5
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Figure 2. An illustration of a 1D coherent transport continuum
model of an AB interferometer.

the outcome of the interference of the two distinct pathways
the electron can travel. For the set-up considered in figure 2
an electron approaching each of the junctions can be either
transmitted into the corresponding lead or be reflected back
into one of the arms of the ring. Consequently, the conductance
through the device is a result of the interference of an infinite
series of pathways resulting from multiple scattering events of
the electron at the junctions. It is obvious that the behavior
predicted by equation (6) has to be modified to account for the
interference between all pathways.

A scattering matrix approach [121, 92, 122, 119,
123, 125, 126] can now be used in order to give a quantitative
description of the present model. Within this approach one
labels each part of the wavefunction on every conducting
wire with a different amplitude which designates its traveling
direction. Here, we use the following notation (as can be
seen in the left panel of figure 3): L1 designates the right-
going amplitude of the wavefunction on the left lead while L2

is the left-going amplitude on the same lead. Similarly, R1

and R2 stand for the right-and left-going wave amplitudes on
the right lead, respectively. For the upper arm of the ring U1

and U2 represent the clockwise and counterclockwise traveling
amplitudes, respectively, whereas D2 and D1 are the clockwise
and counterclockwise traveling amplitudes on the lower arm.

Each junction is also assigned with appropriate scattering
amplitudes. In what follows we assume that the junctions
are identical and are characterized by scattering amplitudes
as shown in the right panel of figure 3. a is the probability
amplitude for an electron approaching the junction from one
of the arms of the ring to be reflected back into the same arm,

b is the probability amplitude to be transmitted from one arm
of the ring to the other upon scattering at the junction and c
is the probability amplitude for an electron approaching the
junction from the lead to be reflected back into the lead.

√
ε is

the probability amplitude to be transmitted to (or out of) either
arms of the ring.

For each junction it is now possible to formulate
a scattering matrix equation relating the outgoing wave
amplitudes to the incoming wave amplitudes. For the left
junction one gets

( L2

U1

D1

)
=
( c

√
ε

√
ε√

ε a b√
ε b a

)( L1

U2ei�1

D2ei�2

)
. (7)

Here �1 = �k −�m is the phase accumulated by an electron
traveling from the right junction to the left junction through the
upper arm of the ring, and�2 = �k +�m is the corresponding
phase accumulated along the lower arm of the ring. �k and
�m ≡ �u

m are defined in equations (3) and (4), respectively.
An analogous equation can be written down for the right
junction:

( R1

U2

D2

)
=
( c

√
ε

√
ε√

ε a b√
ε b a

)( R2

U1ei�2

D1ei�1

)
. (8)

In order to ensure current conservation during each scattering
event at the junctions one has to enforce the scattering matrix
to be unitary. This condition produces the following relations
between the junction scattering amplitudes: a = 1

2 (1 − c),
b = − 1

2 (1 + c) and c = √
1 − 2ε. It can be seen that the

entire effect of the elastic scattering occurring at the junctions
can be represented by a single parameter ε—the junction
transmittance probability.

Solving these equations and setting the right incoming
wave amplitude R2 equal to zero, one gets a relation between
the outgoing wave amplitude R1 and the incoming wave
amplitude L1. Using this relation it is possible to calculate
the transmittance probability through the ring which is given
by [127, 111, 115]

T =
∣∣∣∣

R1

L1

∣∣∣∣
2

= A[1 + cos(2φm)]
1 + P cos(2φm)+ Q cos2(2φm)

, (9)

c

ε

a

b

Figure 3. An illustration of the amplitudes of the different parts of the wavefunction (left panel) and the junction scattering amplitudes (right
panel) in the 1D continuum model.
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where the coefficients are functions of the spatial phase and the
junction transmittance probability, and are given by [111]

A = 16ε2[1 − cos(2�k)]
R

P = 2(c − 1)2(c + 1)2 − 4(c2 + 1)(c + 1)2 cos(2�k)

R

Q = (c + 1)4

R

R = (c − 1)4 + 4c4 + 4 − 4(c2 + 1)(c − 1)2 cos(2�k)

+ 8c2 cos(4�k).

(10)

The numerator of equation (9) resembles the result obtained
for the interference of two distinct electron pathways (given by
equation (6)). The correction for the case where the electrons
are not absorbed at the detector is given by the denominator
expression. An alternative approach to obtain the result given
by equation (9) is based on a summation of all the paths of
the electron entering the ring and completing n + 1

2 loops
before exiting, where n is the winding number. For n = 0 one
recovers the simplified result of equation (6). The contribution
of all higher-order terms (n > 0) is given by the denominator
of equation (9).

From equations (9) and (10) it can be seen that two
important independent parameters control the shape of the
magneto-transmittance spectrum: the junction transmittance
probability ε and the conducting electron wavenumber k
appearing in the spatial phase �k = πRk. In figure 4
we present the transmittance probability (T ) through the ring
as a function of the normalized magnetic flux threading it,
for a given value of the spatial phase and several junction
transmittance probabilities.

It can be seen that, for high values of the junction
transmittance probability, the magneto-transmittance behavior
is similar to that predicted by equation (6), i.e. a cosine
function. As ε is reduced from its maximal value of 1

2 the width
of the transmittance peaks is narrowed. At large values of ε
the lifetime of the electron on the ring is short and therefore
the energy levels characterizing the ring are significantly
broadened. Short lifetime also means that the electron traveling
through the ring completes only very few cycles around it.
In a path integral language, this implies that the interference
pattern is governed by paths with low winding numbers. The
application of a magnetic field will change the position of these
energy levels: however, they will stay in partial resonance
with the energy of the incoming electrons for a wide range of
magnetic fields. Mathematically, the transmission through the
ring when the electron exits the ring after it passes only along
one of the arms can be reduced to the case where the detector
is placed at the exit channel, and thus one would expect a
cosine function describing the transmission as a function of
magnetic field. When reducing the coupling (low values of ε)
the doubly degenerate energy levels of the ring sharpen. If one
assumes that at zero magnetic flux two such energy levels are
in resonance with the incoming electrons, then upon applying
a finite magnetic field the degeneracy is removed such that one
level has its energy raised and the other lowered. This splitting

Figure 4. AB transmittance probability, calculated using
equations (9) and (10), as a function of the magnetic flux for different
junction transmittance probabilities and k R = 1

2 . For high values of
ε (dashed–dotted line) the transmittance probability is similar to that
predicted by equation (6). As ε is decreased the transmittance peaks
narrow (dashed line). For very small values of ε the peaks become
extremely narrow (solid line).

causes both sharp energy levels to shift out of resonance and
thus reduces the transmittance probability through the ring
dramatically. This, however, is not the case shown in figure 4,
where the narrow transmittance peaks are located around the
center of the AB period. Therefore, one needs to find a way
to shift the transmittance resonances towards the low magnetic
field region.

To gain such control we realize that the situation described
above for the low coupling regime is, in fact, resonant
tunneling occurring through the slightly broadened (due to
the coupling to the leads) energy levels of a particle on
a ring. Here, the free particle time-independent scattering
wavefunction on the wires, ψk(z) = eikz , has the same form of
the wavefunction of a particle on a ring ψm(θ) = eimθ where
m = 0,±1,±2, . . .. Upon mounting the ring, the electron’s
wavenumber, km , is quantized according to the following
relation: Rkm = m. The value of m for which resonant
tunneling takes place is determined by the condition that the
kinetic energy of the free electron on the wire equals a sharp
energy eigenvalue of the ring [117, 128]:

h̄2k2

2m�
= h̄2(m − φ

φ0
)2

2m�R2
. (11)

In order to achieve resonance one has to require that
k = (m − φ

φ0
)/R. A slight change in the magnetic flux

disrupts this resonance condition and reduces the transmittance
considerably. For different values of the wavenumber on the
leads the resonance condition in equation (11) will be obtained
at different values of the magnetic flux.

This effect is depicted in figure 5 where the transmittance
probability is plotted against the normalized magnetic flux
threading the ring, for a given value of ε and several spatial
phase factors. Changing the spatial phase results in a shift of
the location of the transmittance peaks along the AB period.
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Figure 5. AB transmittance probability as a function of the magnetic
flux for different spatial phases and ε = 0.25. By changing the value
of k R from ∼n (dashed–dotted line) to ∼n + 1

2 (solid line), where n
is an integer, it is possible to shift the transmittance peaks from the
center of the AB period to its edges.

This is analogous to the change in the position of the intensity
peaks of the interference pattern observed in the optical double-
slit experiment when varying the wavelength of the photons.
For k R values of ∼0, 1, 2, . . ., the peaks are located near the
center of the AB period, while for values of ∼ 1

2 , 1 1
2 , 2 1

2 , . . .

the peaks are shifted toward the period’s lower and higher
edges. In a realistic system such control can be achieved
by the application of an electric gate field that serves to
accelerate (or decelerate) the electron as it mounts the ring.
The gate potential, Vg, thus modifies the resonance condition
of equation (11) to

h̄2k2

2m�
= h̄2(m − φ

φ0
)2

2m�R2
+ Vg. (12)

Equation (12) implies that a change in the gate potential
influences the magnetic flux at which resonance is attained.
Therefore, the transmittance resonance’s position along the AB
period can be varied as shown in figure 5.

Considering the original goal of measuring a significant
magnetoresistance effect in nanometer scale AB interferome-
ters, it is clearly evident that, even though the full AB period
is out of experimental reach, a delicate combination of an ap-
propriate wavenumber of the conducting electrons and weak
leads–ring coupling (so-called ‘bad contact’) enables us to shift
the transmittance peak toward the low magnetic fields regime
while at the same time dramatically increasing the sensitivity to
the external magnetic field. The combined effect is discussed
in figure 6, where magnetic switching for a 1 nm radius ring is
obtained at a magnetic field of ∼1 T while the full AB period
(see the inset of the figure) is achieved at magnetic fields orders
of magnitude larger.

This result resembles the change in the interference in-
tensity measured by the optical Mach–Zehnder interferome-
ter [129, 130] upon altering the phase of the photons on one
of the interferometric paths. The plausibility of applying these

Figure 6. Low field magnetoresistance switching of a 1 nm ring
weakly coupled to two conducting wires as calculated using the
continuum model. The parameters chosen in this calculation are:
ε = 0.005 and k R ≈ 1. Inset showing the full AB period of
≈1300 T.

principles to realistic molecular systems is the subject of sec-
tion 4. But first, an important question, which considers the
uniqueness of using magnetic fields, has to be answered.

3.2. Three-terminal devices

A legitimate question that may be raised at this point is: why
use magnetic fields to switch the conductance? Switching
devices based on other external perturbations, such as field
effect transistors (FETs), already exist and operate even at the
molecular scale [51, 131, 52, 132, 55, 34, 59, 133, 60–68].

One simple answer is that magnetic fields can provide an
additional control and perhaps for certain cases will enable
control at small length scales where electrical fields are
extremely hard to manipulate. However, as will become clear
below, there are two additional motivations to employ magnetic
fields as gates. One will be discussed shortly and the other
involves inelastic effects which are described at the end of this
review.

Consider an extension of the two-terminal continuum
model described in section 3.1 to the case of three terminals.
In a mesoscopic system or in the absence of magnetic
fields, such devices have been considered by several groups
(see [134–144]). An illustration of the three-terminal set-up
is given in figure 7. The scattering matrix approach may be
used in a similar manner to that described for the two-terminal
set-up. An illustration of the three-terminal set-up parameters
designation is given in figure 8. We denote (panel (a)) by α, β
and γ = 2π − α − β the angles between the three conducting
leads. Similar to the two-terminal model, we label the wave
amplitudes on each ballistic conductor of the system as shown
in panel (b) of figure 8.

The scattering amplitudes characterizing the junctions
are given in figure 3 and obey the scattering matrix unitary
condition: c = √

1 − 2ε, a = 1
2 (1 − c) and b = − 1

2 (1 + c).
For simplicity, in what follows we assume that all the junctions

8
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Figure 7. An illustration of a 1D coherent transport continuum
model of a three-terminal AB interferometer.

are identical. This assumption can be easily corrected to the
case of non-identical junctions.

Using these notations it is again possible to write
scattering matrix relations between the incoming and outgoing
wave amplitudes at each junction:

( L2

U1

D1

)
=
( c

√
ε

√
ε√

ε a b√
ε b a

)⎛
⎝

L1

U2ei�α1

D2ei�β2

⎞
⎠

( R1

M1

U2

)
=
( c

√
ε

√
ε√

ε a b√
ε b a

)( R2

M2ei�γ1

U1ei�α2

)

( I1

D2

M2

)
=
( c

√
ε

√
ε√

ε a b√
ε b a

)⎛
⎝

I2

D1ei�β1

M1ei�γ2

⎞
⎠ .

(13)

Here ��=α,β,γ
1 = �Rk −�

φ

φ0
and ��=α,β,γ

2 = �Rk +�
φ

φ0
.

Eliminating the equations for the wave amplitudes on the
ring (U1,2, D1,2,M1,2), similar to the two-terminal continuum
model treatment, and plugging the solution into the equations
for the outgoing amplitudes, I1 and R1, one finds a relation

between the incoming amplitude on the left lead L1 and both
outgoing amplitudes. The probability to transmit through
the upper (lower) outgoing lead is given by T u = | R1

L1
|2

(T l = | I1
L1

|2). The exact expressions for these transmittance
probabilities, even when setting the incoming wave amplitudes
R2 and I2 to zero, are somewhat tedious to obtain [145]. Thus,
we provide the final results for completeness.

The denominator of the transmittance probability for both
output channels is given by the following expression:

Tdenominator = 1
16 (c

2 + 1)(19 − 12c + 2c2 − 12c3 + 19c4)

+ 32c3 cos(4πkr)+ 2(c − 1)4c{cos[4πkr(1 − 2α)]
+ cos[4πkr(1 − 2β)] + cos[4πkr(1 − 2γ )]}
− 8(c − 1)2c(c2 + 1){cos[4πkr(α − 1)]
+ cos[4πkr(β − 1)] + cos[4πkr(γ − 1)]}
− 4(c − 1)2(2 − c + 2c2 − c3 + 2c4)[cos(4πkrα)

+ cos(4πkrβ)+ cos(4πkrγ )]
+ 2(c − 1)4(c2 + 1){cos[4πkr(α − β)]
+ cos[4πkr(α − γ )] + cos[4πkr(β − γ )]}
− 0.125(c + 1)4 × {−4[1 + c(c − 1)] cos(2πkr)

+ (c − 1)2[cos[2πkr(1 − 2α)] + cos[2πkr(1 − 2β)]
+ cos[2πkr(1 − 2γ )]]} cos

(
2π

φ

φ0

)

+ 1

16
(c + 1)6 cos2

(
2π

φ

φ0

)
. (14)

The numerator of the transmittance probability through the
upper output channel is given by

T u
numerator = − 1

2ε
2

{
−4(1 + c2)+ 2(c − 1)2 cos(4πkrα)

+ (c + 1)2 cos(4πkrβ)+ 2(c − 1)2 cos(4πkrγ )

+ 4c cos[4πkr(α+γ )] − (c−1)2 cos[4πkr(α−γ )]

− 2c(c + 1) cos

[
2π

(
φ

φ0
− kr

)]

− 2(c + 1) cos

[
2π

(
φ

φ0
+ kr

)]

(a) (b)

Figure 8. Parameter designations in the three-terminal continuum model. Panel (a): the angular separations between the three terminals.
Panel (b): the amplitudes of different parts of the wavefunction.
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Figure 9. The transmittance of a three-terminal device as a function of the magnetic flux and the wavenumber of the conducting electron as
calculated using the continuum model. Left panel: high coupling (ε = 0.495), right panel: low coupling (ε = 0.095). Color code: deep
blue—no transmittance (T = 0), deep red—full transmittance (T = 1).

− (c2 − 1) cos

[
2π

(
φ

φ0
+ (1 − 2α)kr

)]

+ (c2 − 1) cos

[
2π

(
φ

φ0
− (1 − 2α)kr

)]

+ 2(c + 1) cos

[
2π

(
φ

φ0
+ (1 − 2β)kr

)]

+ 2c(c + 1) cos

[
2π

(
φ

φ0
− (1 − 2β)kr

)]

− (c2 − 1) cos

[
2π

(
φ

φ0
+ (1 − 2γ )kr

)]

+ (c2 − 1) cos

[
2π

(
φ

φ0
− (1 − 2γ )kr

)]}
. (15)

The numerator of the transmittance probability through the
lower output channel is given by

T l
numerator = − 1

2ε
2

{
−4(1 + c2)+ (c + 1)2 cos(4πkrα)

+ 2(c − 1)2 cos(4πkrβ)+ 2(c − 1)2 cos(4πkrγ )

+ 4c cos[4πkr(β+γ )] − (c−1)2 cos[4πkr(β−γ )]

− 2c(c + 1) cos

[
2π

(
φ

φ0
+ kr

)]

− 2(c + 1) cos

[
2π

(
φ

φ0
− kr

)]

+ 2c(c + 1) cos

[
2π

(
φ

φ0
+ (1 − 2α)kr

)]

+ 2(c + 1) cos

[
2π

(
φ

φ0
− (1 − 2α)kr

)]

+ (c2 − 1) cos

[
2π

(
φ

φ0
+ (1 − 2β)kr

)]

− (c2 − 1) cos

[
2π

(
φ

φ0
− (1 − 2β)kr

)]

+ (c2 − 1) cos

[
2π

(
φ

φ0
+ (1 − 2γ )kr

)]

− (c2 − 1) cos

[
2π

(
φ

φ0
− (1 − 2γ )kr

)]}
. (16)

The back-scattering probability is the complementary part of
the sum of the transmittance probability through both the upper
and lower leads.

The resulting transmittance probability through one of the
outgoing leads, for the symmetric case where α = β =
γ = 2π

3 , is presented in figure 9 as a function of the
magnetic flux threading the ring and the wavenumber of the
conducting electron. In the high coupling limit (left panel
of figure 9) the system is characterized by a wide range
of high transmittance which can be shifted along the AB
period by changing the electron’s wavenumber. Magnetic
switching of the transmittance at a given wavenumber value
for this coupling regime requires high magnetic fields, since
the transmittance peaks are quite broad.

As the coupling is decreased from its maximal value of
ε = 1

2 to very low values (right panel of figure 9), a resonant
tunneling junction is formed and the transmittance probability
becomes very sensitive to the magnetic flux. Similar to the two-
terminal case, this is translated into sharper peaks that develop
in the magneto-transmittance curve. For the parameters shown
in the right panel of figure 9 there is negligible transmittance
for all values of k at zero magnetic field. Note that the position
of the first maximum in the transmittance depends linearly on
the value of φ and k. Fine tuning the wavenumber to a value
that satisfies k R = 1

2 results in the appearance of the sharp
transmittance peak at finite, relatively low, magnetic flux and
thus allows the switching of the device at feasible magnetic
fields.

A careful examination of the transmittance probability
spectrum for k R = 1

2 at the low magnetic flux regime reveals
that the appearance of the transmittance peak is sensitive to
the polarity of the magnetic flux. While at a positive magnetic
flux a pronounced peak is observed, at the negative magnetic
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flux counterpart this peak is absent. This magnetic rectification
phenomena is, allegedly, in contrast to the Onsager symmetry
relation [146–148, 127], obeyed in the two-terminal case which
states that g(φ) = g(−φ) where g is the conductance.

This contradiction is resolved by considering the
transmittance probability through the other output channel,
which can be obtained by applying a reflection transformation
with respect to a plain passing through the incoming lead and
perpendicular to the cross section of the ring. The Hamiltonian
of the system is invariant to such a transformation only if
accompanied by a reversal of the direction of the magnetic
field. It follows that the transmittance probability through one
outgoing lead is the mirror image of the transmittance through
the other. Thus, one finds that for the second output channel
(not shown) the peak is observed at a negative magnetic flux
rather than at a positive one. Onsager’s condition is, therefore,
regained for the sum of the transmittance probabilities through
both output channels.

The above analysis implies that at zero magnetic field both
output channels are closed and the electron is totally reflected.
The application of a relatively small positive magnetic field
opens only one output channel and forces the electrons to
transverse the ring through this channel alone. Reversing the
polarity of the magnetic field causes the output channels to
interchange roles and forces the electrons to pass through the
ring via the other lead.

To summarize this section, magnetic fields offer unique
controllability over the conductance of nanometer-scale
interferometers. For example, their polarity can be used to
selectively switch different conducting channels. While non-
uniform scalar potentials have been used in mesoscopic physics
to obtain a similar effect [149], such control cannot be obtained
via the application of uniform scalar potentials, which are
commonly used to control molecular-scale devices. This is
due to the fact that such scalar potentials lack the symmetry
breaking nature of magnetic vector potentials.

4. Atomistic calculations

The models presented in section 3 are based on a simplified
description where the AB interferometers were modeled
within a continuum approach. In order to capture the
more complex nature of the electronic structure of realistic
nanoscale AB interferometers we consider a model which
was developed for the calculation of magnetoconductance
through molecular set-ups [112]. The approach is based on
an extension of a tight binding extended Hückel approach
which incorporates the influence of external magnetic fields.
This approach is combined with a nonequilibrium Green’s
function (NEGF) [150, 151] formalism to calculate the
conduction [152, 119, 153–155]. In the case of pure
elastic scattering, this reduces to the Landauer formalism,
which relates the conductance to the transmittance probability
through the system [153]. The resulting magnetoconductance
spectrum can then be studied for different molecular set-ups
and conditions, as described below.

4.1. Conductance

We are interested in calculating the conductance through a
molecular device coupled to two macroscopic conducting
leads in the presence of an external magnetic field. For
completeness, we provide the details of the approach adopted
for the present study. For more details on the theory of
molecular conduction, see [119, 5, 8, 12, 156].

The starting point is the current formula obtained within
the NEGF framework [153]:

IL(R) = 2e

h̄

∫
dE

2π
Tr
[
�<

L(R)(E)G
>
d (E)−�>

L(R)G
<
d (E)

]
.

(17)
Here IL(R) is the net current measured at the left (right)
molecule–lead junction, G<

d (E) and G>
d (E) are the lesser and

greater device Green’s functions, respectively, and �<
L(R) and

�>
L(R) are the left (right) lesser and greater self-energy terms,

respectively. The first term in the trace in equation (17) can
be identified with the rate of in-scattering of electrons into
the device from the left (right) lead. Similarly, the second
term represents the out-scattering rate of electrons into the
left (right) lead. The difference between these two terms
gives the net, energy-dependent, flow rate of electrons through
the device. When integrated over the energy and multiplied
by twice (to account for spin states) the electron’s charge,
this results in the net current flowing through the left (right)
junction. It can be shown [157] that IL = −IR in analogy to
Kirchhoff’s law, and therefore equation (17) represents the full
current through the device.

The lesser and greater GFs appearing in equation (17)
are related to the retarded (Gr(E)) and advanced (Ga(E))
GFs, which will be discussed later, through the Keldysh
equation [150]:

G<
d (E) = Gr

d(E)�
<(E)Ga

d(E)

G>
d (E) = Gr

d(E)�
>(E)Ga

d(E),
(18)

We now limit our discussion to the pure elastic case within
a single-electron picture, where, as pointed out above, the
NEGF approach reduces to the Landauer formalism [153].
We retain the description within the NEGF to provide a
complete description needed below when inelastic effects will
be considered. In the pure elastic scattering case one assumes
that the lesser (greater) self-energies have contributions arising
from the coupling to the left and right leads only:

�< = �<
L + �<

R

�> = �>
L +�>

R .
(19)

Furthermore, the lesser and greater self-energy terms in
equations (17) and (19) are related to the retarded (�r

L(R)(E))
and advanced (�a

L(R)(E)) self-energies, which will also be
discussed later, in the following manner:

�<
L(R)(E) = − fL(R)(E, μL(R))

[
�r

L(R)(E)−�a
L(R)(E)

]

�>
L(R)(E) = [

1 − fL(R)(E, μL(R))
] [
�r

L(R)(E)−�a
L(R)(E)

]
,

(20)
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where fL(R)(E, μL(R)) = [1 + eβ(E−μL(R))]−1 is the Fermi–
Dirac occupation distribution in the left (right) lead, μL(R)

is the electrochemical potential of the left (right) lead
and β = 1

kBT , where kB is Boltzmann’s constant and
T is the temperature. Upon plugging equations (18)
and (20) into (17), one obtains the following result for the
current:

I = 2e

h̄

∫
dE

2π

[
fL(E, μL)− fR(E, μR)

]

× Tr
[
�L(E)G

r
d(E)�R(E)G

a
d(E)

]
, (21)

where the level broadening matrix �L(R) is given by

�L(R)(E) ≡ i
[
�r

L(R)(E)−�a
L(R)(E)

]
. (22)

It is now possible to identify T (E) = Tr[�L(E)Gr
d(E)�R(E)

Ga
d(E)] as the electron transmission probability through the

molecule and the difference in the Fermi–Dirac distribution
functions as the net, energy-dependent, density of current car-
rying particles from the left (right) lead to the right (left)
lead, due to the difference in their electrochemical poten-
tials [120]. The current is obtained by integration over the en-
ergy.

For calculating the conductance (g) one can define the
differential conductance as the derivative of the current with
respect to the applied bias voltage (Vb):

g = ∂ I

∂Vb
= 2e

h̄

∂

∂Vb

∫
dE

2π

[
fL(E, μL)− fR(E, μR)

]

× Tr
[
�L(E)G

r
d(E)�R(E)G

a
d(E)

]
. (23)

If one assumes that the bias voltage applied does not alter
considerably the energetic structure of the device, the only
contribution of the bias in equation (21) appears in the Fermi–
Dirac distribution functions. Therefore, it is possible to directly
conduct the differentiation in equation (23) to get the following
relation:

g = ∂ I

∂Vb
= 2e

h̄

∫
dE

2π

∂
[

fL(E, μL)− fR(E, μR)
]

∂Vb

× Tr
[
�L(E)G

r
d(E)�R(E)G

a
d(E)

]
. (24)

It should be noted that for finite bias voltages the above
equation is valid only in the so-called wide band limit (WBL)
or in the single-electron limit [257].

If one further assumes that the bias potential drops sharply
and equally at both junctions [158], the electrochemical
potentials are given by μL(R) = EL(R)

f +(−) 1
2 eVb, where EL(R)

f
is the Fermi energy of the left (right) lead. Thus, the derivative
with respect to the bias voltage appearing in equation (24) is
given by

∂
[

fL(E, μL)− fR(E, μR)
]

∂Vb

= eβ

2

{
e−β|E−μL|

[
1 + e−β|E−μL|]2 + e−β|E−μR|

[
1 + e−β|E−μR|]2

}
. (25)

If both Fermi energies of the leads are aligned with the
Fermi energy of the device, and the electrochemical potential
difference arises from the bias voltage alone, then at the
limit of zero temperature and zero bias conductance the

expression appearing in equation (25) approaches a sharp δ
function located at the Fermi energy of the molecule and
equation (23), in turn, reduces to the well established Landauer
formula [119, 159], which directly relates the conductance
to the transmittance probability of the current carrying entity
through the relevant device:

g = g0T, (26)

where g0 = 2e2

h is the conductance quantum.
Considering the full expression given by equation (24)

it can be seen that, for the calculation of the conductance,
or more specifically of the transmittance probability, it
is necessary to obtain the retarded and advanced GFs of
the device and the retarded and advanced self-energies of
the leads. Obtaining these is the subject of the next
section.

4.2. Retarded and advanced Green’s functions and
self-energies

Following the lines of NEGF theory [153], the GF associated
with a Hamiltonian Ĥ evaluated in a non-orthogonal basis set
must satisfy the following relation in energy space [160]:

(E Ŝ − Ĥ)Ĝ(E) = Î , (27)

where E is the energy, Ŝ is the overlap matrix, Ĝ(E) is the GF
and Î a unit matrix of the appropriate dimensions.

As suggested above, in molecular conductance cal-
culations it is customary to divide the system into the
‘device’, which is the conducting molecule5, and the
‘leads’, which are the macroscopic conducting contacts
through which electrons are injected into and taken out
of the ‘device’. In a two-terminal set-up this is trans-
lated into the following sub-matrices division of equa-
tion (27) [160, 161]:
⎛
⎝
ε ŜL − ĤL ε ŜLd − V̂Ld 0

ε ŜdL − V̂dL ε Ŝd − Ĥd ε ŜdR − V̂dR

0 ε ŜRd − V̂Rd ε ŜR − ĤR

⎞
⎠

×
⎛
⎜⎝

Ĝr
L(ε) Ĝr

Ld(ε) Ĝr
L R(ε)

Ĝr
dL(ε) Ĝr

d(ε) Ĝr
dR(ε)

Ĝr
RL(ε) Ĝr

Rd(ε) Ĝr
R(ε)

⎞
⎟⎠ =

⎛
⎝

ÎL 0̂ 0̂

0̂ Îd 0̂

0̂ 0̂ ÎR

⎞
⎠ .

(28)

Here, ĤL(R) and Ĥd are the left (right) semi-infinite lead and
the device Hamiltonians, respectively, ŜL(R) and Ŝd are the
left (right) lead and the device overlap matrices, respectively,
V̂L(R)d are the coupling matrices between the left (right) lead
and the device and ŜL(R)d are the overlap matrices between
the left (right) lead and the device. Since the Hamiltonian
is Hermitian one finds that V̂dL(R) = V̂ †

L(R)d, and the same

requirement applies for the overlap matrices ŜdL(R) = Ŝ†
L(R)d

(see section 4.4). All the terms discussed above are calculated

5 Usually one defines an ’extended molecule’ which is the molecule itself
accompanied with a limited portion of the leads which is influenced by the
proximity to the molecule.
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Figure 10. Division of the semi-infinite bulk lead into a set of
nearest-neighbors interacting layers.

using a formalism which will be presented in section 4.4. A
complex energy ε = limη→0{E + iη} has been introduced
in order to shift the poles of the Green’s function from
the real axis and allow for the convergence of both an
analytical and a numerical evaluation of the integrals over
the GFs. This softens the sharp singularities of the GF into
a smoother Lorentzian shape which in the limit of η →
0 restores the δ function characteristics of the imaginary
part.

Solving equation (28) for the middle column of the GF
matrix results in the following expression for the retarded
device GF (which appears in equation (24)) Ĝr

d(ε), when
coupled to the two leads:

Ĝr
d(ε) =

[(
gr

d(ε)
)−1 − �̂r

L(ε)− �̂r
R(ε)

]−1
, (29)

where ĝr
d(ε) = [ε Ŝd − Ĥd]−1 is the retarded GF of the bare

device and �̂r
L(R)(ε) is the retarded self-energy of the left

(right) lead given by

�̂r
L(R)(ε) =

(
ε ŜdL(R) − ĤdL(R)

)
ĝr

L(R)(ε)

×
(
ε ŜL(R)d − ĤL(R)d

)
. (30)

Here, ĝr
L(R)(ε) = [ε ŜL(R) − ĤL(R)]−1 is the retarded GF of the

bare left (right) lead. The advanced device GF is the Hermitian
conjugate of its retarded counterpart Ĝa

d(ε) = [Ĝr
d(ε)]†.

The self-energy terms appearing in equations (29) and (30)
represent the effect of the coupling to the leads on the
GF of the device. The calculation of these terms requires
the GF of the bare lead ĝr

L(R)(ε). This is not a simple
task since the leads are macroscopic sources of electrons
whose GFs are impossible to calculate directly. A way to
overcome this obstacle is to represent the leads as periodic bulk
structures of a semi-infinite nature. Using common solid state
physics techniques the periodicity of the bulk can considerably
reduce the dimensionality of the problem and thus enables
the calculation of the electronic structure of the leads. For
this, one can use an efficient iterative procedure developed by
López Sancho et al [162–164]. Within this approach the semi-
infinite bulk is divided into a set of identical principal layers,
as shown in figure 10, in such a manner that only adjacent
layers overlap and interact. Using equation (27) the resulting
GF can be represented as the inverse of a nearest-neighbors

block-tridiagonal matrix of the form⎛
⎜⎜⎜⎜⎜⎜⎝

Ĝ00(ε) Ĝ01(ε) Ĝ02(ε) Ĝ03(ε) · · ·
Ĝ10(ε) Ĝ11(ε) Ĝ12(ε) Ĝ13(ε) · · ·
Ĝ20(ε) Ĝ21(ε) Ĝ22(ε) Ĝ23(ε) · · ·
Ĝ30(ε) Ĝ31(ε) Ĝ32(ε) Ĝ33(ε) · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

ε Ŝ00 − Ĥ00 ε Ŝ01 − V̂01 0

ε Ŝ10 − V̂10 ε Ŝ00 − Ĥ00 ε Ŝ01 − V̂01

0 ε Ŝ10 − V̂10 ε Ŝ00 − Ĥ00

0 0 ε Ŝ10 − V̂10

...
...

...

0 · · ·
0 · · ·

ε Ŝ01 − V̂01 · · ·
ε Ŝ00 − Ĥ00 · · ·

...
. . .

⎞
⎟⎟⎟⎟⎠

−1

.

(31)

Here, ŜI,I = ŜII,II = ŜIII,III = · · · ≡ Ŝ00 is the overlap
matrix of the principal layer with itself, ŜI,II = ŜII,III =
ŜIII,IV = · · · ≡ Ŝ01 is the overlap matrix between two adjacent
layers and, as before, Ŝ10 = [Ŝ01]†. ĤI,I = ĤII,II = ĤIII,III =
· · · ≡ Ĥ00 is the Hamiltonian matrix of the principal layer,
V̂I,II = V̂II,III = V̂III,IV = · · · ≡ V̂01 is the coupling matrix
between two adjacent layers and V̂10 = [V̂01]†.

Equation (31) is a matrix representation of a set of
equations for the semi-infinite bulk GF matrix elements Ĝi j(ε)

which can be solved iteratively to get a compact expression:

Ĝ(ε) =
[
(ε Ŝ00 − Ĥ00)+ (ε Ŝ01 − Ĥ01)T (ε)

+ (ε Ŝ†
01 − Ĥ †

01)T (ε)
]−1

. (32)

The transfer matrices T and T are given by converging series
of the form

T (ε) = t0 + t̃0t1 + t̃0 t̃1t2 + · · · + t̃0 t̃1t̃2 · · · tn

T (ε) = t̃0 + t0 t̃1 + t0t1 t̃2 + · · · + t0t1t2 · · · t̃n,
(33)

where ti and t̃i are defined by the recursion relations:

ti = (
I − ti−1 t̃i−1 − t̃i−1ti−1

)−1
t2
i−1

t̃i = (
I − ti−1 t̃i−1 − t̃i−1ti−1

)−1
t̃2
i−1,

(34)

with the following initial conditions:

t0 =
(
ε Ŝ00 − Ĥ00

)−1
V †

01

t̃0 =
(
ε Ŝ00 − Ĥ00

)−1
V01.

(35)

After calculating the semi-infinite bulk GF given in
equation (32), the left and right lead self-energies can
be determined using equation (30) and the �̂L(R) matrices
appearing in the conductance expression (equation (24)) can be
calculated using equation (22) with �̂a

L(R)(ε) = [�̂r
L(R)(ε)]†.
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4.3. An alternative—absorbing imaginary potentials

A second methodology for the calculation of the transmit-
tance probability involves the application of absorbing poten-
tials [166, 167]. Within this approach the �L(R) matrix appear-
ing in equation (24) is a negative imaginary potential placed
deep within the left (right) lead. The purpose of this poten-
tial is to absorb an electron traveling in the lead away from
the molecular device before it reaches the ‘edge’ of the lead.
This ensures that the effect of reflections from the distant lead
edge is suppressed to a desired accuracy and thus enables us to
truncate the lead representation to a computable size.

In this review we show results that are based on a Gaussian
approximation to the imaginary absorbing potentials of the

form VL(R) = V0e− (z−z
L(R)
0 )2

2σ2 . Here, V0 is the potential height,
σ the potential width and zL(R)

0 its location along the left (right)
lead, assuming that the leads are located along the Z axis.
The generalization of the above expression to the case of an
arbitrary lead direction is straightforward. The parameters
of the potential are chosen such that electrons possessing a
kinetic energy in a wide band around the Fermi energy are
effectively absorbed [168]. As a rule of thumb, one can choose
the potential height to be the location of the Fermi energy,
EF, above the bottom of the calculated valence band, E0,
V0 ≈ EF−E0. The width of the potential should be sufficiently
larger than the Fermi wavelength. For example, the width for a
carbon wire is taken to be σ ≈ 20a0, where a0 is Bohr’s radius.
The origin of the potential zL(R)

0 is chosen such that the region
of the lead close to the device where the effect of the potential
is negligible contains at least a few Fermi wavelengths such
that the metallic nature of the lead is appropriately captured.
This choice of parameters should serve as an initial try and a
convergence check should then be conducted. The Gaussian
absorbing potential is, of course, not a unique choice and other
forms of absorbing potential expressions can be used [169].

Within the absorbing potentials methodology the system
is not divided into sub-units and the dimensionality of all the
matrices appearing in equation (24) is the dimensionality of
the full system (device+truncated leads). The �L(R) matrix
elements are calculated (usually numerically) as integrals of
the atomic basis functions over the imaginary potential VL(R).
It should be noted that, similar to the WBL discussed above, the
� matrices in the current methodology are energy-independent.
This fact considerably reduces the computational efforts
involved in the evaluation of the transmission probability.

The device GF in equation (24) is now replaced by the GF
of the whole system which, similar to equation (29), is given
by

Ĝr(E) =
[

E Ŝ − Ĥ − i�̂L − i�̂R

]−1
, (36)

where Ŝ and Ĥ are the overlap and Hamiltonian matrices,
respectively, calculated for the whole system, and E is the
real energy. The advanced GF is, as before, the Hermitian
conjugate of the retarded counterpart Ga(E) = [Gr(E)]†.

The last remaining task for the calculation of the
conductance is the calculation of the Hamiltonian, overlap and
coupling matrices appearing in equation (28). This calculation
is explained in the next section.

4.4. Electronic structure—tight binding magnetic extended
Hückel theory

The final task before performing the calculations of the
conductance is the appropriate representation of the electronic
structure of the system under the influence of the external
magnetic field. For this purpose, a tight binding magnetic
extended Hückel theory (TB-MEHT) was developed. This
approach provides a description of the Hamilton matrix
elements as well as the corresponding basis set. Thus, it
can be used to include the effects of external perturbations
such as magnetic fields by simply incorporating these into the
Hamiltonian and evaluating the perturbation matrix elements
with the given basis.

Spin effects, which have been considered mainly
for mesoscopic AB interferometers utilizing spin–orbit
couplings [170–181, 142, 182], are ignored here. Since
molecular rings lack a Rashba/Dresselhaus [183, 184] field
leading to spin–orbit coupling, and since one is interested
in small magnetic fields where the Zeeman spin splitting
is negligible [145], it is safe to ignore the spin degree of
freedom for the present application. For a recent discussion
of molecular spintronic devices utilizing an AB interferometer,
see [145].

Consider the one-body electronic Hamiltonian of the form

Ĥ = 1

2me

[
P̂ − qA

]2 + V (r). (37)

The notation used here is similar to that used for the
Hamiltonian presented in equation (1). Within the TB-MEHT
formalism the contribution at zero vector potential, Ĥ(A =
0) = P2

2m + V(r), is represented by the tight binding extended

Hückel (TB-EH) Hamiltonian Ĥ EH [185], which approximates
the complex many-body problem using a mean-field, single-
particle, semi-empirical approach. The effect of applying a
vector potential is taken into account by simply adding the
appropriate magnetic terms to the EH Hamiltonian:

Ĥ = Ĥ EH − q

2me

(
P̂ · A + A · P̂

)
+ q2

2m
A2. (38)

As before we assume that the magnetic field is uniform and
constant, B = (Bx, By, Bz), and thus write down the related
vector potential as: A = − 1

2 r × B = − 1
2 (y Bz − z By, z Bx −

x Bz, x By − y Bx). Putting this expression in equation (38) one
obtains the following electronic Hamiltonian [186]:

Ĥ = Ĥ EH − μB

h̄
L · B + q2B2

8me
r2
⊥. (39)

Here, μB = qh̄
2me

is the Bohr magneton, r2
⊥ = r2 − (r·B)2

B2 is the
projection of r = (x, y, z) onto the plane perpendicular to B
and L̂ = r × P̂ is the angular momentum operator.

For the sake of simplicity, and without limiting the
generality of the solution, we assume that the AB ring is placed
in the Y –Z plane and that the magnetic field is applied parallel
to the X axis. With this, the Hamiltonian in equation (39) is
reduced to

Ĥ = Ĥ EH + iμB Bx

(
y
∂

∂z
− z

∂

∂y

)
+ q2 B2

x

8me
(y2 + z2). (40)
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A Slater-type orbital (STO) [187, 188] basis set is used to
evaluate the Hamiltonian and overlap matrices. In the presence
of a magnetic field it is necessary to multiply each STO by
an appropriate gauge factor which compensates for the finite
size of the set. The resulting atomic orbitals are customarily
referred to as gauge-invariant [189, 190] Slater-type orbitals
(GISTOs) and are given by

|n, l,m〉α = e
iq
h̄ Aα ·r|n, l,m〉α = e

iq Bx
2h̄ (yαz−zα y)|n, l,m〉α. (41)

Here |n, l,m〉α is an STO characterized by the set of quantum
numbers (n, l,m), and centered on the atomic site α. Aα

is the value of the vector potential A at the nuclear position
Rα = (xα, yα, zα) and |n, l,m〉α is the GISTO situated at α.

The generalized eigenvalue problem Ĥψn = En Ŝψ
is solved to get the electronic energy levels (En) and the
molecular orbitals (ψn) characterizing the system. Here,

Ĥ and Ŝ are the Hamiltonian and overlap matrices with

elements given by Ŝ1α,2β =α 〈n1, l1,m1|n2, l2,m2〉β and

Ĥ 1α,2β =α 〈n1, l1,m1|Ĥ |n2, l2,m2〉β . The London
approximation [189, 190] is used to calculate the different
matrix elements. Within this approximation the gauge phase
appearing in equation (41) is taken outside the integral,
replacing r by 1

2 (Rα + Rβ). The overlap integrals are then
given by

Ŝ1α,2β ≈ Ŝ1α,2βeiLαβ . (42)

Here, Ŝ1α,2β =α 〈n1, l1,m1|n2, l2,m2〉β and Lαβ = q
2h̄ (Aβ −

Aα) ·(Rα+Rβ) = q Bx

2h̄ (zα yβ − yαzβ). The Hamiltonian matrix
elements are approximated as

Ĥ 1α,2β ≈ 1
2

[
Ĥ1α,2βeiLαβ + Ĥ1β,2αeiLβα

]
, (43)

where Ĥ1α,2β = α〈n1, l1,m1|Ĥ |n2, l2,m2〉β . This form guaran-
tees that the Hamiltonian matrix remains Hermitian under the
approximation.

All matrix elements in the formulation presented above are
calculated analytically. The EH Hamiltonian diagonal matrix
elements are set to be equal to the ionization potentials of the
appropriate atomic orbital, Ĥ EH

1α,1α = I.P.1α , while the off-
diagonal elements are given by an average of the corresponding

diagonal elements: Ĥ EH
1α,2β = k

Ĥ EH
1α,1α+Ĥ EH

2β,2β

2 Ŝ1α,2β , where k =
1.75 is a parameter chosen to give the best fit to experimental
data. The overlap matrix is calculated analytically for every set
of quantum numbers using a method developed by Guseinov
et al [191–195]. The matrix elements of the magnetic terms
appearing in the Hamiltonian can then be expressed as a linear
combination of overlap integrals and are thus also calculated
without the need to perform numerical integration. The
expansion of the magnetic integrals in terms of corresponding
overlap integrals is presented elsewhere [196].

Before continuing, it should be mentioned that, while the
current model does take into account the explicit geometry
of the system and also some of the details of the system’s
electronic structure, it remains an effective one-particle model
and neglects contributions from electron–electron correlations
and coupling to the vibrational degrees of freedom of the

molecular device. Furthermore, since the bias potential is
assumed to drop sharply at the lead–device junctions and its
effect on the energy levels of the device is neglected, the
current model is valid only at the low bias regime.

4.5. Results for two-terminal devices

In the present section we study the magnetoresistance
behavior of two-terminal devices as a function of the relevant
physical control parameters identified in section 3.1. The
atomistic calculations are compared to those obtained using the
continuum model.

4.5.1. Atomic corral. First, we consider a corral composed
of monovalent atoms placed on a semi-conducting surface and
coupled to two atomic wires. An experimental realization
of this set-up can be achieved using scanning tunneling
microscopy (STM) techniques [197–200]. The whole set-up
is then placed in a perpendicular homogeneous and constant
magnetic field and the conductance between the atomic wire
leads through the corral is measured, at the limit of zero bias
voltage, as a function of the threading magnetic field. Realizing
that the corral itself is also constructed of an atomic wire it
is important to understand some basic properties of such one-
dimensional structures.

Since each atomic site contributes a monovalent electron,
the number of atoms in the chain, N , must be even to get
a closed shell wire. The Fermi energy of the wire has a
principal quantum number of N

2 , which is also the number of
nodes the Fermi electrons wavefunctions have. If the distance
between the atomic sites, d , is constant then the separation
between the nodes is given by Nd

N/2 = 2d and thus the Fermi
wavelength is λF = 2 × 2d = 4d . Therefore, one sees that,
for any regular atomic wire composed of monovalent atomic
sites, the conducting electrons’ wavelength is of the order of
four interatomic distances. This simple conjecture allows us
to divide the symmetric atomic corrals into two prototypes:
those having N = 4n and those having N = 4n + 2 atoms
on the circumference, where n is an integer number. For an
N = 4n atomic corral the quantum number of the Fermi
wavefunction of a particle on a ring is an integer: mF =
kFr = 2π

λF

Nd
2π = Nd

4d = N
4 = n, and therefore the resonance

condition in equation (11) is obtained when the magnetic field
is off. However, when N = 4n + 2, one obtains mF =
n + 1

2 and resonance is achieved only when φ

φ0
= l

2 where
l = ±1,±2, . . ..

A similar picture arises when plotting the wavefunctions
of the Fermi electrons. The complex normalized wavefunc-
tions of a particle on a ring are given by: �±m(θ) = 1√

2π
e±imθ .

A linear combination of each doubly degenerate functions hav-
ing the same quantum number m results in real wavefunctions
of the form 1√

π
cos(mθ) and 1√

π
sin(mθ). The cosine functions

are plotted in panels (a) and (b) of figure 11 for the two corral
prototypes having m = mF = N

4 .
As can be seen, for the 4n prototype a standing wave is

obtained for which both input and output leads are located at
non-stationary points. For the 4n + 2 corral at zero magnetic
flux the wavefunction is not stationary and the output lead
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Figure 11. An illustration of the Fermi wavefunctions of a particle on a ring-shaped corral. Panel (a): a cosine wavefunction for a 4n ring with
n = 5 creates a stationary solution. Panel (b): a cosine wavefunction of a 4n + 2 ring with the same n as before creates a destructive
interference between the clockwise (blue) and counterclockwise (red) electron pathways. Panel (c): a sine wave functions for N = 4n atoms
with n = 5.

is located exactly at a node of the interference between the
clockwise and counterclockwise traveling electrons. In fact,
the interference is destructive not only at the nodes but for
every point on the ring and thus this energy level does not exist.
It is interesting to note that the sine function, which is shifted
by π

2 from the cosine counterpart, has both leads located at its
nodes, as can be seen in figure 11(c). Therefore, at a given
leads’ location and in the absence of a gate potential and a
magnetic field only one of the two degenerate energy levels
will conduct and the maximum zero bias conductance will be
the quantum conductance, g0.

An alternative explanation for this class division can be
given based upon the energetic structure of the ring. Due to
the symmetry of the ring, apart from the lowest energy level,
all energy levels of a particle on an uncoupled ring are doubly
degenerate. When considering a monovalent electron per site
corral the occupation of the energy levels of the 4n prototype
differs from that of the 4n + 2 prototype.

This can be seen in figure 12 where the highest occupied
molecular orbital (HOMO) occupation is presented for both
prototypes. The HOMO occupation of the 4n prototype (left
panel) involves two vacancies and thus is suitable for electron
conduction when brought to resonance with the leads, while
the HOMO occupation of the 4n + 2 prototype (right panel) is
full and therefore does not conduct electrons.

After realizing these important features of one-dimensional
monovalent atomic wires, we turn to present atomistic calcu-
lations results obtained using the imaginary potentials method
within the TB-MEHT formalism as discussed above. In fig-
ure 13 the conductance through atomic corrals composed of 40
and 42 copper atoms is plotted [111]. All atoms on the cor-
ral are separated by a distance of 2.35 Å. The effect of a gate
potential was simulated by changing the corral atomic orbital
energies by Vg.

As discussed above, at zero gate voltage the conductance
peak for the n = 40 corral is located at the low magnetic
field region while for the n = 42 corral it is located near the
middle of the AB period. Two common features are clearly
observed for the two corral prototypes: (a) a large magnetic
field (∼500–600 T) is required to complete a full AB period
and (b) the conductance peaks (red spots) shift with the gate
voltage, Vg. The latter effect is analogous to the shift of peaks
seen in figure 5 for the continuum model as the conducting
electron wavenumber is varied. Therefore, the application of

Figure 12. The occupation of the energy levels of the corral for the
4n prototype (left panel) and for the 4n + 2 prototype (right panel).

a gate voltage allows control over the location of the peak
conductance. In particular, it can be used to shift the maximal
conductance to zero magnetic field for the N = 4n + 2 corral
prototype and to fine tune the location of the N = 4n peak if
slightly shifted from the magnetic field axis origin.

The next step is to control the width of the conductance
resonances as a function of the magnetic field. In the
continuum model, this was done by reducing the transmission
amplitude, ε. In the molecular system this can be achieved by
increasing the distance between the ring and the edge lead atom
closest to the ring. Alternatively, one can introduce an impurity
atom at the junctions between the lead and the ring. However,
for quantum corrals the former approach seems more realistic.

In figure 14 the conductance as a function of the magnetic
field is depicted for several values of the lead–ring separation.
For each generic corral prototype, an appropriate gate voltage
is applied to ensure maximal conductance at B = 0 T.
As the lead–ring separation is increased, the lifetime of the
energy levels on the ring is increased and therefore their width
decreases. This is translated into a sharpening of the switching
response to the magnetic field in the magnetoconductance
spectrum. At the highest separation studied one achieves a
switching capability of the order of a single tesla, despite the
fact the AB period is comparable to 500–600 T.

Due to the dependence of the AB period on the magnetic
flux, the effects discussed above are scalable with the
dimension of the ring, as long as the simple physics holds.
For a given lead–corral coupling strength, doubling the cross
section of the corral will reduce the switching limit to half

16



J. Phys.: Condens. Matter 20 (2008) 383201 Topical Review

B (Tesla)B (Tesla)

V
g 

(e
V

)

V
g 

(e
V

)

Figure 13. Conductance as a function of the magnetic field and the gate voltage for a 40 (left panel) and a 42 (right panel) atomic corral
composed of copper atoms at T = 1 K. Color code: red—g = g0, purple—g = 0.

Figure 14. Conductance as a function of the magnetic field and the contact bond length (Rc) for a 40 (left panel) and a 42 (right panel) atomic
corral composed of copper atoms at T = 1 K. The gate potential is 0 V (left) and −0.132 V (right).

its original value for a given lead–device coupling at low
enough temperatures. This can be clearly seen in figure 15,
where the magnetoconductance of several corrals with inter-
site spacing of 1 Å and at a temperature of 1 K is calculated
in the WBL with a coupling strength of 0.05 eV. For a corral
with a diameter of ∼1.3 nm switching occurs at ∼4 T (solid
curve in the figure). When doubling the diameter of the corral
(multiplying the cross section by 4) the switching threshold
reduces to ∼1 T (dashed line in the figure), as expected. Upon a
further increase in the dimensions of the corral (dashed–dotted
line) the switching threshold reduces respectively.

4.5.2. Carbon nanotubes. Another interesting (and
perhaps somewhat more accessible experimentally) sys-
tem is an AB interferometer based on a carbon nan-
otube (CNT) [201]. CNTs have been investigated in
the context of molecular electronics both experimen-
tally [48, 52, 53, 131, 202–205, 55, 206, 132, 133] and
theoretically [207–209]. The AB effect in single-walled
and multi-walled carbon nanotubes (SWCNT and MWCNT,

respectively) has been addressed experimentally and theoreti-
cally as well [210–219] (for a recent review, see [220]). These
studies focus on the AB effect in CNTs, while in this review we
describe the conditions for which switching can be obtained at
magnetic fields that are much smaller than those corresponding
to a full AB period in CNTs [112].

Similar to the quantum corral set-up, when a magnetic
field is applied perpendicular to the cross section of the tube
(along its main axis), electron pathways traversing the circular
circumference in a clockwise and a counterclockwise manner
gain different magnetic phases, and thus AB interference
occurs. As the coupling between the CNT and the conducting
leads is decreased, a resonant tunneling junction forms. This
results in an increase of the electron’s lifetime on the CNT
and thus in a narrowing of the energy levels’ width. Using
a bias/gate potential it is possible to tune the resonance such
that the transmittance is high at zero magnetic field. The
application of low magnetic fields shifts the narrow energy
level out of resonance. Thus switching occurs at fields much
smaller than those required to achieve a full AB cycle.
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Figure 15. Magnetoconductance through an atomic corral as a
function of the corral dimensions. As the diameter of the corral is
doubled from ∼1.3 nm (solid line) to ∼2.6 nm (dashed line) the
switching threshold reduces by a factor of 4. For the largest corral
considered (dashed–dotted line) the switching threshold is ∼0.5 T
for a coupling strength of 0.05 eV.

Two different experimental configurations are considered
for this purpose [112]. The first consists of an SWCNT
placed on an insulating substrate between two thin conducting
contacts (see figure 16(a)) and a bias potential is applied
between the contacts. Similar set-ups have been recently
demonstrated experimentally [30, 221–223]. In the second
configuration an SWCNT is placed on a conducting substrate
coupled to a scanning tunneling microscope (STM) tip from
above as described schematically in figure 16(b). The bias
potential is applied between the STM tip and the underlying
surface. For both configurations the resulting conductance
between the leads can be calculated using the TB-MEHT
approach described above, showing that high sensitivity to the
magnetic field can be achieved.

For configuration (a) (figure 16(a)) both leads are modeled
by atomic conducting wires and the calculations are done using
the imaginary potentials method (see section 4.3), while for

configuration (b) (figure 16(b)) the STM tip is modeled by
a semi-infinite one-dimensional atomic conducting gold wire
and the substrate is modeled by a semi-infinite slab of gold
crystal. The iterative procedure discussed in section 4.2 was
applied to obtain the semi-infinite bulk Green’s function. The
calculations were conducted for a tube four unit cells in length,
using minimum image periodic boundary conditions for the
passivation of the edge atoms. Such short CNTs have been
recently synthesized [224]. Tests on longer tubes reveal the
same qualitative picture described below.

The density of states on a 1.6 nm long (24, 0) SWCNT
segment is plotted in figure 17. A sketch of the short segment
of the SWCNT is shown in the inset of the figure. Two
doubly degenerate energy levels appear in near the Fermi
energy, which are separated from the rest of the spectrum
by approximately 100 meV. Resonant tunneling through these
states accompanied by degeneracy lifting due to the Aharonov–
Bohm effect allows for delicate control over the conductance
through the system.

In figure 18, the conductance through the cross section of
the (24, 0) SWCNT segment, as calculated for configuration
(a), is plotted against the external axial magnetic field for
several bias potentials. The conductance at zero bias first
increases as one switches on the magnetic field (negative
magnetoresistance), peaks near B = 10 T and subsequently
decreases as the field grows, vanishing at fields above 30 T.
The maximum conductance observed, g/g0 = 2, is limited
by the number of open channels in the vicinity of the Fermi
energy of the SWCNT. In order to achieve switching capability
at magnetic fields smaller than 1 T, it is necessary to move the
conductance peak to zero magnetic fields and, at the same time,
reduce its width.

When a small bias is applied to the sample the
conductance peak splits into a doublet6. The position of the
corresponding peaks depends on the value of the bias and the
maximum conductance is reduced by 25%–50%. As can be

6 This is due to the specific way one may chose the bias potential drop at
the two lead–device junctions as described in section 4.1. For different bias
potential profiles the quantitative details of the calculations would change
however, the qualitative picture would remain the same.

a b

Figure 16. An illustration of the experimental configurations suggested for measuring the cross-sectional magnetoresistance of a CNT. In
configuration (a) the SWCNT is placed on an insulating surface between two narrow metallic contacts, while in configuration (b) the SWCNT
is placed on a conducting substrate and approached from above by an STM tip.
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Figure 17. Density of states in the vicinity of the Fermi energy as
calculated by the TB-MEHT for a (24, 0) SWCNT segment. Lighter
coloured lines indicate the position of the energy levels. Gaussian
broadening of 0.08 eV was introduced for clarity. Inset: axial and
side views of the 1.6 nm long (24, 0) SWCNT segment.

Figure 18. Conductance versus the magnetic field for several bias
potentials as calculated by the TB-MEHT for a (24, 0) SWCNT
placed as in configuration (a). The effect of the application of a bias
potential on the position of the conductance peaks is depicted at a
constant tube–contact separation of 2.4 Å.

seen in the figure, by adjusting the bias potential it is possible
to shift one of the conductance peaks toward low values of
the magnetic field, such that the conductance is maximal at
B = 0 T and positive magnetoresistance is achieved. The
shift in the conductance peak can be attributed to the change
in the energy level through which conductance occurs when a
small bias is applied. As a result of this change, the electron
momentum is altered, resulting in the conductance peak shift
observed in the calculation.

In figure 19, the effect of changing the tube–contact
separation at constant bias potential is studied. As one
increases the separation between the tube and the contacts,
their coupling decreases, resulting in a reduction of the
width of the energy resonances of the SWCNT. Thus, the
conductance becomes very sensitive to an applied magnetic
field and small variations in the field shift the relevant
energy level out of resonance. In the magnetoresistance

Figure 19. Conductance versus the magnetic field for several
tube–contact separations as calculated by the TB-MEHT for a (24, 0)
SWCNT placed as in configuration (a). The effect of an increase in
the tube–contact separation is depicted at a constant bias potential of
0.00679 V. Inset: the full AB period for a (24, 0) SWCNT at zero
bias potential and tube–contact separation of 2.4 Å.

spectrum, this is translated to a narrowing of the transmittance
peaks, similar to the case of the atomic corral discussed in
section 4.5.1. For the smallest separation considered (2.4 Å),
the conductance seems to be constant, on the logarithmic
scale, at the magnetic field range shown in the figure, while
at the highest separation studied (3.2 Å), the width of the
conductance peak is comparable to 1 T. At higher magnetic
fields (not shown) the conductance of the 2.4 Å case reduces
as well.

Similar to the corral case, the combined effect of the bias
potential and the tube–contact separation allows us to shift
the position of the conductance peak to small magnetic fields
while at the same time reducing its width. This is achieved
by carefully selecting the values of the bias potential and
tube–contact separation. Under proper conditions, one obtains
positive magnetoresistance with a sharp response occurring at
magnetic fields comparable to 1 T. This result is significant
since it implies that, despite the fact that the tube radius is
small (∼1 nm) and the corresponding full AB period requires
unrealistically large magnetic fields of the order of 1500 T
(as shown in the inset of figure 19), it is possible to achieve
magnetic switching at relatively small magnetic fields.

A similar picture arises when considering configuration
(b). In figure 20 we show the conductance as calculated
for a (6, 0) SWCNT placed between a sharp STM tip and a
conducting surface for two bias voltages. A smaller-diameter
CNT was used in these calculations in order to be able to
properly describe the bulky nature of the conducting substrate
with respect to the dimensions of the CNT.

As can be seen, when a bias voltage of ∼0.224 V is
applied the conductance peaks at a magnetic field of ∼14 T.
By changing the bias potential to ∼0.225 V the conductance
peak shifts toward zero magnetic field. Under these conditions
switching occurs at a magnetic field of ∼10 T while the full AB
period for this system is of the order of 2 × 104 T. The CNT–
lead separation required to achieve high magnetoresistance
sensitivity in this configuration is larger than the one needed
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Figure 20. Conductance as a function of the magnetic field through a
(6, 0) CNT as calculated for configuration (b) at different bias
voltages. The separation between the CNT and the conducting leads
used in this calculation is taken to be 4.1 Å.

for configuration (a). This is due to the difference in the CNT
diameters and the different lead geometries. As the diameter
of the tube becomes smaller, the magnetic field needed to
gain a similar AB phase shift grows larger. Therefore,
the conductance peaks become wider so that larger CNT–
lead separations are required in order to narrow their width.
Furthermore, as the lead becomes more bulky its coupling to
the CNT needs to be decreased in order to achieve the same
magnetoresistance sensitivity.

To conclude the CNT AB interferometry part, it was
shown that SWCNTs can be used as magnetoresistance
switching devices based on the AB effect. As in the corral
set-up, the essential procedure involves the weak coupling of
the SWCNT to the conducting leads in order to narrow the
conducting resonances, while at the same time controlling
the position of the resonances by the application of a bias
potential. The control over the coupling between the SWCNT
and the conducting leads in configuration (a) of figure 16 can
be achieved via a fabrication of a set of leads with proper gaps.
In configuration (b) of the same figure one needs to control
the distance between the STM tip and the CNT and between
the substrate and the CNT. The former can be achieved by
piezoelectric control and the latter by covering the surface with
monolayer/s of an insulating material.

4.5.3. Operative limitations. The above calculations have
been performed assuming a low temperature of 1 K (apart
for the (6, 0) CNT where a temperature of 0.1 K was used).
However, the effect will hold even at higher temperatures.
Recall that, within the Landauer formalism, the temperature
effect is taken into account only through the difference of the
leads’ Fermi–Dirac population distributions fL(R)(E, μL(R)).
This difference sets the (temperature-dependent) width of the
energy band through which conductance occurs. Thus, this
width should be narrow enough (the temperature should be
low enough) in order to resolve the magnetic field splitting
of the, originally degenerate, energy levels of the ring.

Figure 21. Magnetoconductance through an atomic corral composed
of 40 single-electron sites with 1 Å spacing at different temperatures.
It can be seen that, as the temperature rises from 1 K (solid line) to
10 K (dashed line), the device response becomes less sensitive to the
magnetic field. At 25 K (dashed–dotted line) the conductivity is
almost insensitive to the magnetic field at the low magnetic field
region.

Using equation (11), one finds that this splitting is given
by h̄2

2m�R2 [(−|mF| − φ

φ0
)2 − (|mF| − φ

φ0
)2] = 2h̄2mF

m�R2
φ

φ0
=

2h̄2kF
m�R

φ

φ0
. Therefore, the temperature should fulfill the following

condition in order for AB switching to be observed: kBT <
2h̄2kF
m�R

φ

φ0
.

Considering an atomic corral with a diameter of ∼1.3 nm
and interatomic distances of 1 Å (40 atomic sites), the
normalized magnetic flux at 5 T is φ

φ0
≈ 1.5 × 10−3 and

the Fermi wavelength is λF ≈ 4 Å, resulting in a Fermi
wavenumber of kF = 2π

λF
≈ π

2 Å
−1

. Assuming an effective
mass of m� = 1 au one gets an upper limit of approximately
7 K.

This can be seen in figure 21 where the magnetoconduc-
tance through such a corral is calculated using the WBL at dif-
ferent temperatures. The coupling to both leads is taken to be
0.05 eV such that switching occurs at ∼5 T. As the temperature
rises from 1 K (solid curve in the figure) to 10 K (dashed line
in the figure) the device response becomes less sensitive to the
magnetic field even though an effect is still observable, as pre-
dicted. At a higher temperature of 25 K (dashed–dotted line)
the conductivity becomes almost insensitive to the magnetic
field at the magnetic field region considered.

4.6. Results for three-terminal devices

As discussed in section 3.2, an interesting case in which
magnetic fields provide unique control over the conductance
is based on the three-terminal set-up. Here, we describe
an example based on a polycyclic aromatic hydrocarbon
(PAH) [113]. A sketch of such a ring composed of
48 conjugated benzene units with a diameter of ∼3 nm
is shown in figure 22. Similar PAH molecules have
been synthesized by chemical means [225–227] and studied
theoretically [228–231]. This structure can also be viewed as
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Figure 22. A realization of a three-terminal molecular AB
interferometer based on a polycyclic aromatic hydrocarbon molecule
coupled to three atomic gold wires.

a closed form of a graphene nanoribbon [61, 64, 66, 110], a
class of materials that has attracted a great deal of theoretical
activity recently [232–237].

In figure 23 we show the zero bias conductance of the
molecular switch as a function of the magnetic field intensity
for both output channels. We focus on the region of realistic
magnetic fields (much smaller than the field required to
complete a full AB period which is ∼470 T for a ring with a
cross-sectional area of about 8.75 nm2). A relatively large gate
voltage, Vg = 1.85 V, is needed in order to bring the system
into resonance, and the lead–molecule separation is taken to be
∼3 Å.

For zero magnetic field, both channels are semi-opened
and the conductance assumes a value of 0.4g0 at the selected
gate voltage. When a magnetic field of ∼2.5 T is applied,
one finds that one output channel fully opens while the
other closes shut. As the polarity of the field changes sign
the two output channels interchange their role. Exactly the
same characteristics are captured by the continuum model
(e.g. dashed lines in figure 23). Therefore, it can be seen that
the magnetic field polarity serves as a distributor that streams
the electrons to the desired output channel.

Based on this magnetic rectification behavior, it is possible
to design a molecular logic gate, which processes two different
logic operations simultaneously. This can be achieved by
choosing one input signal as the bias voltage (Vb) and the other
input signal as the magnetic field (B). For the bias input signal,
Vb, we mark as ‘0’ the case where Vb = 0 V and as ‘1’ the
case where a small bias is applied. For the magnetic field
input signal we mark as ‘0’ the case where B ≈ −3 T and
as ‘1’ the case where B ≈ 3 T. The output signals are the
currents measured at the two outgoing leads marked as I1 and
I2. Using these definitions the truth table presented in table 1
can be constructed.

One sees that the output I1 gives the logic operation
Vb && B while the output O2 gives the logic operation

Figure 23. Magnetoconductance of the three-terminal molecular
device shown in figure 22. Solid lines correspond to the conductance
of the upper and lower outgoing terminals calculated by TB-MEHT
formalism. Dashed lines correspond to the conductance of the upper
and lower outgoing terminals calculated by the continuum model.

Table 1. Truth table for the parallel molecular logic gate.

Vb B I1 I2

0 0 0 0
0 1 0 0
1 0 0 1
1 1 1 0

Vb && B where the overbar stands for NOT. Even though the
conductance peaks are sharp relative to the full AB period, this
truth table holds for a wide range of the threading magnetic
field intensity ±(2–4) T and is thus suitable for robust logic
gate operations. Shifting the conductance peaks via the change
of the gate potential will give rise to different logic operations
of the same set-up.

To summarize the current section, it can be seen that single
cyclic molecules are promising candidates for the fabrication
of magnetoresistance parallel switching and gating devices at
feasible magnetic fields. As in the previous discussion, careful
fine tuning of experimentally controllable physical parameters
allows the selective switching of a single pre-selected output
channel, thus allowing for the design of a molecular logic
gate, processing two logic operations in parallel. This is made
possible due to the unique symmetry breaking nature of the
magnetic gate.

5. Inelastic scattering effects in AB molecular
interferometers

Our discussion above neglects completely inelastic effects aris-
ing from electron–phonon couplings (EPCs). Such processes
have been considered in molecular junctions by several au-
thors utilizing different theoretical approaches [238–243, 165,
244–248]. In AB interferometers, EPC were considered in
mesoscopic rings, where EPC leads to a decay in the amplitude
of the AB oscillations [249] and more recently in the context of
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electron–electron interaction [250]. In this section we address
the issue of inelastic effects arising from EPCs for molecular
AB interferometers where we focus on the low magnetic flux
regime, as appropriate for such systems [114]. We show, as
expected, that the EPC broadens the conduction peak when
an electric gate is applied [244]. In contrast, dephasing pro-
cesses arising from EPC narrow the magnetoconductance re-
sponse and thus increase the sensitivity to the threading mag-
netic flux. This surprising result can be rationalized in terms of
a rapid loss of the phase of electrons at the exit channel aris-
ing from the coupling to the phonons, thus destroying the co-
herence which is essential for AB interferometry, as discussed
below. This important result emphasizes yet another major dif-
ference between electric and magnetic gauges.

5.1. Hamiltonian

We consider a tight binding model of an atomic-corral-based
interferometer. We describe the case of a single valence
electron per atomic site where the interaction between the
electrons and the vibrations occurs on site, namely an electron
located at site i will couple to the local vibration of the i th
atom. The Hamiltonian of the system is described by

Ĥ = Ĥel + Ĥvib + Ĥint, (44)

where Ĥel is the electronic part of the Hamiltonian, Ĥvib is the
part of the Hamiltonian describing the vibrational modes of the
molecule and Ĥint represents the interaction of the electrons
with the vibrations of the molecule.

The electronic part of the Hamiltonian may be written as
a combination of two terms: Ĥel = Ĥ 0

el + Ĥ int
el , where Ĥ 0

el =
Ĥ device

el + Ĥ leads
el , Ĥ device

el being the electronic Hamiltonian of
the isolated corral (or any other device), Ĥ leads

el the electronic
Hamiltonian of the bare leads and Ĥ int

el is the lead–device
electronic interaction Hamiltonian. One may write these terms
using second quantization operators. For the non-interacting
electronic Hamiltonian

Ĥ 0
el =

∑
i, j

ti, j (B)c
†
i c j +

∑
l,m∈L ,R

εl,m(B)d
†
l dm, (45)

where c†
i and ci , are creation and annihilation operators of

an electron on site i on the device, and d†
l and dl are the

creation and annihilation operators of an electron on site l on
the relevant lead. ti, j (B) is the hopping integral between site
i and site j on the device and εl,m(B) is the hopping integral
between site l and site m on the relevant lead. As before, L and
R stand for left and right leads.

For the device–lead interaction part

Ĥ int
el =

∑
l,i

Vl,i (B)d
†
l ci + H.c., (46)

where H.c. stands for Hermitian conjugate. The matrix
elements of all these terms are evaluated using the TB-MEHT
approach presented in section 4.4. Thus, ti, j (B), εl,m(B) and
Vl,i (B) depend on the magnetic field B .

When considering the vibrational part of the Hamiltonian,
Ĥvib, the device atoms are allowed to vibrate around their

equilibrium position such that one can describe their vibrations
using the harmonic approximation. For the sake of simplicity
the atoms are assumed to be confined to move along the
circumference such that one can map the problem onto a
one-dimensional (1D) chain of coupled harmonic oscillators
with periodic boundary conditions. For the case of a corral
composed of identical atoms, one has to define only the local
vibrational frequency� in order to obtain all normal vibrations
of the ring. In local modes, the vibrational Hamiltonian of the
system is described by a simple form given by

Hvib = Tvib + Vvib =
N−1∑
k=0

p2
k

2
+ 1

2
�2

N−1∑
k=0

(xk+1 − xk)
2. (47)

Here, N is the number of atoms, and pk and xk denote the
mass-weighted momentum operator and the mass-weighted
deviation from the equilibrium position of atom k along the
chain, respectively. Periodic boundary conditions are imposed
on the system such that xN = x0. It is possible to define a
unitary transformation (given by a matrix Û ) that diagonalizes
the Hamiltonian (cf equation (47)) to obtain

Hvib = Tvib + Vvib = 1
2

N−1∑
k=0

p(q)k

2 + 1
2

N−1∑
k=0

ω2
k q2

k , (48)

This Hamiltonian represents a set of N uncoupled harmonic
oscillators, each with frequency ωk , of the collective normal
mode of vibration qk , where all frequencies are defined in terms
of � and the unitary transformation Û . In terms of raising and
lowering boson operators one finally arrives at

Ĥvib =
N−1∑
k=0

h̄ωk

(
b†

kbk + 1
2

)
. (49)

The last term in the full Hamiltonian (equation (44)) is
the electron–vibration coupling term. To lowest order in the
electron–phonon coupling, this term is modeled by

Ĥint = M
N−1∑
i=0

c†
i ci(a

†
i + ai ). (50)

where M is the electron–phonon coupling strength, which is
taken to be identical to all atomic sites. Using this form, the
electron on site i , represented by the number operator Ni ≡
c†

i ci , is coupled to the local vibration of atom i , represented by
a†

i + ai . Here a†
i and ai are the raising and lowering operators

of the local vibrational modes defined in terms of xk and pk

such that (a†
k + ak) =

√
2�
h̄ x̂k . In terms of the normal modes

of the ring, the electron–phonon coupling Hamiltonian is given
by

Ĥint = M
N−1∑
i=0

c†
i ci(a

†
i + ai) =

N−1∑
i,k=0

Mk
i c†

i ci(b
†
k + bk), (51)

where Mk
i ≡ M

√
�
ωk

Uki and Uki are the matrix elements of the

transformation matrix Û .
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Collecting all the terms appearing in equations (45), (46),
(49) and (51), the full Hamiltonian of the system is given by
the following expression:

Ĥ =
∑
i, j

ti, j (B)c
†
i c j +

∑
l,m∈L ,R

εl,m(B)d
†
l dm

+
(∑

l,i

Vl,i (B)d
†
l ci + H.c.

)
+

N−1∑
k=0

h̄ωk

(
b†

k bk + 1
2

)

+
N−1∑
i,k=0

Mk
i c†

i ci(b
†
k + bk). (52)

As pointed out above, the only two free parameters in this
model are M—the electron–phonon coupling strength—and
�—the local vibrational frequency. The remaining hopping
terms are calculated from the TB-MEHT.

5.2. Conductance

The calculation of the conductance is described, as before,
within the framework of the nonequilibrium Green’s function
(NEGF) method [119]. In brief, the total current I = Iel +
Iinel is recast as a sum of elastic (Iel) and inelastic (Iinel)
contributions given by [165]

Iel = 2e

h̄

∫
dε

2π

[
f (ε, μR)− f (ε, μL)

]

× Tr
[
ΓL(ε)Gr(ε)ΓR(ε)Ga(ε)

]
(53)

and

Iinel = 2e

h̄

∫
dε

2π
Tr
[
Σ<

L (ε)G
r(ε)Σ>

ph(ε)G
a(ε)

− Σ>
L (ε)G

r(ε)Σ<
ph(ε)G

a(ε)
]
, (54)

respectively. The retarded (advanced) GFs satisfy the Dyson
equation:

Gr,a(ε) =
{
[gr,a(ε)]−1 − Σr,a

L (ε)− Σr,a
R (ε)− Σr,a

ph (ε)
}−1

,

(55)
where gr,a(ε) is the uncoupled retarded (advanced) electronic
GF of the ring. In the above equations, the retarded
(advanced) self-energy arising from the coupling to the right
(left) lead is Σr,a

L,R(ε) = (ε − V†(B))gr,a
L,R(ε)(ε − V(B)), the

corresponding greater (lesser) self-energy is Σ≶
L,R(ε) = (δ≶ −

f (ε, μL,R))[Σr
L,R(ε)−Σa

L,R(ε)], where δ≶ equals 0 for < and
1 otherwise, f (ε, μ) = 1

1+eβ(ε−μ) and ΓL,R(ε) = i[Σr
L,R(ε) −

Σa
L,R(ε)]. To obtain these self-energies one requires as input

the lead–ring hopping matrix V(B) with elements Vmj (B)
and the retarded (advanced) uncoupled GF of the left or right
lead gr,a

L,R(ε). The calculation of the current requires also the
self-energy arising from the interactions with the phonons,
which in the present study is calculated using the first Born
approximation (FBA), and is given by [165]

Σr
ph(ε) = i

∑
k

∫
dω

2π
Mk

{
D<

k (ω)g
r(ε − ω)

+ Dr
k(ω)g

<(ε − ω)+ Dr
k(ω)g

r(ε − ω)
}

Mk, (56)

Figure 24. Conductance versus gate voltage for a single energy level
coupled to two electronic reservoirs in the absence (solid line) and
the presence (dashed line) of an interaction with a single vibrational
mode.

where the Hartree term has been omitted [244]. The lesser and
greater self-energies arising from the coupling to the phonons
are given by

Σ≶
ph(ε) = i

∑
k

∫
dω

2π
Mk D≶

k (ω)g
≶(ε − ω)Mk . (57)

In the above equations, Dr,a
k and D≶

k are the uncoupled
equilibrium retarded (advanced) and lesser (greater) GFs of
phonon mode k, respectively, g≶(ε) is the lesser (greater)
uncoupled electronic GF of the ring and Mk is the EPC matrix
of mode k (diagonal in the c j basis).

One should keep in mind that the first Born approximation
is a truncation of the self-consistent Born procedure which by
itself is an approximation to the solution of the real many-
body problem. Therefore, only the low electron–phonon
coupling regime can be considered within the framework of
this model [244, 156].

5.3. Results

First, we discuss the influence of electron–vibration coupling
on the gate voltage dependence of the zero bias, zero
temperature conductance in the absence of a magnetic field.
For simplicity we start by considering a single energy level
coupled to a single vibrational mode. The results are shown
in figure 24. The vibrational frequency, �, is taken to give
h̄� = 0.01 eV, the coupling to the leads is considered to
be symmetric such that �L = �R = 0.25h̄� and � =
�L + �R = 0.5h̄ω0, and the width of the vibrational energy
levels due to their relaxation to an external thermal bath is taken
as η = 2 × 10−4 eV. We plot the conductance as a function
of the gate potential for the case of no vibrational coupling
( M
�

= 0) and for the case where the coupling of the electron to
the nuclear vibrations of the device equals the coupling of the
device to the leads ( M

�
= 1), where M is the coupling strength

to the vibrational mode. The latter condition defines the upper
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limit for the relevance of the perturbative treatment discussed
in the last section [244].

The two most significant observations are the expected
broadening of the conduction when the EPC is turned on and
the value of the zero bias conduction (g/g0 = 1, where
g0 = 2e2/h is the quantum conductance) in the presence of
EPC. To better understand these results we rewrite the current
for the case that ΓL(ε) = ΓR(ε) ≡ Γ(ε)/2 in the following
way [251]: I = 2e

h

∫
dε( f (ε −μL)− f (ε−μR))T (ε), where

T (ε) = i
4 Tr Γ(ε)(Gr(ε) − Ga(ε)). Note that T (ε) is the

transmission coefficient only when M = 0. In the wide band
limit, for the single resonant level model, T (ε) can be reduced

to �
4

�−2�r
ph,im(ε)

(ε−ε0−�r
ph,re(ε))

2+(�/2−�r
ph,im(ε))

2 . As a result of the fact that

�r
ph,im(0) = 0 at zero bias, the only inelastic contribution to

the conduction comes from the real part of the phonon self-
energy [244]. From this, it follows that, even in the presence of
EPC, the maximal conduction is gmax/g0 = 1, as can clearly
be seen in figure 24. It also immediately implies that the main
contribution to the broadening of the resonant conduction peak
comes from the energy-dependent real part of the phonon self-
energy.

Next, we consider a similar situation in a molecular
AB interferometer composed of N = 40 sites. The
sites are identical and contribute a single electron which is
described by a single Slater s-like orbital. The coupling
between the ring and the leads is limited to the contact
region. For simplicity, the electronic self-energies arising from
this coupling are approximated within the wide band limit.
Specifically, we approximate ΓL,R(ε) with matrices that are
independent of energy, where the only non-vanishing elements
are the diagonal elements (�L,R) corresponding to the two sites
coupled to the left or right lead. The local phonon frequency
� = 0.0125 eV is characteristic of a low frequency optical
phonon in molecular devices [252, 253]. Since our model
does not include a secondary phonon bath required to relax
the energy from the optical phonons, we include a phonon
energy level broadening η = 0.016 �. The coupling to
each of the leads is taken to be �L = �R = 4 � such that
the magnetoconductance switching in the absence of EPC is
obtained at ∼5 T for an inter-site separation of 1.5

ξ
, where

ξ is the inverse correlation length of the Slater s-like orbital
(ξ = 1.3 in atomic units).

In figure 25 a similar plot is presented for the two
degenerate levels of the atomic corral. As can be seen, the
picture that arises in the corral case (figure 25) resembles that
obtained for a single level (figure 24). The difference in the
width of the lineshapes between the two cases results from the
fact that the coupling to the electronic reservoirs is different
and that the coupling strength of the molecular levels to the
vibrations in the corral case is not given by M itself but by
a set of transformations proportional to M , as described in
section 5.1.

We now turn to discuss the role of EPC on the
magnetoconduction when the gate voltage is fixed to zero,
such that at zero magnetic field the corral fully conducts. In
figure 26 we plot the magnetoconductance of the AB ring for
several values of the EPC (M) and for different temperatures
(T ). We focus on the regime of low magnetic flux φ = AB ,

Figure 25. Conductance versus gate voltage for a 40-site atomic
corral coupled to two electronic reservoirs in the absence (solid line)
and the presence (dashed line) of electron–vibration interactions.

where A is the area of the ring and B is taken perpendicular to
the plane of the ring.

The case M = 0 was discussed in detail in sections 3
and 4. The solid curves in figure 26 present the coherent
magnetoconductance switching for different temperatures. As
expected, we find that, upon increasing the temperature, the
maximal value of g/g0 is decreased and the width of the
magnetoconductance peaks is increased linearly with T . This
increase in the width with temperature is a result of the resonant
tunneling conditions and the broadening of the leads’ Fermi
distribution functions as T is varied.

Turning to discuss the case of M �= 0, one of the major
questions is related to the effects of EPC on the switching
capability of small AB rings. Based on the discussion of
the results when the gate voltage was varied, one might
expect that an increase in M will lead to a broadening of the
magnetoconductance peaks, thereby increasing the value of the
magnetic field required to switch a nanometer AB ring, and
perhaps leads to unphysical values of B required to reduced
the conduction significantly. As can be seen in figure 26,
the numerical solution of the NEGF for M �= 0 leads to a
reduction of the width of the magnetoconductance peaks, and
the switching of the AB ring is achieved at lower values of the
magnetic flux compared to the case where M = 0.

This surprising observation can be explained in simple
terms [114]. As discussed above, even in the presence of EPC,
the maximal conduction at zero bias and zero temperature is
gmax/g0 = 1, as is clearly the case for the results shown in the
upper left panel of figure 26 for φ/φ0 = 0. For the symmetric
ring of N = 4n the resonance condition at φ/φ0 = 0 is
equivalent to the condition that electrons entering the ring from
the left interfere constructively when they exit the ring to the
right [254, 255]. This picture also holds when M �= 0 and
the conduction takes a maximal value at φ/φ0 = 0. The
application of a magnetic field leads to destructive interference
and increases the backscattering of electrons. This loss of
phase is even more pronounced when inelastic effects arising
from EPC are included. In the magnetoconductance this is
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Figure 26. Conductance as a function of magnetic flux for several values of the EPC strength M and for different temperatures. The results
are for a ring of N = 40 sites. Similar results were obtained for larger/smaller rings, signifying that the scaling behavior [254, 255] for the
phonon-free case also holds in the case of weak EPC.

translated to a more rapid loss of conduction as a function of
the magnetic field when M is increased. In the weak device–
lead coupling limit, the same physics also describes other
classes of rings [254, 255], like the N = 4n + 1, N = 4n + 2
and N = 4n + 3. However, a gate voltage must be applied
to tune the resonance such that conduction is maximal at zero
magnetic field [111].

Mathematically, the rapid decay of the conduction with
the magnetic field as the EPC is increased can be explained
by analyzing the dependence of T (ε). In figure 27 we plot
Tel(ε) = Tr[ΓL(ε)Gr(ε)ΓR(ε)Ga(ε)], which is the elastic (and
dominant) contribution to T (ε) as a function of energy for
several values of φ/φ0 for M/� = 0 or M/� = 1

4 . In the
lower panel we also plot the corresponding Fermi distribution
integration window. At φ/φ0 = 0, Tel(ε) ≈ 1 near the Fermi
energy (εf), independent of M , and the conduction is g/g0 ≈ 1.
The application of a small magnetic field results in a split
of Tel(ε), where each peak corresponds to a different circular
state [256]. The separation between the two peaks in the elastic
limit � = (ε2 − ε1) ∝ φ/φ0 is proportional to the magnetic
flux, where ε1,2 are the corresponding energies of the two
circular states. When inelastic terms are included, due to the
fact that the imaginary part of Σr

ph(ε) is negligibly small, the
renormalized positions of the two peaks can be approximated
by ε∗

1,2 = ε1,2 +�r
ph,re(ε1,2) = ε1,2 ±�r

ph,re(ε2), which implies
that the renormalized separation between the two peaks can
be approximated by �∗ = (ε∗

2 − ε∗
1 ) = � + 2�r

ph,re(ε2).
Therefore, as M is increased �∗ is also increased, consistent
with the numerical results shown in figure 27.

To summarize this section, as expected, the gate voltage
dependence of the conductance broadens upon switching
on the electron–vibration coupling. Nevertheless, the
magnetoconductance peaks reduce both in size and in width
when the vibrational coupling is taken into account. This

implies a higher sensitivity of the device to the application
of an external magnetic field than that predicted for the pure
coherent case.

6. Summary and prospects

Affecting the current through molecular or nanoscale junctions
is usually done by a combination of bias and gate voltages.
Magnetic fields are less studied because nanodevices can
capture only small fractions of a magnetic flux. In particular,
exploiting Aharonov–Bohm interferometers at the nanometer
scale was regarded as impossible due to the large magnetic field
required to complete a full Aharonov–Bohm period.

The present review summarizes an attempt to overcome
some of the limitations associated with utilizing magnetic
fields as gates in molecular junctions. We describe the physical
conditions at which magnetic fields significantly affect the
conductance in molecular Aharonov–Bohm interferometers.
Several examples were given to emphasize the major
differences between electric and magnetic gates.

Using a simple continuum model of an Aharonov–Bohm
interferometer ring that captures the essential physical features
of the problem, we have identified and isolated the important
parameters that allow control over the conductance through
a nanometric ring using fractions of a magnetic flux (in
terms of the quantum flux). In contrast to the strive to gain
better coupling between the leads and the molecule within a
molecular junction, magnetic control requires weak device–
lead couplings (bad contacts). This results in a resonant
tunneling junction in which the weakly coupled (and thus
extremely narrow) energy levels of the ring allow the transport
only at well-defined energy values. By the application of a gate
voltage it is possible to tune these resonances such that, in the
absence of a magnetic field, the device will conduct. Turning
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Figure 27. Plots of Tel(ε) as a function of energy for M/� = 0
(solid curves) and M/� = 1

4 (dashed curves) for different values of
the magnetic flux. The dotted curve at the lower panel shows
∂

∂μ
� f (ε − μ) at T/� = 0.007, where� f (ε − μ) is the difference

between the Fermi distributions of the left and right leads.

on a magnetic field will shift the narrow doubly degenerate
energy levels of the ring out of resonance with the leads and
thus will lower the conductance considerably. Considering the
combined effect of increasing the lifetime of the electron on the
ring (through the coupling) and controlling its energy (using a
gate voltage), it is possible to narrow the magnetoconductance
peaks in the Aharonov–Bohm spectrum while at the same
time shifting them toward the low magnetic field regime, such
that the device becomes extremely sensitive to small magnetic
fields. This is despite the fact that the full Aharonov–Bohm
period involves magnetic fields orders of magnitude higher.

In order to validate the basic principles revealed by the
continuum model we have presented results based on a tight
binding magnetic extended Hückel theory, which allows for
atomistic calculation of the conductance through molecular
set-ups under the influence of an external magnetic field.
Similar to the conclusions drawn from the continuum model,
the results obtained from atomistic calculation indicate that
nanometric circular set-ups such as atomic corrals, the cross
section of carbon nanotubes or polycyclic aromatic rings, can
be used for Aharonov–Bohm interferometry. The conductance
through the device becomes very sensitive to the magnetic field

when a delicate balance of coupling and gate/bias voltages is
reached. Such devices can be used as electromagnetic switches
or as miniature magnetic sensors.

Similar to the electric gate, the magnetic field provides
means to externally control the conductance of ring-shaped
molecular junctions. However, there are striking differences
in the properties of these two gauges. This was illustrated in
a multi-terminal device, where the polarity of the magnetic
field, which couples to the electronic angular momentum,
played a key role. In this device, the unique symmetry
breaking nature of the magnetic vector potential allows for
a selective control over the outgoing route of the electron.
The magnetic field polarity determines through which of
the two outgoing leads the electrons will transverse the
ring. Another fundamental difference between electrical
and magnetic gauges was observed with respect to inelastic
effects. While the conductance as a function of the gate
voltage broadens upon coupling to phonons, it actually narrows
considerably in response to a magnetic field. This was
illustrated for a model system of an atomic corral, where
improved switching capability was observed as the electron–
phonon coupling strength was increased.

The design of molecular junctions is an extremely difficult
task. Moreover, introducing external electrical gates is quite
limited and the fabrication and application of gate electrodes at
the nanometer scale is still not feasible. In this context, the
development of molecular Aharonov–Bohm interferometers
sensitive to uniform magnetic fields provides yet another
advantage over electrical gating. Devices can be designed
utilizing different sizes/shapes of rings that function at different
magnetic fields, thus generating a multi-component structure.

Several issues still remain open. Most importantly
is the experimental realization of the proposed theoretical
scheme. We have suggested several realistic systems where
the effects discussed in this review can be measured. On
the theoretical side, several directions are not covered
here. First, a treatment of high electron–phonon coupling
is needed [247]. In this regime it is reasonable to
expect that the coherent nature of the transport would be
destroyed, diminishing the interference pattern. Therefore,
it is important to identify the physical conditions at which
such effects are expected to be found. Furthermore, the
treatment of strongly correlated systems where electron–
electron interactions become important is also an open subject
not addressed in the context of molecular Aharonov–Bohm
interferometers. Another interesting direction involves the
role of the spin of the current carrying particles. Since
opposite spins respond differently when entering a magnetic
field region, one would expect that their Aharonov–Bohm
interference patterns would be different [145]. Thus, such set-
ups can provide the grounds for the development of spintronic
devices based on molecular Aharonov–Bohm interferometers.
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[95] Büttiker M, Imry Y, Landauer R and Pinhas S 1985
Generalized many-channel conductance formula with
application to small rings Phys. Rev. B 31 6207–15

[96] Webb R A, Washburn S, Umbach C P and Laibowitz R B
1985 Observation of h/e Aharonov–Bohm oscillations in
normal-metal rings Phys. Rev. Lett. 54 2696–9

[97] Timp G, Chang A M, Cunningham J E, Chang T Y,
Mankiewich P, Behringer R and Howard R E 1987

28

http://dx.doi.org/10.1038/nature03898
http://dx.doi.org/10.1038/39535
http://dx.doi.org/10.1038/29954
http://dx.doi.org/10.1038/46241
http://dx.doi.org/10.1126/science.286.5444.1550
http://dx.doi.org/10.1126/science.1061797
http://dx.doi.org/10.1126/science.291.5505.851
http://dx.doi.org/10.1103/PhysRevLett.88.226801
http://dx.doi.org/10.1002/1439-7641(20020617)3:6<519::AID-CPHC519>3.0.CO;2-2
http://dx.doi.org/10.1038/nature00790
http://dx.doi.org/10.1126/science.1091022
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1038/nature03563
http://dx.doi.org/10.1021/nl0480619
http://dx.doi.org/10.1038/nature04233
http://dx.doi.org/10.1039/b505666g
http://dx.doi.org/10.1126/science.1125925
http://dx.doi.org/10.1103/PhysRevLett.98.206805
http://dx.doi.org/10.1109/LED.2007.891668
http://dx.doi.org/10.1103/PhysRevLett.45.494
http://dx.doi.org/10.1088/0370-1301/62/1/303
http://dx.doi.org/10.1103/PhysRev.115.485
http://dx.doi.org/10.1103/PhysRevLett.5.3
http://dx.doi.org/10.1103/PhysRev.133.A97
http://dx.doi.org/10.1103/PhysRevLett.48.1443
http://dx.doi.org/10.1103/PhysRevLett.52.2069
http://dx.doi.org/10.1103/PhysRevB.30.2964
http://dx.doi.org/10.1103/PhysRevLett.53.718
http://dx.doi.org/10.1016/0378-4363(84)90177-3
http://dx.doi.org/10.1103/PhysRevB.30.6770
http://dx.doi.org/10.1103/PhysRevB.31.3209
http://dx.doi.org/10.1016/0375-9601(83)90011-7
http://dx.doi.org/10.1016/0039-6028(84)90308-X
http://dx.doi.org/10.1103/PhysRevLett.52.129
http://dx.doi.org/10.1103/PhysRevA.30.1982
http://dx.doi.org/10.1103/PhysRevLett.53.102
http://dx.doi.org/10.1103/PhysRevB.30.6798
http://dx.doi.org/10.1103/PhysRevB.31.6207
http://dx.doi.org/10.1103/PhysRevLett.54.2696


J. Phys.: Condens. Matter 20 (2008) 383201 Topical Review

Observation of the Aharonov–Bohm effect for ωcτ > 1
Phys. Rev. Lett. 58 2814–7

[98] Yacoby A, Heiblum M, Mahalu D and Shtrikman H 1995
Coherence and phase sensitive measurements in a quantum
dot Phys. Rev. Lett. 74 4047

[99] van Oudenaarden A, Devoret M H, Nazarov Yu V and
Mooij J E 1998 Magneto-electric Aharonov–Bohm effect
in metal rings Nature 391 768–70

[100] Auslaender O M, Yacoby A, de Picciotto R, Baldwin K W,
Pfeiffer L N and West K W 2002 Tunneling spectroscopy
of the elementary excitations in a one-dimensional wire
Science 295 825–8

[101] Ralph D C, Black C T and Tinkham M 1997 Gate-voltage
studies of discrete electronic states in aluminum
nanoparticles Phys. Rev. Lett. 78 4087–90

[102] Cobden D H, Bockrath M, McEuen P L, Rinzler A G and
Smalley R E 1998 Spin splitting and even–odd effects in
carbon nanotubes Phys. Rev. Lett. 81 681–4

[103] Cobden D H, Bockrath M, Chopra N G, Zettl A, McEuen P L,
Rinzler A, Thess A and Smalley R E 1998 Transport
spectroscopy of single-walled carbon nanotubes Physica B
251 132–5

[104] Cronenwett S M, Oosterkamp T H and Kouwenhoven L P
1998 A tunable Kondo effect in quantum dots Science
281 540–4

[105] Goldhaber-Gordon D, Shtrikman H, Mahalu D,
Abusch-Magder D, Meirav U and Kastner M A 1998
Kondo effect in a single-electron transistor Nature
391 156–9

[106] Nyga ringrd J, Cobden D H and Lindelof P E 2000 Kondo
physics in carbon nanotubes Nature 408 342–6

[107] Buitelaar M R, Nussbaumer T and Schönenberger C 2002
Quantum dot in the Kondo regime coupled to
superconductors Phys. Rev. Lett. 89 256801

[108] Pasupathy A N, Bialczak R C, Martinek J, Grose J E,
Donev L A K, McEuen P L and Ralph D C 2004 The
Kondo effect in the presence of ferromagnetism Science
306 86–9

[109] Yu L H and Natelson D 2004 The Kondo effect in C60
single-molecule transistors Nano Lett. 4 79–83

[110] Geim A K and Novoselov K S 2007 The rise of graphene
Nat. Mater. 6 183–91

[111] Hod O, Baer R and Rabani E 2004 Feasible nanometric
magnetoresistance devices J. Phys. Chem. B 108 14807

[112] Hod O, Rabani E and Baer R 2005 Magnetoresistance devices
based on single-walled carbon nanotubes J. Chem. Phys.
123 051103

[113] Hod O, Baer R and Rabani E 2005 A parallel electromagnetic
molecular logic gate J. Am. Chem. Soc. 127 1648

[114] Hod O, Baer R and Rabani E 2006 Inelastic effects in
Aharonov–Bohm molecular interferometers Phys. Rev.
Lett. 97 266803

[115] Hod O, Rabani E and Baer R 2006 Magneto-resistance of
nanoscale molecular devices Acc. Chem. Res. 39 109–117

[116] Jackson J D 1999 Classical Electrodynamics
(New York: Wiley)

[117] Fuhrer A, Luescher S, Ihn T, Heinzel T, Ensslin K,
Wegscheider W and Bichler M 2001 Energy spectra of
quantum rings Nature 413 822

[118] Kittel C 1996 Introduction to Solid State Physics
(New York: Wiley)

[119] Datta S 1995 Electronic Transport in Mesoscopic Systems
(Cambridge: Cambridge University Press)

[120] Datta S 2004 Electrical resistance: an atomistic view
Nanotechnology 15 S433–51

[121] Gefen Y, Imry Y and Azbel N Y 1984 Quantum oscillations
and the Aharonov–Bohm effect for parallel resistors
Phys. Rev. Lett. 52 129

[122] Cahay M, Bandyopadhyay S and Grubin H L 1989 Two types
of conductance minima in electrostatic Aharonov–Bohm
conductance oscillations Phys. Rev. B 39 12989

[123] Imry Y 2002 Introduction to Mesoscopic Physics 2nd edn
(Oxford: Oxford University Press)

[124] Aharony A, Entin-Wohlman O and Imry Y 2003 Measuring
the transmission phase of a quantum dot in a closed
interferometer Phys. Rev. Lett. 90 156802

[125] Benjamin C, Bandopadhyay S and Jayannavar A M 2002
Survival of φ0/2 periodicity in presence of incoherence in
asymmetric Aharonov–Bohm rings Solid State Commun.
124 331–4

[126] Jayannavar A M and Benjamin C 2002 Wave attenuation
model for dephasing and measurement of conditional times
Pramana J. Phys. 59 385–95

[127] Aharony A, Entin-Wohlman O, Halperin B I and Imry Y 2002
Phase measurement in the mesoscopic Aharonov–Bohm
interferometer Phys. Rev. B 66 115311

[128] Vugalter G A, Das A K and Sorokin V A 2004 A charged
particle on a ring in a magnetic field: quantum revivals
Eur. J. Phys. 25 157–70

[129] Zehnder L 1891 Ein neuer interferenzrefraktor
Z. Instrumentenkunde 11 275–85
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