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1. Reference structures in the initial dataset 

The initial dataset consisted of three bilayer systems, namely the V0V0 (pristine bilayers), 

V0V1 (a single vacancy on the top layer and a pristine bottom layer), and V1V1 (a single 

vacancy in each layer) with a total of 7,258 structures (369,043 atoms). The generation of 

configurations employed two methods: manual construction and molecular dynamics 

(MD) simulations, as described in the main text. 

For the pristine V0V0 bilayer system, the initial configurations consisted of four groups: 

1. Binding configurations - for three distinct stacking modes - AA, AB, and SP, we use 

a primitive hexagonal cell consisting of four atoms (see Figure S1a). Within each 

stacking mode, rigidly vertically shifted structures were constructed with interlayer 

distances ranging from 2.0 Å to 10.0 Å in increments of 0.1 Å, yielding a total of 

243 structures. 

2. Sliding configurations - starting from an AB-stacked bilayer in a primitive hexagonal 

cell containing four atoms, we constructed a set of laterally shifted configurations 

by either rigid shifts of the top layer or flexible shifts, where the out of plane 

degree of freedom of each atom was allowed to relax. For rigid sliding, three 

different interlayer spacings (3.2 Å, 3.4 Å, and 3.6 Å) were employed, whereas for 

flexible sliding, an initial interlayer spacing of 3.4 Å was used. In each case, a grid 

of 21 × 21  shifted configurations (in the zigzag and armchair directions) was 

considered, yielding a total of 441 structures. This procedure led to a grand total 

of 1,764 structures. 

3. Deformed configurations - for each of the binding configurations described in item 

#1 above, we constructed four deformed structures by applying random variations 

of up to 3% in the lattice vectors and of up to 0.1 Å in the atomic positions, thus 

generating a total of 972 deformed structures. 

4. Molecular dynamics configurations - for the pristine V0V0 bilayer, we used the 

REBO1-ILP2 force-fields to perform MD simulations (without sliding) at five 

different temperatures of 300, 600, 900, 1200, and 1500 K — employing the Nose-

Hoover3 thermostat. Here, a bilayer of 4×4 supercells, containing 64 atoms in total, 

was selected (see Figure S1b). Each simulation was run for 100 ps with a timestep 

of 1 fs. From these simulations, we sampled a total of 502 structures from the MD 

trajectories (202 structures from the 600 K and 1200 K simulations – 101 structures 

each, and 100 structures from each of the remaining various temperature 

simulations). 
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Figure S1. Atomistic structures of (a) a primitive 4 atom V0V0 unit cell; (b) a 64 atom V0V0 supercell; (c) a 63 
atom V0V1 supercell; and (d) a 62 atom V1V1 supercell. The top layer atoms are depicted in blue, and the 
bottom layer atoms are depicted in red. Vacancies are represented by hollow circles. 

 

For the V0V1 bilayer system, the initial configurations consisted of two groups: 

1. Relaxed configurations – three different stacking modes, each containing 63 atoms, 

have been considered: AA, AB1 (where the vacancy resides atop the center of a carbon 

hexagon in the bottom layer), and AB2 (where the vacancy is eclipsed with a carbon 

atom at the bottom layer) configurations (see Figure S1c). Structural optimization has 

been performed separately for each stacking configuration. To that end, we adopted 

the PBE exchange-correlation density functional approximation4 with the Grimme D3 

dispersion correction method (PBE+D3), 5 which is computationally less demanding 

than the PBE+MBD approach. An energy convergence criterion of 10-6 eV for the 

electronic self-consistent field (SCF) loop with a cutoff energy of 650 eV, and a force 

tolerance of 0.01 eV/Å for the ionic relaxation loop, were used. The in-plane Brillouin 

zone was sampled using a Γ-centered grid with a k-point density of 0.25/Å. Starting 

from the initial configuration, we selected one structure out of every five optimization 

steps.  

2. Molecular dynamics configurations – for the standard ab-initio molecular dynamics 

(AIMD) simulations, we also used the PBE+D3 approach with an electronic SCF energy 

threshold of 10−5 eV, and an energy cutoff of 500 eV. The simulations were performed 

(c) V0V1 supercell

(b) V0V0 supercell

AA AB SP

AB2AB1AA

AB2AB1AA
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(a) V0V0 unit cell
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with VASP6, 7 (IBRION=0) using the isothermal ensemble at a temperature of 300 K, 

and a timestep of 1 fs. Here, the Brillouin zone was sampled only at the Γ point. The 

three optimized structures of item #1 above were used as initial configurations for the 

MD simulations. Each simulation trajectory lasted 1000 propagation steps, out of 

which 20 structures have been evenly extracted. 

With this, a total of 139 V0V1 structures have been obtained. 

Similar to the V0V1 bilayer case the initial configurations of the V1V1 bilayer consisted of 

relaxed and MD configurations each containing 62 atoms (see Figure S1d). To capture the 

dynamics of bond formation and breaking we considered several interlayer spacings and 

temperatures. The optimization was performed using the same approach as in the V0V1 

case, where we considered three initial interlayer spacings (2.0 Å, 2.5 Å, and 3.0 Å) at each 

stacking mode and extracted the structure at each optimization step. The MD simulations 

also followed the V0V1 case now starting from the nine optimized structures and 

performed at temperatures of 300, 900, and 1500 K. From each of the 27 trajectories that 

were 1000 propagation steps long, we evenly extracted 100 structures. 

With this, a total of 3638 V1V1 structures have been obtained. 
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2. Division of the initial dataset using farthest point sampling 

In this study, we employed the farthest point sampling8, 9 (FPS) method to split the initial 

dataset into a training subset and a validation subset. To that end, we first used the 

machinery of the neuroevolution potential (NEP) 10, 11 to convert the input configurations 

into descriptor vectors. Using these vectors, we performed a principal component analysis 

(PCA) 12, 13 that allowed us to extract a representative group of training configurations out 

of the entire initial dataset (see Figure S2), thus reducing the computational burden 

involved in the training stage of the NequIP potential. Using this approach, a total of 3299 

structures (92375 atoms) were selected for the training set out of the initial 7258 

structures (278357 atoms), using a minimal distance of 0.05 on the two-dimensional PCA 

plane. 

 

 
Figure S2. Two-dimensional PCA analysis used to extract the training set (blue points) out of the initial 
dataset (orange points). 
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3. Molecular dynamics simulations for iterative learning 

As mentioned in the main text, during each cycle of the iterative learning algorithm 

applied to the V1V1 bilayer we performed sliding dynamics simulation to obtain additional 

training configurations. The simulation setup, described in Figure 3a and the Methods 

section of the main text, was adopted but with smaller model systems since the extracted 

structures were intended for further density functional theory (DFT) calculations. As 

depicted in Figure S3, the initial structure used in these MD simulations was an AB stacked 

V1V1 bilayer comprising of 78 atoms, where a vacancy pair was manually created by 

removing two atoms (one from each layer), laterally positioned 0.49 nm apart, 

corresponding to double the lattice parameter. This setup allows us to observe the 

formation of interlayer bonding as the two vacancies move close to each other under 

normal pressure loading. During each iteration, we carried out MD simulations at a 

temperature of 300 K for 123 ps (using a time step of 1 fs), with a sliding speed of 10 m/s 

in the zigzag direction. 

 

 

Figure S3. V1V1 bilayer model system used as an initial configuration for the MD simulations performed as 
part of the iterative learning process. Carbon atoms in the top layer are depicted in blue, those in the bottom 
layer are depicted in red, and vacancies are represented by hollow circles. 
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4. Effective spring stiffness for multi-layer graphene stack simulations 

In Figure 3a of the main text, we used harmonic springs of stiffness of 50 N/m to anchor 

the substrate (bottom layer) atoms to their original positions. This stiffness was selected 

to mimic a bilayer substrate. To demonstrate this, we conducted a quasi-static sliding 

simulation along the zigzag direction of an aligned V0V0 bilayer model comprising of 840 

atoms, starting from an initial AB-stacked configuration. During the simulation, the bottom 

layer atoms were kept fixed and only the vertical coordinate of the top layer atoms was 

allowed to relax following each displacement step. Figure S4 presents the lateral force 

acting on the center of mass of the top layer as a function of lateral displacement. A fit to 

the linear section of the force trace yields a stiffness (slope) of 𝑘 = 56.8 N/m. For an M-

layered graphene stack, there are 𝑀 − 1 such interfaces that can be mimicked by 𝑀 − 1 

serial harmonic lateral springs (each of stiffness 𝑘). The effective stiffness of the stack can 

be estimated via 𝐾𝑀  =  𝑘/(𝑀 − 1). Using 𝐾𝑀 =  50 N/m we obtain M ≈ 2. 

 

    
Figure S4. Lateral force (blue circles) acting on the center of mass of the top layer of a V0V0 bilayer, as a 
function of lateral displacement during NequIP quasi-static sliding simulations. Linear fit is presented by the 
orange line. 

  



S8 

 

5. Energy barrier across different stacking modes 

In Figure 3c of the main text, we observe a slight difference in the ILP and NequIP force 

traces of the aligned pristine interface. As demonstrated in Figure. S5a-c, the rigid sliding 

potential energy surfaces (PESs) obtained by ILP, NequIP, and PBE-MBD are in qualitative 

agreement. However, ILP predicts a higher energy corrugation of 7 meV/atom compared 

to 3.5 meV/atom and 4.0 meV/atom predicted by NequIP and PBE-MBD, respectively. We 

attributed this discrepancy mainly to the different levels of DFT theory employed as 

reference datasets for the two potentials. Specifically, NequIP is based on PBE-MBD 

reference calculations, whereas ILP is based on reference data obtained at the HSE-MBD 

level of theory. 

Figure S5d compares the ILP, NequIP, and PBE-MBD sliding energy profiles along the 

armchair direction with representative HSE-MBD results obtained at the high symmetry 

AA, AB, and SP stacking modes. Notably, the NequIP profile (full blue line) agrees well with 

the PBE-MBD results (blue circles, differences smaller than 0.5 meV/atom). The ILP profile 

(orange dashed line) matches the HSE-MBD reference data (orange squares, which is 

somewhat higher than that predicted by PBE+MBD) for the AB to SP barrier and 

overestimates the AB to AA barrier by an acceptable value of 2.1 meV/atom. 

Both ILP and HSE-MBD predict a higher energy for the AA stacking mode than NequIP and 

PBE-MBD, indicating the consistency between the potentials and their corresponding DFT 

reference data. It's worth noting that both ILP and NequIP underestimate the energy of 

the SP stacking mode, as seen in the inset of Figure S5d. 

 
Figure S5. Sliding PESs of pristine bilayer graphene as predicted by (a) PBE-MBD, (b) NequIP, and (c) ILP. Panel 
(d) presents the energy profile along the direction of the black arrow marked in panel b, as predicted by the 
three methods, compared to HSE-MBD results for high symmetry stacking modes. The inset in (d) provides 
a zoomed-in view of the profile along the AB to SP path. All energy values are reported relative to the AB 
stacking mode of the corresponding calculation method. 
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6. NEP and DP training 

For comparison purposes, apart from NequIP, we have also used the NequIP reference 

dataset to train the NEP and the deep potential (DP14) machine learning force-fields. The 

input and output training files are provided in the Zendo repository 

(10.5281/zenodo.10374205).  

For NEP, we used the NEP3 framework10, 11 implemented in the GPUMD package (version 

3.7). 15 For both the radial and angular descriptor components, we used 13 radial functions, 

each being a linear combination of 13 Chebyshev polynomials. The neighbor list cutoff 

distance for the radius and angular descriptor components was set to 7 Å (which is same 

with NequIP) and 4 Å, respectively. For the angular components, we used both three-body 

and four-body correlations up to 𝑙 = 4 and 𝑙 = 2, respectively. The number of neurons in 

the hidden layer was chosen to be 80. For the hyperparameters related to the loss function, 

the weights of both the ℒ1 and ℒ2 norms were set to 0.05, and the weights of both energy 

and force terms were set to 1.0 (as in Ref 11). The neural network was trained over 

500,000 generations using the natural evolution strategy16 with a population size of 50. 

Figure S6a and b present the energy and forces correlation plots, respectively, obtained 

using the trained NEP. 

For DP, we employed the DeePMD-kit package (version 2.2.2) 14 with a hybrid descriptor 

combining se_e2_a (with a cutoff of 6 Å) and se_e3 (with a cutoff of 4 Å) to describe two- 

and three-body interactions, respectively. 17 For the se_e2_a descriptors, the embedding 

net dimensions were (25, 50, 100), and for the se_e3 descriptors they were (20, 40, 80). 

The fitting net dimensions were set to (240, 240, 240) for both descriptors. The initial 

weighting parameters for the energy, forces, and virials were set to 0.02, 1000, and 0.01 

respectively, which are linearly adjusted to 1, 1, and 0.1 during the training process. The 

training involved 7,594,000 steps with an exponentially reducing learning rate (from 10-3 

to 10-8). Figure S6c and d present the energy and forces correlation plots, respectively, 

obtained using the trained DP.  

In contrast to NequIP (energy and force root mean square errors (RMSEs) less than 1.5 

meV/atom and 50 meV/Å for both training and validation sets, respectively, see Figure 2a 

of main text), both DP and NEP exhibit significantly higher errors in predicting energies 

and atomic forces for both training and validation sets, with energy RMSEs exceeding 3.5 

meV/atom and force RMSEs surpassing 110 meV/Å, as demonstrated in Figure S6. 

https://zenodo.org/doi/10.5281/zenodo.10374205
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Figure S6. (a) energy and (b) atomic force NEP correlation maps (against DFT reference data) obtained for 
the training (blue) and validation (orange) sets. (c) and (d) are the same as (a) and (b) but for DP. 
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7. Comparison with other traditional and machine learning potentials 

In the main text, we have focused on the reactive NequIP approach for defected interlayer 

graphene sliding. One may wonder whether less computationally demanding machine 

learning potentials (MLPs) or even existing reactive traditional potentials could be 

harnessed for this task, reducing the overall computational burden. To evaluate this, we 

have considered additional four MLPs and four traditional potentials. The MLPs include 

DP, 14 NEP, 10, 11 the Gaussian approximation potential (GAP-2020), 18, 19 and a hybrid neural 

network potential for graphene systems (referred to as hNN-Grχ). 20 Out of these, DP and 

NEP were trained using the final training set of NequIP (see section S6 above for details), 

whereas for GAP-2020 and hNN-Grχ, which were developed as general purpose potentials 

for carbon-based and graphitic systems, respectively, the original parameterizations were 

adopted. The considered reactive traditional potentials included AIREBO, 21 Tersoff, 22 

LCBOP, 23 and ReaxFF, 24 all of which were designed to treat graphitic systems and adopted 

with their original parameterizations in the present study. 

 

 

Figure S7. RMSE values of (a) forces, (b) binding energies, (c) sliding energies, and (d) formation energies, 
calculated for the NequIP (orange), four additional MLPs (blue), and four additional traditional potentials 
(green) against reference DFT calculations. Due to the absence of long-range van der Waals interactions, the 
Tersoff potential is excluded from the binding energy and sliding potential RMSE comparisons. 

 

Figure S7 compares the RMSEs of the forces, and binding, sliding, and formation energies 

calculated for the various potentials against reference DFT calculations. For the forces 

(Figure S7a) we used the test set described in Figure 1c of the main text; for the binding 

(Figure S7b) and sliding (Figure S7c) energies we used the pristine bilayer configurations 

presented in Figure 2b, c of the main text; and for the formation energies (Figure S7d) we 

used the defected graphene structures presented in the Methods section (see also Figure 
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4a) of the main text. Generally, the MLPs perform better than the traditional potentials 

(but at a higher computational cost). Out of all MLPs considered, NequIP seems to perform 

best, with a significant advantage when describing the forces. Notably, hNN-Grχ, which 

benefits from an analytical term designed for describing long-range dispersion, 20 

performs well for pristine bilayer graphene binding and sliding energies. Nonetheless, it 

presents a considerable deviation in the forces for our test set that includes defected 

structures. 

To rationalize the general outperformance of the MLPs over the traditional potentials, we 

present in Figure S8 force correlation maps plotted against DFT reference data for the test 

set. While all MLPs considered demonstrate correlation maps with clear diagonal 

character (top panels), the traditional force fields exhibit significant deviations from the 

diagonal. This indicates that the task of developing traditional potentials, capable of 

appropriately describing reactive sliding in defected layered interfaces, is extremely non-

trivial. 

 

 
Figure S8. Force correlation maps for NequIP (orange), four additional MLPs (blue), and the four additional 
traditional potentials (green) considered, plotted against DFT reference data for the test set. 



S13 

 

 

Focusing on binding, we plot in Figure S9 the binding energy curves obtained using the 

NequIP and additional eight potentials compared to the reference DFT results. By 

construction, all traditional force-fields give the correct physical binding profile, where 

AIREBO and ILP give excellent agreement with the reference data over the entire range, 

but LCBOP and ReaxFF exhibit significant deviations, especially in the vicinity of the 

equilibrium interlayer distance – the most physically relevant regime. In terms of the MLPs, 

both NEP and hNN-Grχ demonstrate accuracy similar to that of NequIP. Conversely, DP and 

GAP2020 yield quite irregular binding energy curves, where the latter presents an 

unphysical double minimum structure, consistent with previous observations. 25 

 

 
Figure S9: Binding energy curves of AB stacked pristine bilayer graphene calculated by rigid vertical shifts 
using the NequIP (orange), four additional MLPs (blue), and four additional traditional potentials (green) 
plotted in comparison to reference DFT calculations (red). The energy origin is set to the value of two 
infinitely separated graphene layers, obtained separately for each method. 
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Considering next the sliding physics, we plot in Figure S10 the sliding PESs, obtained using 

NequIP and the eight additional potentials. All traditional force-fields (AIREBO, ILP, LCBOP, 

and ReaxFF) yield the correct qualitative landscape. However, AIREBO and LCBOP 

significantly underestimate the sliding energy corrugation, whereas ILP and ReaxFF 

provide overestimate the reference DFT results. Here, one should recall that ILP was 

parameterized against HSE+MBD (rather than PBE+MBD) reference data (see Section S5 

above). In terms of the additional MLPs (DP, NEP, GAP2020, and hNN-Grχ), DP and 

GAP2020 are unable to reproduce the sliding energy landscape even qualitatively, 

whereas NEP and hNN-Grχ tend to overestimate and underestimate the sliding energy 

corrugation, respectively. Furthermore, NEP fails to describe the saddle point regions, and 

hNN-Grχ yields features that are too wide. Notably, NequIP provides the best agreement 

with the reference data out of all MLPs considered, including those trained herein. 

 

 
Figure S10. Sliding potential energy landscapes of bilayer graphene calculated using the (b) NequIP, (c-f) four 
additional MLPs, and (g-j) four additional traditional potentials plotted in comparison to (a) reference DFT 
calculations. The calculations are based on the DFT optimized configurations used to create Figure 2d of the 
main text. The energy origin is set to the value of AB stacked bilayer graphene, evaluated separately by each 
method for the same structure. 

 

The last static property to consider is the formation energy of the defected structures. 

Figure S11 presents the formation energies of the defected structures considered in Figure 

4a of the main text, as calculated using DFT (red) and NequIP (orange) with four additional 

MLPs (blue) and four additional traditional potentials (green). Altogether, the MLPs 

perform considerably better than the reactive traditional potentials, which show either 

significant quantitative and even qualitative (Tersoff) discrepancy with the reference data. 

Out of all MLPs considered, GAP2020 and hNN-Grχ provide the worst agreement with the 
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reference data, though generally better than the traditional potentials. NequIP, DP, and 

NEP perform similarly, where the former being the most accurate. This is not surprising, 

considering the fact that all three MLPs have been trained herein, where for the former 

we used an interactive learning scheme. 

 

 
Figure S11: Comparison of the formation energies, predicted by DFT (red), NequIP (orange), and additional 
four MLPs (blue) and traditional potentials (green), for four defected structures: (a) V1, (b) ABI, (c) ABII, and 
(d) AAIII (see Figure 4a of the main text).  

 

To evaluate the dynamical performance of the various potentials, we present in Figure S12 

the shear stress traces obtained from zero temperature (0K) dynamical simulations of 

pristine bilayer graphene sliding along the zigzag direction starting from the AB stacking 

mode. All simulations were performed using the LAMMPS package. 26 For the DP, NEP, 

GAP2020, and hNN-Grχ potentials, the DeePMD-kit, 27 NEP_CPU, 28 QUIP, 29 and KIM30 

packages were used as libraries called by the LAMMPS package, respectively. The 

simulation setup presented in Figure 3a of main text was adopted for all potentials. 

From Figure S12 it becomes evident that both NequIP and hNN-Grχ provide good 

agreement with the reference REBO-ILP trace. NEP is able to capture the magnitude of 

the shear-stress variations and the overall periodicity but introduces shifts and high 

frequency variations that are absent in the reference trace. DP and GAP2020 demonstrate 

shear-stress traces that significantly deviate from the reference trace both quantitatively 

and qualitatively and cannot be used to describe the system dynamics in their present 

form. Notably, all traditional reactive potentials significantly underestimate the 

magnitude of the shear-stress variations obtained via REBO-ILP. 
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Figure S12. Dynamical shear stress traces of pristine bilayer graphene obtained using NequIP, NEP, and hNN-
Grχ (top panel), DP and GAP2020 (middle panel), and the three additional traditional reactive potentials 
(bottom panel) considered, compared to the REBO-ILP trace. 

 

Finally, in Figure S13, we compare the different potentials in terms of their accuracy and 

computational efficiency. As a measure of accuracy, we used the force RMSE evaluated by 

the potentials against reference DFT values obtained for the test set (see Figure S8). To 

evaluate the computational efficiency, we performed sliding dynamics simulations of 

pristine aligned bilayer graphene following the protocol described in Figure 3a of the main 

text. The simulations for all potentials started from the same initial AB stacked model 

system, consisting of 840 atoms (see Figure S14), and lasted for 520 ps. The elapsed wall 

time (divided by the number of atoms and number of time steps) was used as a measure 

of computational efficiency. For comparison we also performed a 100-steps standard 

AIMD simulation, on the same initial structure, using the PBE+D3 DFT density functional 

approximation as implemented in VASP. The simulation was performed with Γ -only 

sampling of the Brillouin zone, a planewave energy cutoff of 520 eV, and an energy 

threshold of 10-5 eV for the electronic self-consistent loop. 
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For NequIP and DP we used an Nvidia GeForce RTX 2080 Ti GPU card. For the other 

potentials and AIMD simulation, the 48 Intel(R) Xeon(R) Platinum 9242 CPU cores were 

used. We note that this is not an exhaustive comparison. First, we use a mixture of CPU 

and GPU platforms, where GPUs are used whenever available for a given potential or 

when they outperform CPUs. Second, we do not explore factors such as system size and 

the effect of interlayer bonding. Nonetheless, the comparison does provide important 

insights regarding the performance of the various approaches. 

Clearly, all traditional reactive force-fields considered present overall low computational 

cost but at a price of significantly reduced accuracy. The MLPs are generally characterized 

by higher computational cost and increased accuracy. Notably, the developed NequIP 

provides a good compromise between accuracy and computational efficiency, being more 

than an order of magnitude more accurate than AIREBO and more than three orders of 

magnitude more efficient than AIMD. 

 

 
Figure S13. Ranking of the various potentials including NequIP (orange circle), additional four MLPs (blue 
circles), and additional four traditional potentials (green circles) considered in the present study, based on 
the test set force RMSE and dynamic simulation computational cost. Here, the computational speed of AIMD 
simulations (Red vertical line) is provided as a reference. 
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8. Reactive sliding dynamics production simulations 

As a demonstration of the utility of the developed NequIP force-field we performed 

production MD simulations studying the effects of lattice defects and interlayer bonding 

on the frictional properties of graphitic interfaces. To that end, we considered aligned and 

twisted V1V1 bilayer systems and compared the results against those of the corresponding 

pristine V0V0 interfaces. Figure S14 shows the atomistic structures of aligned and twisted 

V1V1 bilayers, each mirroring their V0V0 counterparts, except for the intentional 

introduction of atomic vacancies. For the aligned V1V1 bilayer (top panel), we created two 

vacancies at a lateral distance of 1.72 nm (separated by seven lattice vectors). For the 

twisted V1V1 bilayer (bottom panel), a similar distance of 1.73 nm was chosen to introduce 

the vacancies. We introduce the vacancies such that upon sliding in the zigzag direction 

of the bottom layer they eventually arrive at an eclipsed configuration, where bond 

formation is most likely to occur. Room temperature (300 K) MD simulations have been 

performed for 516 and 518 ps for the aligned and twisted bilayer models, respectively, at 

a sliding velocity of 10 m/s, yielding the results presented in Figure 5 of the main text. 

 
Figure S14. Top view of the aligned (top panel) and 9.43° twisted (bottom panel) V1V1 graphene bilayers 
used as initial configurations for the reactive sliding dynamics simulations. The insets highlight the vicinity 
of the vacancies. 
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9. Validation of thermostatting approach 

The thermostatting approach adopted in the present study applies Langevin dynamics to 

all atoms at the sliding interface. To verify that the direct application of Langevin dynamics 

to the atoms participating in the covalent interlayer binding processes does not influence 

our conclusions, we have repeated some of our calculations while excluding the 

thermostat term from the dangling atoms in the defect regions (three in the top layer and 

three in the bottom layer, see the bottom panel of Figure S14). Ten additional independent 

random trajectories have been simulated for the twisted V1V1 bilayer under a normal 

pressure of 2.5 GPa at a temperature of 300 K. 

Figure S15 compares the average shear stress trace obtained for the ten traces using the 

modified thermostatting approach (blue solid line) against that acquired for 100 traces 

using the original approach (orange dashed line). Notably, already for this small statistical 

ensemble of traces the modified approach is in excellent agreement with the original 

thermostatting procedure, leading us to the understanding that directly applying the 

Langevin thermostat to the sliding interface atoms, and specifically to those participating 

in the interlayer binding process, has minor effect on our conclusions. 

 

 

Figure S15. Comparison of the average shear stress traces obtained during the sliding dynamics simulations 
of the twisted V1V1 bilayer graphene at a temperature of 300 K and under a normal pressure of 2.5 GPa with 
the original (dashed orange line) and modified (solid blue line) thermostatting approach. 

 

  



S20 

 

References 

(1) Brenner, D. W.; Shenderova, O. A.; Harrison, J. A.; Stuart, S. J.; Ni, B.; Sinnott, S. B. A second-generation reactive 
empirical bond order (REBO) potential energy expression for hydrocarbons. Journal of Physics: Condensed Matter 2002, 
14, 783–802. 
(2) Ouyang, W.; Mandelli, D.; Urbakh, M.; Hod, O. Nanoserpents: Graphene Nanoribbon Motion on Two-Dimensional 
Hexagonal Materials. Nano Letters 2018, 18, 6009-6016. 
(3) Martyna, G. J.; Tobias, D. J.; Klein, M. L. Constant pressure molecular dynamics algorithms. The Journal of Chemical 
Physics 1994, 101, 4177-4189. 
(4) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Physical Review Letters 1996, 
77, 3865. 
(5) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional 
dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics 2010, 132, 154104. 
(6) Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis 
set. Physical Review B 1996, 54, 11169. 
(7) Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review 
B 1999, 59, 1758. 
(8) Bartók, A. P.; De, S.; Poelking, C.; Bernstein, N.; Kermode, J. R.; Csányi, G.; Ceriotti, M. Machine learning unifies the 
modeling of materials and molecules. Science Advances 2017, 3, e1701816. 
(9) De, S.; Bartok, A. P.; Csanyi, G.; Ceriotti, M. Comparing molecules and solids across structural and alchemical space. 
Physical Chemistry Chemical Physics 2016, 18, 13754-13769. 
(10) Fan, Z.; Zeng, Z.; Zhang, C.; Wang, Y.; Song, K.; Dong, H.; Chen, Y.; Ala-Nissila, T. Neuroevolution machine learning 
potentials: Combining high accuracy and low cost in atomistic simulations and application to heat transport. Physical 
Review B 2021, 104 (10). DOI: 10.1103/PhysRevB.104.104309. 
(11) Fan, Z.; Wang, Y.; Ying, P.; Song, K.; Wang, J.; Wang, Y.; Zeng, Z.; Xu, K.; Lindgren, E.; Rahm, J. M.; et al. GPUMD: A 
package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations. The 
Journal of Chemical Physics 2022, 157, 114801. 
(12) https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html. (accessed 2023-12-05). 
(13) Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; 
Dubourg, V. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 2011, 12, 2825-2830. 
(14) Wang, H.; Zhang, L.; Han, J.; Weinan, E. DeePMD-kit: A deep learning package for many-body potential energy 
representation and molecular dynamics. Computer Physics Communications 2018, 228, 178-184. 
(15) Fan, Z.; Chen, W.; Vierimaa, V.; Harju, A. Efficient molecular dynamics simulations with many-body potentials on 
graphics processing units. Computer Physics Communications 2017, 218, 10-16. DOI: 10.1016/j.cpc.2017.05.003. 
(16) Wierstra, D.; Schaul, T.; Glasmachers, T.; Sun, Y.; Peters, J.; Schmidhuber, J. Natural evolution strategies. The Journal 
of Machine Learning Research 2014, 15, 949-980. 
(17) Zhang, L.; Han, J.; Wang, H.; Saidi, W.; Car, R. End-to-end symmetry preserving inter-atomic potential energy model 
for finite and extended systems. Advances in neural information processing systems 2018, 31. 
(18) Bartók, A. P.; Payne, M. C.; Kondor, R.; Csányi, G. Gaussian approximation potentials: The accuracy of quantum 
mechanics, without the electrons. Physical Review Letters 2010, 104, 136403. 
(19) Rowe, P.; Deringer, V. L.; Gasparotto, P.; Csanyi, G.; Michaelides, A. An accurate and transferable machine learning 
potential for carbon. The Journal of Chemical Physics 2020, 153, 034702. 
(20) Wen, M.; Tadmor, E. B. Hybrid neural network potential for multilayer graphene. Physical Review B 2019, 100, 
195419. 
(21) Stuart, S. J.; Tutein, A. B.; Harrison, J. A. A reactive potential for hydrocarbons with intermolecular interactions. The 
Journal of Chemical Physics 2000, 112, 6472-6486. 
(22) Kınacı, A.; Haskins, J. B.; Sevik, C.; Çağın, T. Thermal conductivity of BN-C nanostructures. Physical Review B 2012, 
86, 115410. 
(23) Los, J.; Fasolino, A. Intrinsic long-range bond-order potential for carbon: Performance in Monte Carlo simulations 
of graphitization. Physical Review B 2003, 68, 024107. 
(24) Chenoweth, K.; Van Duin, A. C.; Goddard, W. A. ReaxFF reactive force field for molecular dynamics simulations of 
hydrocarbon oxidation. The Journal of Physical Chemistry A 2008, 112, 1040-1053. 
(25) Qian, C.; McLean, B.; Hedman, D.; Ding, F. A comprehensive assessment of empirical potentials for carbon materials. 
APL Materials 2021, 9, 061102. 
(26) Thompson, A. P.; Aktulga, H. M.; Berger, R.; Bolintineanu, D. S.; Brown, W. M.; Crozier, P. S.; in't Veld, P. J.; Kohlmeyer, 
A.; Moore, S. G.; Nguyen, T. D. LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, 
meso, and continuum scales. Computer Physics Communications 2022, 271, 108171. 
(27) deepmd-kit. https://github.com/deepmodeling/deepmd-kit. Accessed: 2023-08-07. 



S21 

 

(28) NEP_CPU. https://github.com/brucefan1983/NEP_CPU. Accessed: 2023-08-07.  
(29) QUIP. https://github.com/libAtoms/QUIP. Accessed: 2023-08-07. 
(30) kim-api. https://github.com/openkim/kim-api. Accessed: 2023-08-07. 

 


