
Interlayer Interactions in Low-Dimensional
Layered Hetero-Structures: Modeling
and Applications

Oded Hod

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Intralayer Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Interlayer Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Abstract

The field of nanoscale material science has experienced a true revolution over the
past 30 years with the discovery of the quasi-zero- and one-dimensional cage-
like structures of fullerenes and nanotubes. The successful isolation of graphene
about a century ago has further triggered an avalanche of studies unraveling
its unique physical and chemical properties. This, in turn, has led to numerous
breakthroughs of basic science nature as well as diverse potential technological
applications in the fields of nanoscale electronics, flexible displays, solar cells,
DNA sequencing, chemical sensing, composite materials, solid lubrication, and
many others.

Following extensive studies of the properties of graphene, much attention
was recently paid to other members of the two-dimensional (2D) hexagonal
layered materials family including hexagonal boron nitride (h-BN) and several
transition metal dichalcogenides. Interestingly, stacking individual layers of these
materials to form homogeneous and heterogeneous structures results in unique
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physical characteristics that depend on the specific chemical composition of
the system and can be tuned via the application of external perturbations. This
opens numerous opportunities for combinatorial materials design with versatile
structure-function relations. Understanding what determines the properties of
such complex structures and how to control them remains a challenge yet to be
met in order for these materials to fulfill their full potential.

Theory and computation may offer a valuable microscopic perspective toward
achieving this goal. The reduced-dimensions of materials at the nanoscale allow
for a unique interplay between theory, computation, and experiment. Here, accu-
rate fully atomistic simulations can complement experiments both in analyzing
and rationalizing experimental results and in providing reliable predictions that
can minimize the need for demanding trial and error experimental efforts.

Such theoretical treatments of 2D materials require special attention to their
anisotropic nature characterized by a strong in-plane covalent bonding network
and weaker interlayer interactions. While state-of-the-art quantum mechanical
approaches can simultaneously describe these interactions with high accuracy,
their computational demand often limits their applicability to relatively small
systems. An efficient alternative can be provided by carefully tailored classical
force-fields. When appropriately parameterized against experimental results
or high accuracy calculations of small model systems, these can provide a
reliable description of the structural, mechanical, tribological, and heat transport
properties of realistic nanoscale systems with atomic scale resolution. Such
force-fields that provide a proper description of intralayer interactions in a variety
of 2D materials have been developed over the years and are accessible via
standard molecular dynamics simulation codes. Surprisingly, despite the great
scientific interest in 2D layered materials, complementary interlayer force-fields
that can accurately capture both their binding and sliding energy landscapes are
currently available for a very limited set of systems.

In the present chapter, I provide a brief review of recent developments
of reliable, efficient, and transferable anisotropic interlayer force-fields for
homogeneous and heterogeneous low-dimensional hexagonal layered materials.
To demonstrate the performance of these methods, a few applications to the
study of the structural and tribological properties of quasi-one- and quasi-two
dimensional layered structures will be presented.

1 Introduction

The successful isolation of graphene, a one atom thick hexagonal carbon layer,
by Novoselov and Geim in 2004 marked the opening of a new era in materials
science (Novoselov et al. 2004; Geim and Novoselov 2007; Li and Kaner 2008;
Geim 2009; Rao et al. 2009). The study of its unique physical properties including
exceptional mechanical strength (Lee et al. 2008), superlubric tribological charac-
teristics (Dienwiebel et al. 2004; Koren et al. 2015), remarkable room temperature
electron mobilities (Novoselov et al. 2005a; Morozov et al. 2008), high thermal
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conductivity (Balandin et al. 2008; Cai et al. 2010; Xu et al. 2014), quasi-relativistic
electronic structure (Geim and Novoselov 2007), and controllable optical properties
is flourishing even more than a decade later. Nevertheless, despite this wealth of
outstanding material characteristics, the semi-metallic nature of graphene limits
its applicability in switchable nanoscale electronic devices. This has triggered the
scientific community to search for graphene alternatives within the diverse family
of layered inorganic materials (Novoselov et al. 2005b, 2016; Deng et al. 2016).

Currently, two-dimensional (2D) inorganic materials are at the forefront of
scientific research with an ever-growing number of chemical compositions including
hexagonal boron nitride (h-BN), germanene, silicene, phosphorene, transition metal
dichalcogenides, such as molybdenum and tungsten disulfide (2H-MoS2 and 2H-
WS2) and diselenide (2H-MoSe2 and 2H-WSe2), among others (Heine 2015;
Li and Zhu 2015). Similar to graphene, these materials exhibit diverse physical
properties and appear in many structural forms ranging from planar configurations
to nanotubes, scrolls, onions, and cones.

The recently demonstrated ability to stack such 2D materials in homogeneous
as well as heterogeneous few-layered structures (Novoselov et al. 2016; Deng
et al. 2016; Dean et al. 2010; Geim and Grigorieva 2013; Wang et al. 2014; Das
et al. 2015) opens a vast combinatorial material space enabling the design of novel
structures exhibiting desired physical properties. Furthermore, electromechanical
manipulation of such structures can be used to gain control over their physical
properties – a basic requirement for their future technological application (Koren
et al. 2015, 2016; Leven et al. 2013).

Here, theory and computation play a prominent role in efficiently scanning the
vast material space, identifying potential candidates that are expected to exhibit
the desired physical properties, and studying their sensitivity towards external
perturbations. This can focus the demanding experimental efforts on a selected
group of predesigned structures and increase the probability of obtaining the
required 2D material functionality. Moreover, a synergic cooperation between
theory, computation, and experiment, where experimental data are used to refine
theoretical models and computational algorithms that, in turn, provide more accurate
predictions, can formulate a feedback cycle that will considerably enhance the
efficiency of 2D materials design.

An accurate theoretical account of the physical and chemical properties of
layered (and other) materials requires a full quantum mechanical treatment of their
electronic structure. Computational methodologies that may provide such ultimate
accuracy include wave function-based configuration interaction or coupled clusters
methods as well as quantum Monte-Carlo procedures (Nightingale and Umrigar
1999; Pang 2016). These methods, however, are quite unfavorable in terms of the
scalability of their computational burden with system size and are hence limited to
very small molecular structures. Green’s function-based methods that can efficiently
sum high-order terms in a perturbative expansion scale better with system size and
hence can treat somewhat larger systems (Sakai et al. 2015). Density functional
theory (DFT) (Hohenberg and Kohn 1964; Kohn and Sham 1965) is currently
probably the most popular method to study the physical properties of large systems
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(Sakai et al. 2015). While being exact in principle, its practical approximations
provide a good balance between computational efficiency and accuracy. Nowadays,
DFT calculations of material properties involving hundreds of atoms are being
routinely performed in many research groups (Barone et al. 2011). If one desires
to treat even larger systems on a fully atomistic and quantum mechanical basis,
accuracy is often further compromised to gain computational efficiency. Here,
methods like the variational Hartree-Fock formalism (Szabo and Ostlund 1989),
semi-empirical approaches (Pople 1970), density functional based tight-binding
approximations (Porezag et al. 1995; Kwon and Tománek 2000; Miró et al. 2013;
Zahid et al. 2013), or empirical tight-binding (Szabados et al. 2006; Carlson and
Dumitrică 2007) can be used to provide approximate descriptions of 2D material
properties.

Often, however, a fully quantum mechanical treatment is not required and a much
simplified classical picture is sufficient to efficiently and accurately describe many
material properties. Specifically, when considering static structural and mechanical
properties of various materials (Chen et al. 2013; Butz et al. 2014; van Wijk et al.
2015) as well as their dynamic tribological (Guo et al. 2007; Guerra et al. 2010;
Reguzzoni et al. 2012a; Vanossi et al. 2013; van Wijk et al. 2013; Xu et al. 2013;
Ze 2014; Kang and Lee 2014) and heat transport characteristics (Jiang 2014a),
Newtonian dynamics with carefully designed force-fields (FF) can provide valuable
insights (Frenkel and Smit 2002; Allen and Tildesley 2009; Rapaport 2009).
Obviously, this results in considerable computational gain enabling the treatment
of extremely large atomistic models including tens of thousands of atoms for rela-
tively long timescales. Furthermore, it allows for devising multiscale approaches,
where the information gained from fully atomistic calculations serves to design
coarse-grained and continuum models. Nevertheless, this comes at the expense of
neglecting explicit quantum mechanical effects and even more importantly the need
to design system specific interatomic potentials with limited transferability.

With this respect, the formulation of dedicated force-fields for 2D materials and
their layered constructs has to account for their inherent structural anisotropy. The
individual layers can be viewed as a network of covalently bonded atoms organized
in a periodic hexagonal lattice structure. Upon stacking, each layer interacts with its
neighboring counterparts via long-range dispersion and electrostatic interactions.
Hence, a strategy involving a separate treatment of intralayer and interlayer
interactions is often invoked.

2 Intralayer Interactions

The intralayer force-field term usually involves six main ingredients including (see
Fig. 1): (http://cbio.bmt.tue.nl/pumma/index.php/Theory/Potentials; Rappe et al.
1992) (i) bonded two-body interactions describing the bond stretching and com-
pression energy; (ii) bonded three-body interactions accounting for angle bending
penalties; bonded four-body interactions depicting (iii) improper and (iv) dihedral

http://cbio.bmt.tue.nl/pumma/index.php/Theory/Potentials
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Fig. 1 Illustration of several intralayer force-field term contributions: (a) Bond stretching and
compression; (b) angle bending; (c) improper angle deformation; (d) torsional angle deformation;
(e) van der Waals interactions; (f) electrostatic interactions

torsional deformations; (v) nonbonded van der Waals (vdW) interactions; and (vi)
nonbonded electrostatic interactions.
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where φijkl is the dihedral angle (see Fig. 1d), k
(iv)
ijkl is the corresponding force

constant, φ0
ijkl sets the equilibrium dihedral angle, and ηijkl is the multiplicity

factor signifying the number of minima that this potential term possesses. The
nonbonded vdW term is often described by the two-body Lennard-Jones (LJ)

potential of the form V
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2σij are the binding energy and equilibrium distance of the ij atomic pair,
respectively (see Fig. 1e). Note that this expression accounts not only for the
long-range attractive vdW interactions but also for short-range repulsions. Finally,
interatomic monopolar electrostatic interactions are calculated using Coulombs law
V

(vi)
ij

(
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) = qiqj /
(
4πε0rij

)
, where ε0 is the vacuum permittivity and qk is the

effective partial charge of atom k (see Fig. 1f).
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It should be noted that while the expressions described above are commonly used
to describe the intralayer interactions in layered materials they are, by no means, the
only ones available. For example, if a reactive force-field is required, the harmonic
bonded two-body terms can be replaced by an anharmonic potential that allows for
bond breaking and formation. Furthermore, the force-field parameters can be varied
according to the local chemical environment, thus providing flexibility to describe
different bond-orders and accounting for various chemical binding schemes.

The various force-field parameters have to be determined separately for each
material. The fitting procedure can be performed against experimentally measured
material properties, such as the Young modulus, the shear modulus, lattice constants,
phonon spectra, and heats of formation. Alternatively, they can be calibrated to
fit results of higher accuracy methods such as state-of-the-art DFT calculations.
Dedicated intralayer force-field parameterizations are available for a variety of
layered materials including graphene and its derivatives (Al-Jishi and Dresselhaus
1982; Tersoff 1988; Brenner 1988, 1990; Stuart et al. 2000; Brenner et al. 2002;
Los and Fasolino 2003; Ghiringhelli et al. 2005a, 2008; Los et al. 2005; Perebeinos
and Tersoff 2009; Lindsay and Broido 2010; Jiang 2015; O’Connor et al. 2015),
h-BN (Sevik et al. 2011), and 2H-MoS2 (Jiang 2015; Wakabayashi et al. 1975;
Jiménez Sandoval et al. 1991; Brunier et al. 1992; Morita et al. 2008; Liang et al.
2009; Varshney et al. 2010; Jiang et al. 2013; Nicolini and Polcar 2016), many of
which are implemented in open source or commercial software packages. These
have been successfully used to describe a variety of material properties including
the structural and mechanical behavior (Tersoff 1992; Lu 1997; Hertel et al. 1998;
Fasolino et al. 2007; Bets and Yakobson 2009; Costamagna et al. 2012; Singh et al.
2013, 2015; Bucholz and Sinnott 2013; Jin-Wu et al. 2013; Jiang 2014b; Jiang and
Park 2014), thermal transport characteristics (Varshney et al. 2010; Che et al. 2000;
Mohamed and Deepak 2001; González Noya et al. 2004; Yao et al. 2005; Lindsay
and Broido 2011), crack propagation (Xiaonan et al. 2015), and melting dynamics
of 2D monolayers (Singh et al. 2015).

3 Interlayer Interactions

The interlayer force-field term usually involves three main contributions: long-
range attractive vdW interactions, short-range Pauli repulsions, and electrostatic
interactions. The latter, which is required when atoms in different layers have a
sizable partial charge, can often be described by a simple Coulombic term similar to
the V

(vi)
ij intralayer expression given above (see Fig. 1f). To describe the attractive

vdW and repulsive Pauli interactions, the LJ (or Morse (Los and Fasolino 2003; Los
et al. 2005; Ghiringhelli et al. 2005b; Karssemeijer and Fasolino 2011)) potential
is often chosen similar to the intralayer V

(v)
ij expression (see Fig. 1e) (Nicolini

and Polcar 2016; Lebedeva et al. 2011a; Shibuta and Elliott 2011; Ye et al. 2012,
2015; Jayasena et al. 2013; Liu et al. 2015; Kushima et al. 2015). With appropriate
parameterization, this expression can provide a good description of the interlayer
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Fig. 2 Anisotropic Pauli repulsion term: (a) illustration of the anisotropic pz orbital overlap
variations during interlayer sliding; (b) definition of the lateral interatomic distance; (c) definition
of the local surface normal. (Reprinted with permission from Oz et al. (2016). Copyright (2016)
American Chemical Society)

binding energy curve (Szabados et al. 2006; Jiang 2015; Brunier et al. 1992;
Varshney et al. 2010; Jiang et al. 2013; Lu 1997; Bucholz and Sinnott 2013; Jiang
and Park 2014; Singh et al. 2015; Girifalco and Lad 1956; Green et al. 1974; Weiss
and Phillips 1976; Kuzuba et al. 1985; Lu et al. 1992; Tersoff and Ruoff 1994; Kwon
and Tománek 1998; Buldum and Lu 1999; Girifalco et al. 2000; Girifalco and Hodak
2002; Qian et al. 2003; Michel and Verberck 2011; Tolga et al. 2016). However,
using the same parameters to study relative interlayer sliding fails to reproduce
the corrugated sliding energy landscape and results in too shallow energy barriers
(Carlson and Dumitrică 2007; Stuart et al. 2000; Palser 1999; Kolmogorov and
Crespi 2000, 2005; Shtogun and Woods 2010; Lebedeva et al. 2011b; Reguzzoni
et al. 2012b; Neek-Amal and Peeters 2014; Strutyński et al. 2014; Korhonen and
Koskinen 2015; Jiang and Park 2015). Hence, the ability of LJ type potentials to
reliably describe many structural, mechanical, and tribological properties of layered
materials may be considerably hindered.

The origin of this deficiency in the LJ potential was identified by Kolmogorov
and Crespi (KC) to be the use of isotropic expressions that depend only on
interatomic distances to describe an anisotropic material property (Kolmogorov and
Crespi 2000, 2005; Lebedeva et al. 2011b). Focusing on graphene, KC realized that
when two layers slide upon each other, electron clouds associated with the pz orbitals
around carbon atoms residing on adjacent layers overlap as the atoms pass each
other (see Fig. 2a). This, in turn, induces Pauli repulsion variations resulting in a
corrugated sliding energy landscape. Since the electron density overlap depends on
the lateral distance between the crossing atoms, an interlayer pair-potential of the
following form was suggested (Kolmogorov and Crespi 2005):

V KC (rin, ρin) = e−λ(rin−z0) [C + f (ρin) + f (ρni)] − A(rin/z0)
−6. (1)

This expression includes a LJ type long-range attractive term scaled by
A = 10.238; an isotropic Morse-like short-range exponential repulsive term with
the equilibrium interlayer distance z0 = 3.34 Å, exponent λ = 3.629 Å−1, and
scaling factor C = 3.030; and an anisotropic short-range Gaussian repulsive term
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of the form f (ρ) = e−(ρ/δ)2
�nc2n(ρ/δ)2n that depends on the lateral distance, ρ,

between each pair of atoms on adjacent layers scaled by δ = 0.578 Å. The nonzero
coefficients of the polynomial multiplying the Gaussian are given by c0 = 15.71,
c2 = 12.29, and c4 = 4.933. The lateral distance, ρin, is defined as the shortest
distance between atom n on one layer and the surface normal at atom i residing on
an adjacent layer (see Fig. 2b). For a hexagonal lattice, the simplest definition of
the local surface normal at a given atomic position is the unit vector perpendicular
to the triangle formed by its three nearest neighbors (see Fig. 2c). Since for curved
systems generally ρin �= ρni the pair potential is symmetrized to fulfill Newton’s
third law. With the inclusion of the anisotropic repulsive term, the KC potential
was shown to simultaneously provide a good description of both interlayer binding
and sliding energy landscapes (see Fig. 3) (Kolmogorov and Crespi 2000, 2005;
Reguzzoni et al. 2012b).

Despite this notable success and the ever growing interest in 2D materials, the KC
approach (and related methods (Lebedeva et al. 2011b, 2012; Popov et al. 2011)) has
not been extended to describe other layered materials for more than a decade since
its inception. Recently, however, the transferability of the method was demonstrated
where a KC type potential was applied to the graphene/h-BN hetero-structure (van
Wijk et al. 2014; Woods et al. 2016). In this study, the FF parameters have been set
to reproduce experimentally observed moiré superstructures arising from the 1.8%
intralayer lattice constant mismatch between graphene and h-BN. This indicated the
ability of the KC force-field to describe the structural properties of homogeneous
and heterogeneous junctions of 2D materials.

To harness the full predictive capabilities of KC-type FFs to describe the inter-
layer interactions in a variety homogeneous and heterogeneous layered materials
structures, a slightly modified functional form, termed interlayer potential (ILP),
was recently suggested. The ILP accounts for monopolar electrostatic interactions
and allows for simple parameterization against state-of-the-art first-principles calcu-
lations based on pair-wise (Tkatchenko and Scheffler 2009; Marom et al. 2011) and
many-body dispersion corrected (Tkatchenko et al. 2012; Ambrosetti et al. 2014)
screened-hybrid (Heyd et al. 2003; Heyd and Scuseria 2004a, b) density functional
theory calculations (Leven et al. 2014, 2016a; Maaravi et al. 2017; https://pubs.acs.
org/doi/10.1021/acs.nanolett.8b02848).

The ILP consists of a modified KC short-range anisotropic repulsive term of
the form:

VRep (rin, ρin)=Tap (rin)×e
αin

(
1−rin

βin

) [

εin+Cin

(

e
−
(

ρin
γin

)2

+e
−

(
ρni
γin

)2
)]

, (2)

where εin and Cin are constants setting the energy scales associated with
the isotropic and anisotropic repulsion, respectively, β in and γ in set the
corresponding interaction ranges, and αin is a parameter defined to set
the steepness of the isotropic repulsion term. Note that for computational
efficiency, the 4th degree polynomial multiplying the anisotropic Gaussian

https://pubs.acs.org/doi/10.1021/acs.nanolett.8b02848
https://pubs.acs.org/doi/10.1021/acs.nanolett.8b02848
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Fig. 3 Interlayer (a) binding and (b) sliding energy curves of bilayer graphene calculated using
the LJ (full blue circles) and KC (full black circles) interlayer potentials compared to a reference
dispersion corrected DFT calculation (full green squares). (Reprinted with permission from
Reguzzoni et al. (2012b). Copyright (2012) by the American Physical Society)

repulsion term appearing in the original KC expression (see Eq. (1) above)
is replaced by a constant factor. Furthermore, a taper function of the form
Tap(rin) = 20(rin/Rcut)7 − 70(rin/Rcut)6 + 84(rin/Rcut)5 − 35(rin/Rcut)4 + 1, which
provides a continuous (up to third derivative) cutoff for interatomic separations
exceeding Rcut, is used to damp the long-range contribution of the repulsive term.
These modifications simplify the FF expressions and reduce the computational cost
while providing a satisfactory description of the interlayer interactions (Leven et al.
2014, 2016a; Maaravi et al. 2017).

To treat the long-range attractive interactions, the Tkatchenko and Scheffler
(TS) dispersion correction scheme to DFT is considered (Tkatchenko and Scheffler
2009). Within this approach, widely used semi-local or hybrid exchange-correlation
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density functional approximations that are known to provide an inadequate descrip-
tion of long-range van der Waals (vdW) interactions are augmented by a term that
decays asymptotically with the interatomic distance as r−6. This term is damped at
short distances to avoid double-counting of short-range correlation effects. In the
ILP, the following pair-wise long-range attractive term is adopted:

VAtt (rin) = Tap (rin)

{

−
[

1 + e
−d

[(
rin/

(
SR ·reff

in

))
−1

]]−1

· C6,in

r6
in

}

. (3)

Here, r
eff
in is the sum of effective equilibrium vdW atomic radii of atom i and

atom n residing on different layers, C6, in is the pair-wise dispersion coefficient of
the two atoms in the solid-state environment, and d and SR are unit-less parameters
defining the steepness and onset of the short-range Fermi-Dirac type damping
function. Similar to the repulsive term, long-range taper damping is implemented to
reduce computational burden. This specific form is chosen as it allows the extraction
of the various parameters directly from first-principles calculations avoiding the
need for experimental data that is macroscopic by nature, very difficult to obtain,
and mostly unavailable for many 2D layered materials and hetero-structures thereof.

In cases where atoms residing on the interacting layers bear sizable effective
charges, electrostatic contributions should be taken into account. To this end, the
formalism implemented in the ReaxFF scheme can be utilized (van Duin et al.
2001). Within this approach, a shielded Coulomb potential term of the form:

VCoul (rin) = Tap (rin) ×
[
kqiqn/

3
√

r3
in + (1/λin)

3
]

(4)

is used. Here, k is Coulomb’s constant and λin is a shielding parameter introduced
to eliminate the short-range singularity of the classical monopolar electrostatic
interaction expression. This shielding takes effect in regions where Pauli repulsions
between overlapping electron clouds dominate the interlayer potential and hence
has minor influence on the results. When considering periodic systems, the long-
range taper cutoff can be replaced by Ewald summation techniques (Ewald 1921;
Toukmaji and Board 1996) in order to avoid conditionally convergent sums (Hod
2012a).

In many cases, the effective ionic charges, qi and qn, can be treated as constant
values throughout the simulation. Nevertheless, in order to provide a general
description, they can be dynamically evaluated using the electronegativity equal-
ization method (EEM) (van Duin et al. 2001; Mortier et al. 1986; Njo et al. 1998;
Bultinck et al. 2002). This method relies on a principle formulated by Sanderson
stating that when a molecule or a solid is formed, the electronegativities of the
constituent atoms equalize to give a global electronegativity of the entire system
(Sanderson 1951, 1983). Hence, the electronegativity of a given atom within the
molecular or solid environment (χ i) is written in terms of the corresponding
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isolated atom electronegativity (Parr et al. 1978)
(
χ0

i

)
and hardness (Parr and

Pearson 1983; Sanderson 1976)
(
η0

i

)
as χi = (

χ0
i + �χi

) + 2
(
η0

i + �ηi

)
qi +

∑
j �=i kqj /

3
√

r3
ij + (

1/λij

)3. Here, �χ i and �ηi represent the electronegativity and
hardness variations due to the embedding molecular or solid environment and the
last term represents the electrostatic potential induced by all other atoms in the
system (Weismiller et al. 2010). The effective atomic charges can then be obtained
by enforcing the guiding principle that within the molecular or solid environment all
atomic electronegativities should equal the equilibrated molecular electronegativity
χ i = 1 . . . N = χeq. To this end, the following matrix equation is solved:

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

2
(
η0

1 + �η1
)

k/ 3
√

r3
12 + (1/λ12)

3 · · · k/ 3
√

r3
1N + (1/λ1N )3 −1

k/ 3
√

r3
21 + (1/λ21)

3 2
(
η0

2 + �η2
) · · · k/ 3

√
r3

2N + (1/λ2N )3 −1
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where the isolated atomic electronegativities and hardnesses, χ0
i and η0

i , their
corresponding molecular or solid environment variations �χ i and �ηi, and the
total charge, Q, are provided as input. The latter is dictated by the modeled system,
whereas the former are used as fitting parameters.

While originally parameterized for homogeneous h-BN and graphene junc-
tions (Leven et al. 2014; Maaravi et al. 2017), as well as for heterogeneous
junctions thereof (Leven et al. 2016a), with appropriate parameterization the
ILP should be transferable to a variety of layered materials such as different
graphene allotropes including pentaheptite, haeckelite, dimerite, and octite (David
et al. 2010); graphane; graphyne; germanene; silicene; stanene; phosphorene; and
members of the transition metal dichalcogenides family such as molybdenum and
tungsten disulfide and diselenide. As demonstrated in the next section, such an
extension will make the ILP a versatile and powerful simulation tool for the study of
the structural, mechanical, dynamic, and heat transport properties of homogeneous
and heterogeneous layered material structures.

4 Applications

An illustrative demonstration of the performance of classical ILPs for studying
interlayer interactions in layered materials is the case of the graphene/h-BN
heterojunction. This heterojunction has gained great attention from the scientific
community in recent years (Geim and Grigorieva 2013; Wang et al. 2014; Das
et al. 2015; Leven et al. 2016a) due to its rich physical properties that include a
controllable electronic band-gap (Chen et al. 2014; Fan et al. 2011; Jung et al. 2015;
Yankowitz et al. 2012), ultrahigh electron mobility (Dean et al. 2010; Levendorf et
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al. 2012; Tang et al. 2013), the demonstration of Hofstadter’s butterfly phenomenon
(Ponomarenko et al. 2013; Dean et al. 2013), and the manifestation of controllable
hyperbolic meta-material characteristics (Dai et al. 2015).

Owing to the intrinsic lattice-constant mismatch between graphene and h-BN, the
former tends to deform when placed on a multilayer h-BN substrate in order to adapt
to the underlying crystal lattice (van Wijk et al. 2014; Yankowitz et al. 2012; Dean
et al. 2013; Yang et al. 2013; Woods et al. 2014). The resulting moiré superstructures
alter graphene’s electronic and optical properties thus opening new opportunities for
technological applications (Jung et al. 2015; Kumar et al. 2015). Naturally, modeling
such superstructures from first-principles is a prohibitively demanding task. This, in
turn, calls for the utilization of classical ILPs.

Figure 4 presents the fully relaxed structure of a free-standing graphene/h-BN
bilayer supercell calculated using the graphene/h-BN ILP (Leven et al. 2016a). A
clear moiré superstructure is obtained (see panel (d)), where regions of optimal
interlayer registry (blue regions in panel (a)) and distance (blue regions in panel (b))
and intralayer bond lengths (red regions in panel (c)) are separated by sharp domain
walls characterized by increased interlayer distance and compressed intralayer bond
lengths in accordance with experimental findings (Yankowitz et al. 2012; Woods et
al. 2014). Furthermore, due to the lack of rigid support, the calculation predicts that
the entire structure should become highly corrugated. This latter observation was
recently verified experimentally (Argentero et al. 2017).

Such moiré superstructures are expected to have considerable effect on the
tribological properties of the heterojunctions. To investigate this, the graphene/h-
BN ILP (Leven et al. 2016a) has been recently used to simulate the frictional

a b

d

c3.49 Å

Interlayer distanceLRI Intralayer distance
1.423 Å

1.4175 Å

1.41 Å

3.385 Å

3.28 Å

Fig. 4 Fully relaxed graphene/h-BN free-standing bilayer. (a) Local registry index map, where
blue and red colors represent optimal and worst interlayer stacking, respectively. The calculation is
performed using the registry index method that defines a purely geometric quantitative measure of
interlattice commensurability (Leven et al. 2013, 2016a; Koren et al. 2016; Marom et al. 2010; Hod
2010, 2012b, 2013; Blumberg et al. 2012; Garel et al. 2012; Oz et al. 2016; Leven et al. 2016b);
(b) interlayer distance map; (c) graphene intralayer bond-length map; and (d) overall structure of a
fully relaxed, free-standing, graphene/h-BN bilayer. (Reprinted with permission from Leven et al.
(2016a). Copyright (2016) American Chemical Society)
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behavior of the heterojunction (Mandelli et al. 2017). It was found that for the
aligned interface (where the lattice vectors of the two layers are parallel), with
contact size below the characteristic lateral dimension of the elevated superstructure
ridges, the junction behaves like its homogeneous counterparts with friction forces
that grow linearly with the contact area. Superlubricity sets in due to the progressive
appearance of moiré patterns resulting in a transition to collective stick-slip motion
of the ridges that eventually turns into smooth soliton-like sliding with increasing
contact size (see Fig. 5). For angularly misaligned contacts (where the lattice
vectors of the two layers are rotated with respect to each other), incommensurability
effects, also appearing in homogeneous junctions, are enhanced and the friction
coefficients further drop by orders of magnitude and remain extremely low, even
under external loads. These simulations indicated the potential of achieving robust
superlubricity, independent of the relative interfacial orientation, and sustainable
under external loads, in practical applications utilizing two-dimensional layered
materials heterojunctions.

A similar phenomenon is found to occur in homogeneous multiwalled nanotubes,
where the lattice mismatch results from the curvature difference between adjacent
nanotube walls. Due to the frustrated geometry of the tube’s circumference, this
may result in a pronounced faceted superstructure, where the circular cross-section
is deformed into a more stable polygonal one (Garel et al. 2012, 2014; Liu and
Cowley 1994; Gogotsi et al. 2000; Zhang et al. 2003, 2005; Celik-Aktas et al. 2005a;
Golberg et al. 2007a, b; Nigues et al. 2014). For narrow nanotubes, the excessive
stain involved in the formation of sharp vertices is not compensated by the energy
gain of forming the planar facets; hence, faceting is suppressed. However, above
a certain nanotube diameter, typically of 12 nm (Garel et al. 2012), the standard
circular cross section can be strongly distorted and faceting may appear (see Fig. 6).

Here, as well, modeling such systems from first-principles is impractical and
classical ILPs serve as a viable alternative for studying their structural and mechan-
ical properties. Hence, to decipher the mechanism that underlies facet formation
and dictates their character, elaborate geometry relaxations of a wide set of double-
walled carbon and boron nitride nanotubes were performed (Leven et al. 2016b).
It was found that regardless of the nanotube identity (namely, diameter, and
chemical composition), chiral angle matching between adjacent layers is a necessary
condition for the formation of faceting. Considering first achiral nanotubes, where

Fig. 5 Snapshots of the soliton-like smooth sliding motion of the moiré superstructure ridges
occurring upon shearing of a graphene/h-BN junction. (Reprinted with permission from Mandelli
et al. (2017). Copyright (2017) American Chemical Society)
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Fig. 6 Schematic representation of achiral double-walled carbon (top two rows) and boron-
nitride (bottom two rows) nanotubes, showing their structure and local registry patterns prior to
and after geometry relaxation. Each frame shows seven double-walled nanotubes with diameters
in the range of 5–20 nm. Five groups of double-walled nanotubes are presented (from left to
right): ZZ@ZZ (n,0)@(n + 8,0); AC@AC (n,n)@(n + 4,n + 4), (n,n)@(n + 5,n + 5) and
(n,n)@(n + 6,n + 6); and ZZ@AC. For the ZZ@ZZ systems the n = 55, 80, 105, 130, 155,
180, and 243 nanotubes are chosen. For the AC@AC systems the n = 31, 46, 60, 75, 89, 104,
and 140 are chosen. For the ZZ@AC systems, the following set is considered: (54,0)@(36,36),
(80,0)@(51,51), (104,0)@(65,65), (130,0)@(80,80), (154,0)@(94,94), (179,0)@(108,108), and
(241,0)@(144,144). The local registry index color bar (right) ranges from blue to red, representing
the optimal and worst stacking modes of graphene and h-BN, respectively. Grey, pink, and
blue spheres on the right-hand-side represent carbon, boron, and nitrogen atoms, respectively.
(Reprinted with permission from Leven et al. (2016b). Copyright (2016) by the American Physical
Society)

both nanotube walls are of the same type (either zigzag (ZZ) or armchair (AC)), it
was found that above a critical diameter that corresponds well with experimental
observations (Garel et al. 2012), evenly spaced extended axial facets form (see
Fig. 6). Notably, the number of facets equals the interlayer difference in number
of circumferential unit-cells. Interestingly, similar axial facets are formed also
for mono-chiral double-walled nanotubes, where both nanotube walls are chiral
but share the same chiral angle (see left column in Fig. 7). Elongated helical
facets, similar to those commonly observed in experiment, appear in nanotubes
that exhibit small interlayer chiral angle mismatch (see middle columns in Fig. 7).
These are gradually suppressed with increasing interwall chiral angle difference
resulting in outer layer corrugation, which is induced by the moiré superlattice, in
agreement with experiments (Schouteden et al. 2013). Since multiwalled boron-
nitride nanotubes exhibit better interwall chiral angle matching (Celik-Aktas et
al. 2005a; Golberg et al. 1999, 2000; Celik-Aktas et al. 2005b) than their carbon
counterparts (Schouteden et al. 2013; Zuo et al. 2003; Li et al. 2003; Koziol et al.



Interlayer Interactions in Low-Dimensional Layered Hetero-Structures:. . . 15

Fig. 7 Schematic representation of (120,100)@(126,105) (leftmost column), (60,60)@(66,65)
(second column), (70,70)@(77,74) (third column), (68,68)@(75,70) (fourth column), and
(71,71)@(80,72) (rightmost column) double-walled boron-nitride nanotubes showing their local
interlayer registry patterns before (top row) and after (middle row) geometry relaxation. The color
bar on the right refers to the interlayer spacing of the different systems presented in the bottom row.
The colors used in the local registry index patterns are the same as in Fig. 6 above. The chiral angle
difference between the inner and outer shells is indicated at the top of each column. (Reprinted with
permission from Leven et al. (2016b). Copyright (2016) American Chemical Society)

2005; Hashimoto et al. 2005; Xu et al. 2006; Ducati et al. 2006; Hirahara et al. 2006;
Gao et al. 2006; Guo and Guo 2007; Guan et al. 2008), these findings rationalize
the experimental observation of relative abundance of faceting in the former (Celik-
Aktas et al. 2005a, b; Golberg et al. 1999, 2000).

In resemblance to the effect of moiré structures on the interlayer sliding friction
of planar interfaces, nanotube circumferential faceting is expected to have a notable
impact on the interwall sliding friction. When the relative axial or angular alignment
of adjacent nanotube walls is varied, the corresponding interwall lattice registry
changes. If the nanotube is faceted, then this modification results in rearrangement
of the faceted superstructure (Guerra et al. 2017). In the case of achiral or mono-
chiral double-walled nanotubes, where the facets are axially aligned, a series of
unfaceting and refaceting events occurs during the interwall motion accompanied
by facet rotation and reconfiguration (see Fig. 8a, b). For bi-chiral systems, where
helical facets appear, interwall telescoping results in rotation of the entire faceted
superstructure akin to a rotating Archimedean screw (see Fig. 8c). These global
structural variations introduce new dissipative channels that enhance interwall
friction (Guerra et al. 2017). This, along with the above-mentioned fact that faceting
is more abundant in multiwalled boron-nitride nanotubes than in their carbon
counterparts, may rationalize recent experimental measurements showing that the
former exhibit enhanced interwall friction (Nigues et al. 2014).
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Fig. 8 Facet reconfiguration during interwall pull-out and rotation in (a) armchair
(104,104)@(109,109); (b) zigzag (180,0)@(188,0); and (c) bichiral (70,70)@(77,74) double-
walled boron-nitride nanotubes. θ , z, and � values appearing in panels (a) and (b) indicate the
relative angular and axial positions of the outer and inner walls and the corresponding facet
rotation angle, respectively. The two configurations appearing in panel (c) have relative interwall
angular and axial orientations of 0.2◦/2.4 Å (left) and 0.2◦/3.2 Å (right). These correspond to
configurations close to the maximum and minimum of the interwall sliding-rotation potential
energy surface, respectively. Red, white, and blue atom false coloring indicate low, average, and
high atomic interlayer energy, respectively. (Reprinted with permission from Guerra et al. (2017).
Copyright (2017) American Chemical Society)

5 Summary

Two-dimensional hexagonal layered materials are of the most promising systems in
the field of material science to deliver new technological breakthroughs. The large
variety of members in this family and their diverse chemical and physical properties
form a vast playground for the design of homogeneous and heterogeneous systems
presenting novel structure-function relations. The small dimensions characterizing
this field of research call for a synergic interplay between experiment, theory,
and computation. With this respect, carefully tailored classical force-field may
provide valuable insights on the atomistic nature of different structural, mechanical,
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dynamical, and tribological phenomena found in these systems. In the present
chapter, a review of recent advances in the field of anisotropic force-fields for
describing the interlayer interactions in hexagonal layered materials has been
provided. The performance of such force-fields was demonstrated via several
applications that address the structural and frictional properties of planar hetero-
junctions of graphene and h-BN as well as faceted double-walled nanotubes.
The good agreement obtained with several experimental observations indicates
the predictive power of the developed interlayer force-fields and their ability to
rationalize experimental results. The extension of such dedicated force-fields to treat
other layered materials is an ongoing effort that, when fulfilled, is expected to enable
the discovery of novel low-dimensional structures. Furthermore, the utilization of
such force-fields within the framework of multiscale modeling as a source of reliable
atomistic information for coarse grained and continuum treatments (Leven et al.
2013; Koren et al. 2016; Leven et al. 2016a; Jung et al. 2015; Kumar et al. 2015;
Marom et al. 2010; Hod 2010; Hod 2012b; Blumberg et al. 2012; Garel et al. 2012;
Hod 2013; Oz et al. 2016; Leven et al. 2016b; Girifalco 1992; Last et al. 1999;
Shenoy et al. 2008; Lu et al. 2009; Yang et al. 2011; Chenxi et al. 2014; Ruiz
et al. 2015; Ward 2016; Lebedev et al. 2016) may lead to the development of new
nano- and microelectromechanical systems with diverse functionalities based on the
promising concepts of 2D layered materials.
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