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Abstract: The purpose of this chapter is to describe and review examples of how theoretical
investigations can be applied to elucidate the behavior of carbon nanostructures and to under-
stand the physical mechanisms taking place at the molecular level. We will place a special
emphasis in theoretical works utilizing density functional theory. We assume that the reader is
familiar with the basics of density functional theory as well as the electronic properties of single-
walled carbon nanotubes and graphene nanoribbons (GNRs). We do not intend to present an
extensive review; instead, we focus on several examples to illustrate the powerful predictive
capabilities of current computational approaches.

Density Functional Theory with Periodic Boundary Conditions

The focus of this chapter is on carbon structures that are elongated, predominantly one-
dimensional systems. For most modeling purposes, these structures can be considered as
periodic in one dimension. There are many software packages either free or commercially
available to perform density functional theory (DFT) calculations using periodic boundary con-
ditions. In fact, these type of calculations are routine in condensed matter physics and became
very popular recently in the quantum chemistry community. One of the most widely used
approaches for DFT calculations with periodic boundary conditions is the combination of the
local density approximation (LDA) or the generalized gradient approximation (GGA) and plane
waves. This approach usually involves only valence electrons, while the effect of core electrons
is represented with pseudopotentials. Many modern pseudopotential calculations use ultrasoft
pseudopotentials, which were first developed by Vanderbilt in the early 1990s (Vanderbilt 1990).
Full-potential all-electron calculations can also be performed using plane waves, although they
are somewhat computationally expensive for routine calculations. On the other hand, another
class of software packages employ localized basis functions such as Gaussians. These basis func-
tions allow not only an all-electron treatment of the system but also present the flexibility of
pseudopotential calculations when heavy atoms are involved. In most cases, dealing with sys-
tems involving first- and second-row elements in an all-electron fashion can be routinely done.
Another advantage of localized basis functions is that periodic boundary conditions can be
explicitly imposed in either one, two, or three dimensions, in contrast to plane waves, which
are naturally periodic in three dimensions and therefore approaches such as the super-cell are
commonly used to reduce the dimensionality from three to two or one at the price of increas-
ing the computational cost. The main advantage of plane waves over Gaussian basis functions
is that the basis set convergence is more controlled. The basis set convergence of Gaussian-type
orbitals is well known for molecules and there are tens of available basis sets developed for dif-
ferent purposes (see for instance the EMSL library Feller 1996, 2007). However, the basis set
convergence of Gaussian functions is less known for periodic systems, especially for proper-
ties like the bandgap. Another disadvantage of Gaussians is that available basis for molecular
systems cannot always be straightforwardly employed in periodic boundary conditions calcu-
lations due to linear dependencies that occur in periodic structures, limiting in practice the use
of large exponents (Gruneich and Hess 1998).

When using localized functions, in general, the basis set needs to be carefully chosen in
order to obtain sensible results. It is important to point out that using either localized basis or
plane waves, different properties can have different basis set convergence behavior, and the fact
that one property such as the energy is converged (within a given criterion) does not imply that
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all properties are converged. In single-walled carbon nanotubes (SWNTs), for instance, the
choice of the Gaussian basis set does not seem to have a significant impact on the bandgap.
In © Table 24-1, we show the bandgap (obtained as Kohn-Sham band energy differences) of
the (10,0) SWNT calculated with different functionals and standard Gaussian basis sets. The ini-
tial SWNT geometry was obtained with the Tubegen program (Frey and Doren 2005) and then
relaxed using the different functionals and basis sets indicated in each column. For each opti-
mized structure, we calculate the bandgap of the system with the different functionals and basis
sets. As shown in @ Table 24-1, the bandgap does not depend significantly on the level of theory
utilized for the geometry optimization, or the basis set. © Table 24-1 illustrates, however, the
dependence of the bandgap upon the choice of the exchange-correlation (XC) functional. This
shows that for SWNTs, the choice of the XC functional has a larger impact on the calculated
bandgap and related properties.

There are several options available in DFT software packages for the choice of the approx-
imate XC functional. The most widely used XC functionals depend either on the electronic
density (local[-spin] density approximation or L[S]DA) or on the electronic density and its gra-
dient (generalized gradient approximation or GGA). For example, in @ Table 24-1 we employ
the combination of Dirac exchange and the parameterization of Vosko et al. (1980) for correla-
tion in the LSDA functional and the GGA functional of Perdew, Burke, and Ernzerhof (PBE)
(1996). Comparing with available experimental data, these families of functionals usually per-
form well for structural properties but have some deficiencies for energetics and electronic
properties. Other type of approximate XC functionals include an orbital dependency either
through quantities such as the kinetic energy density or Hartree-Fock (HF) type of exchange
(for a thorough review, see Kiimmel and Kronik 2008). Examples of orbital-dependent func-
tionals are the meta-GGA TPSS (Tao et al. 2003), or the hybrid functionals PBEO (Adamo
and Barone 1999; Ernzerhof and Scuseria 1999; Perdew et al. 1997) (also known as PBEh),
and B3LYP(Becke 1993). These type of functionals generally show some improvement over the
LSDA and GGA but are computationally more demanding. In particular, due to the nature of
the HF approximation, hybrid functionals in extended systems can be extremely demanding for
metallic and small bandgap systems (Paier et al. 2007). An alternative to standard hybrid func-
tionals for extended systems are the short-range hybrid functionals such as HSE (Heyd et al.
2003, 2006). These functionals truncate the long-range tail of the electron-electron interaction
in the exchange contribution to the electronic energy. In this way, the remaining (short-range)
part of the HF exchange can be efficiently evaluated (Adamson et al. 1996, 1999). It has been
shown that this truncation has little effect on the properties of finite systems and at the same

0 Table 24-1
Bandgaps (in eV) for the (10,0) SWNT obtained with different functionals (LDA, PBE, and HSE, shown
row-wise) and basis sets (3-21G, 3-21G¥, and 6-31G*, shown column-wise).

LDA 0.79 0.79 0.78 0.77 0.77 0.76 0.79 0.79 0.77
PBE 0.80 0.80 0.79 0.78 0.78 0.76 0.79 0.79 0.78
HSE 1.00 1.00 0.98 0.97 0.97 0.96 0.99 0.99 0.98

The structure was optimized using the functional and basis set indicated in each column. Calculations were
performed with the Gaussian development program (Frisch et al. 2006)
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time provides an efficient route for hybrid DFT calculations in extended systems (Heyd and
Scuseria 2004).

Most commonly available functionals, either derived from nonempirical grounds or using
fitting procedures, are meant to approximate only the electronic ground state, and not excited
states. Moreover, although in “static” DFT, Kohn-Sham eigenvalues are often used to evaluate
the energy bandgap, there is no formal justification for this: The formal theoretical framework
is provided by time-dependent DFT (Runge and Gross 1984). For a review, see Onida et al.
(2002). Therefore, the evaluation of the energy bandgaps and related properties from DFT calcu-
lations needs to be carried out with care. From a pragmatic viewpoint, Kohn-Sham eigenvalues
are often used to distinguish between metals and semiconductors and to estimate excitation
energies. LSDA and GGA Kohn-Sham gaps usually underestimate experimental data and
sometimes small-gap semiconductors are erroneously predicted to be metallic. Kohn-Sham
gaps from hybrid functional calculations, on the other hand are, in general, in better agree-
ment with experimental gaps (Barone et al. 2005a, b; Heyd et al. 2005; Kiimmel and Kronik
2008; Peralta et al. 2006), although they tend to overestimate, in general, the available experi-
mental data. Short-range hybrid functionals improve upon regular hybrids and provide good
agreement with experiments and more sophisticated many-electron approaches (Barone et al.
2005b; Batista et al. 2006).

Structure-Property Relations in Single-Walled Carbon Nanotubes
and Graphene Nanoribbons

Carbon nanotubes are one of the most fascinating carbon nanostructures. Although soon after
the discovery of fullerenes in 1985 (Kroto et al. 1985) there were many speculations about the
possibility of synthesizing long and narrow graphitic cage-like structures, the synthesis of the
first carbon nanotubes was reported by Iijima in 1991. After that seminal work, several new
routes toward the synthesis of single- and multi-walled carbon nanotubes were developed.

The electronic properties of SWNT were first studied within the so-called zone-folding
scheme (ZF) (Hamada et al. 1992; Saito et al. 1992, 1998). This scheme is based on the tight-
binding (TB) approximation for the two-dimensional honeycomb lattice and the subsequent
quantization of the wave vector associated with the radial direction of the nanotube. In this
framework, the electronic structure of SWNTs is determined by the allowed values of the quan-
tized wave vector. Within this approach, each nanotube, characterized by the indices (n,m), can
be either metallic if (21 + m)/3 = k, with k integer, or semiconducting for k non-integer (with
a bandgap that depends on the inverse diameter, 1/d). This versatility in the electronic behavior,
that depends only on the geometric structure of the tubes, ignited a large amount of experimen-
tal and theoretical efforts with the promise of novel technological applications based on these
unique nanostructured materials.

In 1998, Tang et al. produced SWNTs grown in zeolite channels with diameters of about
4 A(Tang et al. 1998). From the optical spectrum and the possible diameter distributions, these
tubes were identified as the (3,3), (4,2), and (5,0) (Li et al. 2001). In 2004, the thinnest SWNTs,
with diameters of about 3 A were grown inside multi-walled nanotubes. Because of the small
diameter, the possible (n,m) indices of these narrow SWNT were predicted to be (2,2), (4,0),
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and (3,1) (Zhao et al. 2004). DFT calculations pointed out the importance of curvature effects,
especially for narrower nanotubes which present a significant -7 hybridization not accounted
for in the ZF scheme (Blase et al. 1994; Giilseren et al. 2002; Mintmire et al. 1992; Reich et al.
2002). Although the ZF scheme works reasonably well for the average diameter SWNT of about
10 A, several studies confirmed the profound effect of the -7t hybridization in small diameter
SWNT on their electronic properties.

DFT calculations have shown that the zigzag (5,0) SWNT, which should be a semicon-
ductor according to the zone-folding scheme, is indeed metallic (Barone and Scuseria 2004;
Cabria et al. 2003; Li et al. 2001; Liu and Chan 2002; Machon et al. 2002; Springborg and
Satpathy 1994). The same holds true for the zigzag (4,0) SWNT (Barone and Scuseria 2004;
Cabria et al. 2003). Although it is tempting to assume that narrower tubes tend to be metal-
lic due to the o-7t hybridization, it has been shown that the narrowest chiral tubes (4,3) and
(3,1) present the largest bandgaps of all SWNTs (1.7 and 1.3 eV, respectively, obtained with the
HSE functional) (Barone and Scuseria 2004). Due to curvature effects, most narrow semi-
conducting SWNTs become indirect gap semiconductors and largely deviate from the ZF 1/d
predictions.

On the modeling side, we note that the calculated electronic properties of narrow nanotubes
strongly depend on the exchange-correlation functional used. In @ Fig. 24-1 we show the band
structure and density of states (DOS) for the three narrow (5,0), (3,3), and (4,2) nanotubes
obtained with LDA and the hybrid PBEO functionals. The largest differences are found for the
chiral semiconducting tube for which PBEO predicts a bandgap as large as 1.36 eV. However, as
we show in © section “Modeling the Optical Spectrum of Single-Walled Carbon Nanotubes
and Graphene Nanoribbons,” while the bandgap of SWNTs is largely underestimated by LSDA,
it is also significantly overestimated by PBEO.

Graphene, a single layer of graphite, has attracted a lot of attention since 2004 when it was
isolated for the first time as a stand-alone two-dimensional all-carbon network (Novoselov et al.
2004). Since then, major accomplishments in their production have been achieved and now,
lower dimensional graphene derivatives are routinely created in the lab (Berger et al. 2006;
Cai et al. 2010; Han et al. 2007; Ritter and Lyding 2009; Wang et al. 2008; Yang et al. 2008).
Recent studies point to graphene and its derivatives as one of the most promising materials for
technological applications ranging from spintronic devices to energy storage media (Bhardwaj
et al. 2010; Son et al. 2006b).

By cutting a quasi-one-dimensional structure out of a two-dimensional graphene sheet,
it is possible to obtain a flat structure usually referred to as a graphene nanoribbon
(GNR). These ribbons can also be thought of as unwrapped nanotubes of a given chi-
rality. In © Fig. 24-2 we present a scheme of the two extreme crystallographic orienta-
tions of the GNRs axis: armchair (AGNR) and zigzag (ZGNR). Dangling bonds at the
edges are usually passivated with hydrogen atoms for the purpose of performing compu-
tational studies as it is very difficult to experimentally determine the chemical nature of
the edges.

One of the earliest theoretical investigations of the electronic properties of these materi-
als was reported by Fujita et al. (1996). In that work, the authors report striking differences
between armchair and zigzag GNRs. Most notably, the authors found that magnetism can
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Band structure and electronic density of states for the (5,0), (3,3), and (4,2) SWNT. (a) Obtained at
the LDA/6-31G* level. (b) Obtained at the PBE0/6-31G* level
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armchair zigzag

O Fig. 24-2
Schematic representation of the fundamental cell of an armchair and a zigzag graphene nanorib-
bon. The horizontal line represents the translational vector

arise in nanometer-scale graphitic fragments in the zigzag configuration due to the appear-
ance of localized edge states. According to TB calculations these edge states are manifested
as flat bands near the Fermi energy in the band structure of the system. We will return to
the case of ZGNRs later in this section. AGNRs do not present such edge states. Instead, the
bandgap of these ribbons is predicted to vary with a three fold periodicity as a function of
their width, changing from metallic to semiconducting as one consecutively increases their
width (Ezawa 2006). When electronic correlation effects are taken into account via DFT, simi-
lar bandgap oscillations appear. Nevertheless, a major difference is identified. While in the TB
calculations, at certain widths, AGNRs appear to become metallic, DFT calculations predict
all AGNRs to be semiconducting (Barone et al. 2006; Son et al. 2006a). In © Fig. 24-3, we
present DFT results for the bandgap of armchair ribbons as a function of their width. As shown
in this figure, ultra-narrow graphene nanoribbons with widths up to 1nm present the largest
bandgaps in the range of 1-3 eV. For the range of widths covered by the DFT calculations (up to
3 nm), no significant quenching of the energy gap oscillations is observed (Barone et al. 2006).
However, GNRs are expected to reach the graphene limit of zero bandgap for sufficiently large
widths.

We note that the armchair GNRs bandgaps presented in @ Fig. 24-3 can be separated into
three groups, namely, the points forming the envelope of the maxima of the oscillations, those
forming the envelope of the minima of the oscillations, and the remaining intermediate points.
It is possible then to extrapolate the behavior of each of these subgroups independently to larger
widths. Such an extrapolation can be performed using an inverse power law with two fitting
parameters (Barone et al. 2006). This simple rule presents the correct asymptotic behavior and
provides qualitative information on the electronic structure of ribbons beyond the range of
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Bandgap of H-terminated armchair GNRs as a function of the width obtained with the HSE func-
tional (Reprinted (Adapted) with permission from Barone et al. (2006). © (2006) American Chemical
Society)

widths studied by first-principles calculations. From these calculations, it is shown that in order
to obtain an AGNR with a bandgap comparable to that of Ge (0.67 eV) or InN (0.7 eV), it will
be necessary to go to a range of widths between 2 and 3 nm. If a larger bang gap material is
needed (like Si, 1.14 eV, or GaAs, 1.43 €V), the width of the AGNR must be reduced to as low as
1-2 nm. The extrapolation to wider ribbons also shows that an AGNR of about 8 nm will present
a bandgap smaller than 0.2 V. It is interesting to note that when the first DFT calculations on
these systems were carried out, it seemed impossible to produce nanoribbons as narrow as a
few nanometers. Only 3 years later, the fabrication and electrical measurement of nanoribbons
with widths down to a few nanometers are performed routinely in many laboratories around
the world (Wang et al. 2008; Yang et al. 2008; Berger et al. 2006; Cai et al. 2010; Han et al. 2007;
Ritter and Lyding 2009).

Experimentally, it has been demonstrated that the energy gap in graphene nanoribbons can
be tuned during fabrication and that the energy gap scales inversely with the ribbon width
(Chen et al. 2007; Han et al. 2007). Suspended GNRs with widths below 10 nm have been syn-
thesized by a chemical route (Wang et al. 2008). However, the uncontrollable character of these
methods restrict the quality of the GNR’s edges and consequently limit their applications. Novel,
organic synthetic protocols leading to graphene type molecules with different sizes have been
presented recently (Yang et al. 2008; Cai et al. 2010). This route should provide perfect edged
narrow graphene nanoribbons with widths up to 12 nm.
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In zigzag graphene nanoribbons, quantum confinement is accompanied by the existence
of pronounced edge states localized around the zigzag edges. As mentioned before, the exis-
tence of these edge states have been suggested theoretically more than a decade ago (Fujita
et al. 1996; Klein 1994; Kobayashi 1993; Nakada et al. 1996; Tanaka et al. 1987). Recently, such
states along the zigzag edges of graphite have been experimentally observed (Kobayashi et al.
2005, 2006; Niimi et al. 2005). One of the most interesting characteristics of these edge states
in graphite is their predicted magnetic character (Fujita et al. 1996; Kusakabe and Maruyama
2003; Son et al. 2006a; Wakabayashi et al. 1999). Early theoretical predictions of graphene edge
states were based on TB and Hubbard models (Fujita et al. 1996; Nakada et al. 1996; Tanaka et al.
1987), Huckel theory (Klein 1994), and the DV-Xa method (Kobayashi 1993; Tsukada et al. 1983).
A more chemically oriented interpretation of the structure and electronic character of the dif-
ferent edges has recently been given using Clar’s sextet theory, a well-known tool for the study
of aromaticity in organic materials (Balaban and Klein 2009; Baldoni et al. 2008; Wassmann
etal. 2008).

The magnetic character carried by the zigzag edge states has a dominant effect on the elec-
tronic structure of the system. If one views a ZGNR as unrolling an armchair SWNT, one
would naively expect both systems to have similar electronic character while replacing the
symmetry of a “particle in a ring” type of boundary conditions with that of a “particle in a
box.” Therefore, since all armchair SWNTs are metallic in nature, it can be assumed that all
ZGNRs would be metallic as well. When performing spin-restricted DFT calculations, this
indeed turns out to be the case (Son et al. 2006b). Nevertheless, if the spin degree of freedom is
taken into account via the unrestricted DFT scheme, the spin-polarized character of the elec-
tronic ground state of the ZGNR is revealed (Son et al. 2006b). Here, the electronic edge state
on one zigzag edge has one spin flavor while the corresponding state on the other zigzag edge
has the opposite spin flavor. This antiparallel edge spin alignment is a direct consequence of
the antiferromagnetic coupling of spins on adjacent sites within the hexagonal carbon lattice.
In contrast to the case of the metallic armchair SWNTs, the magnetic ground state exhibits
a finite bandgap, and therefore, all ZGNRs become semiconducting (Son et al. 2006b). This
is an excellent example showing how edge states may dominate the electronic character of
the system.

The existence of such spin-polarized edge states opens a venue for controlling the electronic
properties of GNRs. One possible scheme was recently suggested where an in-plane electric
field, applied perpendicular to the axis of the ribbon, drives the system into a half-metallic state
(Son et al. 2006b). Due to the field-induced charge separation, a local gating with opposite
charge polarization occurs at the edges of the ribbons. This in turn, shifts the local DOS at both
edges with respect to one another thus increasing the bandgap of electrons with one spin flavor
and reducing the bandgap of the opposite spins (see @ Fig. 24-4). By changing the intensity of
the applied electric field, one can control the ratio of the bandgaps of the two spin components
up to a point where the bandgap of one spin flavor completely vanishes while the other spin
flavor presents a large bandgap. A system in such a half-metallic state may serve as a perfect
spin filter in nanospintronic devices.

The half-metallic behavior exhibited by zigzag ribbons under an external electric field was
first obtained using the LSDA functional. Shortly after, calculations in a large cluster model of
a zigzag GNR performed using the hybrid B3LYP challenged those findings arguing that the
inclusion of HF exchange prevents the half-metallic behavior (Rudberg et al. 2007). However,
Kan et al. (2007) and Hod et al. (2007a) independently found half-metallicity in periodic zigzag
nanoribbons using the B3LYP and HSE functionals, respectively.
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(a) Schematic density of states diagram of the electronic states of a zigzag GNR in the absence of
an applied electric field. (b) Schematic density of states diagram in the presence of a transverse
electric field. The electrostatic potential on the /eft edge is lowered, whereas the one on the right
edge is raised. (c) Dependence of half-metallicity on system size. Red denotes the bandgap of a-
spin, and blue the gap of B-spin as function of Eex: for the 8-GNR (filled circles), 11-GNR (open circles),
16-GNR (squares), and 32-GNR (triangles). The rescaled gaps for the various widths collapse to a
single function as shown in the inset (Reprinted with permission from Macmillan Publishers Ltd:
Nature (Son et al. 2006b), © (2006))
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Modeling the Optical Spectrum of Single-Walled Carbon
Nanotubes and Graphene Nanoribbons

Characterization methods for single-walled carbon nanotubes based on optical absorption have
attracted much attention during the past few years. Experiments based on photoluminescence
(Bachilo et al. 2002; Weisman and Bachilo 2003), resonant Raman spectroscopy (Fantini et al.
2004; Telg et al. 2004), and Rayleigh scattering (Sfeir et al. 2006) have been reported in which
optical transitions are obtained as fingerprints of a certain (n,m) SWNT. Optical transitions
were first studied theoretically within the tight-binding approach considering the excitations as
inter-band transitions. Within this framework, the optical spectra is generally obtained by uti-
lizing the random-phase approximation (RPA) for the imaginary part of the dielectric function
¢ (for a review, see Onida et al. 2002)

1
tm(e) = 25 2 32| (valplvd) (el -l - w), (24.)

where p is the linear momentum operator and the indices 0 and u stand for occupied and unoc-
cupied Bloch orbitals, respectively. An example of the band structure and optical spectrum for
a semiconducting tube obtained from DFT calculations is shown in @ Fig. 24-5. Allowed opti-
cal transitions, marked with arrows in the band structure of panel (a), produce a peak in the
optical spectrum (panel (b)). Within the RPA the first-order optical transition corresponds to
the fundamental gap of the semiconducting SWNT (generally dipole-allowed).

The relation between the optical transitions and the diameter of the nanotubes (Kataura
plot) (Kataura et al. 1999) was used as a useful guide for experimentalists in characterizing
nanotubes samples. However, Kataura plots based on conventional TB calculations present
serious limitations (Bachilo et al. 2002). DFT calculations utilizing local and semi-local func-
tionals are well known to underestimate the bandgap of semiconductors significantly. This holds
also true for higher order optical transitions. Hybrid functionals have been shown to improve
significantly the description of the bandgap in semiconducting materials (Heyd and Scuseria
2004; Heyd et al. 2005). In the specific case of semiconducting nanotubes, commonly employed
hybrid functionals, like B3LYP or PBEO significantly overestimate the bandgap (Barone et al.
2005b).

Despite the excitonic character of optical transitions in SWNTs (Spataru et al. 2004), the
hybrid meta-GGA TPSS and the screened-exchange hybrid HSE provide excellent agreement
with experiments for the optical gap (Barone et al. 2005b) as depicted in © Fig. 24-6 where
the mean error for the first-order optical transition with respect to experimental values in a set
of ten semiconducting nanotubes is shown. It is worth pointing out, however, that DFT-based
approaches cannot predict the strength of exciton binding energies due to the mean-field nature
of the approximation.

First-principles calculations including electron-electron interactions beyond the mean field
theory have shown the excitonic character of optical transitions in SWNTs with large exciton
binding energies (of up to 1€V for the (8,0) SWNT) (Spataru et al. 2004). These predictions have
been corroborated by experiments (Shaver et al. 2007; Wang et al. 2005). Unfortunately, these
calculations are too demanding for routine calculations in large diameter tubes, and unlikely to
be practical to study the effect of defects and functionalization.
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Band structure (a) and optical spectrum (b) of the semiconducting (10,8) SWNT (Reprinted
(Adapted) with permission from Barone et al. (2005b). © (2005) American Chemical Society)
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Calculated versus experimental first optical excitation energies for semiconducting and metal-
lic SWNTs (Reprinted (Adapted) with permission from Barone et al. (2005a). © (2005) American
Chemical Society)

The success of the hybrid functionals HSE and TPSSh in predicting the peak position of
optical transitions has been attributed to unknown error cancellations (Kiimmel and Kronik
2008; Spataru et al. 2008). However, excitonic effects in metallic nanotubes are up to two orders
of magnitude smaller than in semiconducting tubes (Deslippe et al. 2007) and remarkably, the
same hybrid functionals that are able to describe the optical peaks in semiconducting tubes also
produce excellent results in metallic tubes (Barone et al. 2005a).

As a first example of the predictive capabilities of these functionals, we show in © Fig. 24-7
calculated first-order optical transitions, E; as a function of the corresponding experimental
values in a set of five semiconducting and five metallic chiral nanotubes. All non-hybrid func-
tionals employed here (LDA, PBE, and TPSS) underestimate E; in metallic tubes by approxi-
mately 0.3 eV. This error is comparable to the error for Ej; in semiconducting tubes. The best
overall performance is achieved by the hybrids TPSSh and HSE, which yield comparable
first-order transitions in the case of metallic SWN'Ts.

Asasecond example, we compare in @ Table 24-2 first-order transitions calculated using the
hybrid TPSSh and HSE functionals (Barone et al. 2005a), and calculations considering GW plus
electron-hole interactions (GW + e-h) (Spataru et al. 2008), with experimental values. Here, it
is worth to point out the results obtained with hybrid functionals, that predict peak positions in
agreement with more complex quasiparticle and excitonic effects approaches. An explanation
for this behavior has been recently presented by Brothers et al. (2008).
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0 Table 24-2

First-order optical transitions (eV) in metallic and semiconducting tubes calculated using the
hybrid TPSSh and HSE functionals (Barone et al. 2005a, b), GW plus electron-hole interactions (GW
+ e-h) (Spataru et al. 2008), and experimental values

Semiconductor
(10,0) 1.04 0.97 1.00 1.07 Bachilo et al. (2002)
(11,0) 119 1.12 1.21 1.20 Bachilo et al. (2002)
Metallic
(12,0) 225 224 225 2.16 Fantini et al. (2004)
(10,10) 1.89 1.86 1.84 1.89 Fantini et al. (2004)
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Dependence of the first (Ey;) and second (E;;) optical transition energies on the width of bare (left
panel) and hydrogen-terminated (right panel) GNRs, at the HSE/6-31G* level of theory (Reprinted
(Adapted) with permission from Barone et al. (2006). © (2006) American Chemical Society)

Theoretical and experimental studies reveal that the optical peaks of AGNRs might be utilized
as tools to determine the nature of their edges (Barone et al. 2006; Pimenta et al. 2007). The first
calculations of the optical spectrum of GNRs was presented by Barone et al. (2006) by means of
DFT using the screened-exchange hybrid HSE functional. As expected from an inter-band tran-
sitions framework, first optical excitations present the corresponding oscillations as a function
of the width. Second-order transitions also exhibit these oscillations, as shown in @ Fig. 24-8.
For armchair ribbons with hydrogen terminations there is a shift between the oscillation of
the first and second optical transition energies such that the local maxima of Ej; coincide with
the local minima of Es,. This is expected to give rise to a doublet in the optical spectrum. A sim-
ilar doublet is expected to appear for bare GNRs with widths smaller than 1.2 nm. Nevertheless,
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for larger widths, the bandgap oscillations of the first and second optical transition energies of
bare ribbons are in phase and the doublet is expected to disappear. This effect should provide a
practical way of revealing information on the size and the nature of the edges of GNRs. Many-
body approaches later pointed out that due to the one-dimensional nature of GNRs, and like
in the case of SWNTs, their optical spectrum is dominated by excitonic effects with binding
energies as high as 1.4 eV for a 1.2 nm wide ribbon (Prezzi et al. 2008; Yang et al. 2007).

Chemistry at the Edges of Graphene

The question of what is at the edges of graphene has fascinated researchers in the area (Radovic
and Bockrath 2005), especially, since the possibility of finding magnetic edge states was openly
discussed in terms of the type of chemical bond that is expected to appear for bare and
hydrogen-terminated edges (Radovic and Bockrath 2005). The question of how magnetic and
electronic properties of nanoribbons depend upon chemical functionalization and doping has
been partially addressed by several studies. One of the first studies along this line of research
was presented by Hod et al. (2007a). In this study, the authors assumed that in most synthetic
scenarios GNRs edges will most likely be oxidized with an unknown effect on their electronic
properties. The oxidation schemes considered in these calculations included hydroxyl, lactone,
ketone, and ether groups. The authors have shown that these oxidized ribbons are, in general,
more stable than hydrogen-terminated GNRs (see © Fig. 24-9). These configurations maintain
a spin-polarized ground state with antiferromagnetic ordering localized at the edges, similar to
the fully hydrogenated counterparts. Edge oxidation has been found to lower the onset electric
field required to induce half-metallic behavior (see © section “Graphene Nanoribbons”) and
extend the overall field range at which the systems remain half-metallic. When the edges of the
ribbon are fully or partially hydrogenated, the field intensity needed to switch the system to
the half-metallic regime is about 0.4 V/A and the range at which the half-metallic behavior is
maintained is of 0.3 V/A. Nevertheless, when the edges are fully oxidized, the system turns half-
metallic at a lower field intensity (0.2 V/A) and the range of half-metallic behavior is doubled
to 0.6 V/A. Unfortunately, it is found that oxygen-containing groups at the edges have a minor
effect on the energy difference between the antiferromagnetic ground state and the above-lying
ferromagnetic state. This indicates a weak site-to-site exchange coupling and therefore oxygen
terminations do not increase the spin coherence length in these systems.

Gunlycke et al. (2007) also studied the effect of oxygen and imine groups and found that
transport and magnetic properties are greatly affected by the nature of the chemical groups at
the edges. The electronic properties of ribbons with edge carbons presenting two hydrogen or
two fluorine atoms were also studied and it was found that in narrow GNRs the sp® type of
edge carbon results in a non-spin-polarized state (Kudin 2008). Kan et al. (2007) studied the
effect of combining donor and acceptor groups at different edges of zigzag nanoribbons using
DFT in the GGA. Within this approach, the authors found a half-metallic behavior without an
external field for some particular chemical decorations. Cervantes-Sodi et al. (2008a, b) inves-
tigated the electronic properties of chemically modified ribbons and observed that chemical
modifications of zigzag ribbons can lift the spin degeneracy which promotes a semiconducting-
metal transition, or a half-semiconducting state, with the two spin channels having a different
bandgap, or a spin-polarized half-semiconducting state, where the spins in the valence and con-
duction bands are oppositely polarized. The authors find that edge functionalization studied in
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(@) Scheme of the oxygen- containing groups considered. (b) Relative stability of the different
chemical groups at the edges as calculated using the enthalpy of formation with respect to molec-
ular oxygen and hydrogen, and graphene as shown in Hod et al. (2007a) (Reprinted (Adapted) with
permission from Hod et al. (2007a). © (2007) American Chemical Society)

their work gives electronic states a few eV away from the Fermi level in armchair ribbons and
does not significantly affect their bandgap. Lee and Cho (2009) presented calculations based on
the local spin density approximation and found that edge-oxidated ZGNRs present a metallic
behavior. This was rationalized in terms of the electronegativity of O with respect to C. How-
ever, it needs to be stressed that while LSDA or PBE calculations might yield a metallic solution,
hybrid functionals still predict all oxidation schemes to be semiconducting (Hod et al. 2007a).

Chemical functionalization of rectangular graphene nanodots has been studied in detail
using the DFT-B3LYP approach (Zheng and Duley 2008). This study shows that edge chemical
modifications in finite ribbons significantly alter their electronic structure. Finite size effects in
this type of dots will be further discussed in the next section.

It is interesting to note that besides chemical functionalization at the edges of graphene it
is possible to introduce adatoms on the graphene surface. Usually, this type of interaction is



918

Modeling of Quasi-One-Dimensional Carbon Nanostructures

governed by a charge transfer mechanism. Rigo et al. (2009) presented DFT calculations on Ni
adsorption on graphene nanoribbons. The adsorption takes place preferentially along the edges
of zigzag nanoribbons and the interaction of the adatom with the carbon backbone quenches
the magnetization of the latter in the neighborhood of the adsorption site. Other transition
metal atoms adsorbed on GNRs were studied using DFT (Sevincli et al. 2008). Interestingly,
Fe or Ti adsorption makes certain armchair GNRs half-metallic with a 100% spin polariza-
tion at the Fermi level. These results indicate that the properties of graphene nanoribbons can
be strongly modified through the adsorption of 3d transition metal atoms. Alkaline and alkali
metal adsorption on graphene nanoribbons were found to exhibit a strong site-dependent inter-
action (Choi and Jhi 2008). Similar results have been obtained by Uthaisar et al. (2009) when
considering the interaction of Li adatoms and graphene nanoribbons. The strength of the inter-
action is much larger in zigzag GNRs than in armchairs and occurs preferentially along the
edges. This enhancement is rationalized in terms of the larger number of electron acceptor
states in ZGNRs compared to AGNRs. Energy barriers for Li migration also present impor-
tant characteristics along the edges which can result in faster kinetics than in regular graphene
(Uthaisar and Barone 2010). In addition, recent computational studies suggest lithium doping
as a possible route for bandgap engineering of graphitic systems (Krepel and Hod 2011).

Finite Size Effects in Low-Dimensional Graphitic Materials

Finite size effects play a central role in dictating the electronic properties of materials at the
nanoscale. Due to their unique electronic structure, quasi-zero-dimensional (quantum dots)
graphitic structures may exhibit fascinating physical phenomena, which are absent in their
quasi-one-dimensional (nanowires, nanotubes, and nanoribbons) counterparts. Many factors
govern the effect of reduced dimensions on the electronic properties of nanoscale materials.
Here we focus on two such important factors, which are strongly manifested in the electronic
characteristics of graphitic materials, namely, quantum confinement and edge effects:

1. Quantum confinement is related to the boundary conditions enforced on the electronic
wave function by the finite size of the system. When the typical de-Broglie wavelength
associated with the Fermi electrons becomes comparable to the dimensions of the system,
its electronic and optical properties deviate substantially from those of the bulk system.
As the confining dimension decreases and reaches this limit (which is typically within the
nanometer regime) the energy spectrum turns discrete and the energy gap becomes size
dependent.

2. Edge effects in graphitic materials are dominated by localized states, which are physically
located at the boundaries of the system and energetically positioned in the vicinity of the
Fermi energy. These states influence not only the electronic properties of these systems but
also their chemical reactivity.

As shown in previous sections, combining the unique electronic structure of the two-
dimensional graphene sheet with the quantum confinement in quasi-one-dimensional
graphene derivatives, results in unique electronic properties, which are governed by the specific
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geometry and dimensions of the relevant system. In @ section “Structure-Property Relations
in Single-Walled Carbon Nanotubes and Graphene Nanoribbons,” it was shown that one of the
most notable examples of such effects is found in the strong dependence of the electronic char-
acter of carbon nanotubes on their specific diameter and chirality. This diversity in the electronic
structure obtained from a single material just by changing its spatial symmetry, is one of the
most promising characteristics of carbon nanotubes for applications as basic components in
future nanoscale electronic devices.

Recent experimental procedures have allowed the production of ultra-short carbon nan-
otubes (Chen et al. 2006a, b; Gu et al. 2002; Javey et al. 2004; Khabashesku et al. 2002;
Mickelson et al. 1998; Nakamura et al. 2003). The electronic structure of these quasi-zero-
dimensional systems is expected to be considerably different from their elongated counterparts,
since the reduction of dimensionality implies additional confinement restrictions which may
result in the emergence of new and interesting physical phenomena. Several theoretical investi-
gations have addressed the importance of quantum confinement on the electronic properties of
finite carbon nanotubes (Baldoni et al. 2007; Li et al. 2002; Liu et al. 2001; Rochefort et al. 1999b).
Using a variety of methods including the HF approximation, semiempirical calculations, and
the GGA, Rochefort et al. (1999b) have investigated the change in bandgap, density of states,
and binding energies as a function of the length of armchair carbon nanotubes. In contrast with
the metallic character of the infinite tubes, finite segments shorter than 10 nm are predicted to
present a considerable bandgap, which vanishes as the length of the tube increases. Interestingly,
the convergence to the infinite metallic system is non-monotonic, and pronounced threefold
bandgap oscillations occur as the length of the tube is extended (see @ Fig. 24-10). These
bandgap oscillations were associated with the periodic changes in the bonding characteristics
of the HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular
orbital), which are a direct consequence of the quantum confinement of the 7 electrons along
the tube axis.

As one may expect, the calculated bandgaps strongly depend on the specific computational
method, where the HF and semiempirical approximations predict bandgap values which are
four to six times larger than those obtained by the generalized gradient DFT and extended
Huckel calculations. Nevertheless, the general characteristics of the bandgap behavior and the
existence of the bandgap oscillations are predicted by all methods. Similar results have been
obtained using the hybrid B3LYP functional for open-ended and capped finite nanotube sec-
tions (Li et al. 2002). Expanding the study to the case of zigzag and chiral nanotubes, Liu et al.
(2001) have used extended Huckel calculations to show the dependence of the bandgap oscilla-
tions on the chirality of the finite nanotube segment. As shown in @ Fig. 24-11, as the chirality of
the tube changes gradually from armchair to zigzag, the amplitude of the oscillations reduces,
and almost vanishes for the case of (12,0) zigzag nanotube segments. This leads to the inter-
esting conclusion that the metallic character of the infinite armchair nanotubes is replaced by
HOMO-LUMO gap oscillations for finite armchair nanotube segments, while the oscillatory
bandgap nature of infinite zigzag nanotubes is replaced by a vanishing HOMO-LUMO gap for
the finite zigzag nanotube segments. An interesting interpretation of the behavior of the HOMO
and LUMO levels of finite carbon nanotube segments as a function of their length was recently
given using Clar sextet theory (Baldoni et al. 2007).

As discussed above, when an infinite graphene sheet is cut to form a quasi-one-dimensional
graphene nanoribbon with a finite width and infinite length, the 7t-electrons wave function is
confined along the direction perpendicular to the axis of the ribbon and is forced to vanish at
large distances along this direction. These “particle in a box” like boundary conditions induce
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Variation of the band gap of a (6,6) nanotube as a function of its length determined using differ-
ent computational techniques (Reprinted (Adapted) with permission from Rochefort et al. (1999b).
© (1999) American Chemical Society)

discretization of the two-dimensional dispersion relation into a set of one-dimensional bands.
This discretization induces bandgap dependence on the width of the obtained ribbons.

The dimensionality of these systems may be further reduced to form graphene nanodots,
which can be viewed as molecular derivatives of graphene. This extra confinement has been
recently shown to strongly impact the electronic structure of these systems (Hod et al. 2008;
Shemella et al. 2007). © Figure 24-12 presents the HOMO-LUMO gaps as a function of the
length and width of a large number of graphene quantum dots calculated using the local density
approximation (upper left panel), the PBE flavor of the generalized gradient correction (upper
right panel), and the screened-exchange hybrid HSE functional (lower left panel). The studied
graphene derivatives are rectangular in shape and denoted by N x M where N and M are the
number of hydrogen atoms passivating the armchair and zigzag edge, respectively. As in the
case of infinite armchair graphene nanoribbons, an oscillatory behavior of the energy gap as a
function of the length of the ribbon is observed. The periodicity of these oscillations appears to
be somewhat different than the threefold period obtained for the infinitely long counterparts.
This, however, is a result of the fact that in order to prevent dangling carbon bonds, the width
step taken for the finite systems is twice as large than the one taken in the infinitely long armchair



Modeling of Quasi-One-Dimensional Carbon Nanostructures

921

2 - : . .
—e (5,6) 2
—a (7,5) .
— (8,4) 3
i a(93 2
—= (12,00 ©
J 4 10 16 22
3 ' Number of Sections
[0}
0 Fors

4 " 10 16 22
Number of Sections
O Fig. 24-1
The bandgap as a function of the (even) number of SWNTs sections (Reprinted with permission
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ribbon calculations. The amplitude of the oscillations is found to be considerably damped due to
the finite size of the ribbons. As expected, when the length of the armchair edge (N) is increased,
the oscillation amplitude increases as well. It is interesting to note that, in general, the HOMO-
LUMO gap is inversely proportional to the width (N) and the length (M) of the finite GNR in
accordance with the semimetallic graphene sheet limit. Therefore, in order to obtain energy gap
tailoring capability, one will have to consider GNRs with long armchair edges (large N values)
and short zigzag edges (small M values). This will increase the amplitude of the energy gap
oscillations while maintaining overall higher gap values.

The effects of localized edge states on the electronic properties of quasi-one-dimensional
systems have been discussed in previous sections. The question arises of whether simi-
lar effects can be observed in quasi-zero-dimensional systems. It is well established that
small molecular derivatives of graphene, such as different types of polyaromatic hydrocar-
bons, have a closed shell nonmagnetic ground state. On the other hand, infinite ZGNRs
present a spin-polarized ground state. This suggests that there exists a critical size at
which molecular graphene derivatives become spin polarized. One of the earliest studies
addressing this issue dates back to more than two decades ago (Stein and Brown 1987).
Using Huckel theory it was found that finite graphene flakes exhibit electronic edge states
along the zigzag edges. More recently, several studies, based on DFT calculations have
investigated this question in detail. As a first step for obtaining quasi-zero-dimensional
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HOMO-LUMO gap values for three sets of graphene nanodots, as calculated by the local spin den-
sity approximation (upper left panel), PBE functional (upper right panel), and the HSE functional
(lower left panel) (Reprinted with permission from Hod et al. (2008). © (2008) by the American
Physical Society)

graphene derivatives, it is convenient to consider truncated graphene nanoribbons in
the form of rectangular nanodots (Hod et al. 2008; Jiang et al. 2007; Kan et al. 2007;
Rudberg et al. 2007; Shemella et al. 2007). Surprisingly, it was found that even molecu-
lar scale graphene derivatives, such as the bisanthrene (phenanthro(1,10,9,8-opqra ]perylene)
isomer of the C,sHj4 molecule and C3sHje (tetrabenzo([bc,efkl,no]coronene), are predicted to
present a spin polarized ground state as shown in @ Fig. 24-13 (Hod et al. 2008; Jiang et al.
2007; Kan et al. 2007). For the smaller molecules, this was further verified using a complete
active space self-consistent field many-body-wave function approach (Jiang et al. 2007). Fur-
thermore, the application of an in-plane electric field perpendicular to the zigzag edge was
found to turn the finite systems into molecular scale half-metals (Hod et al. 2008; Kan et al.
2007), similar to the case of infinite ZGNRs.

When considering more complicated graphene derivatives such as triangular graphene
flakes (Ezawa 2007; Fernandez-Rossier and Palacios 2007), the combination of the local anti-
ferromagnetic spin ordering on adjacent carbon sites and the edge geometry of the triangular
structure results in spin frustration. This leads to a metallic ground state with an overall fer-
romagnetic character and a finite magnetic moment. The results of tight-binding Ising model
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(a)-(e) Isosurface spin densities of the antiferromagnetic ground state of several molecular
graphene derivatives as obtained using the HSE functional and the 6-31G** basis set. (f) and (g)
represent diradical and hexaradical Clar structures of bisanthrene (Reprinted with permission from
Hod et al. (2008). © (2008) by the American Physical Society)

(Ezawa 2007) and Hubbard model (Fernandez-Rossier and Palacios 2007) Hamiltonians are
consistent with the predictions of DFT (Fernandez-Rossier and Palacios 2007). These can be
further rationalized by Lieb’s theorem (Lieb 1989) regarding the total spin S of the exact ground
state of the Hubbard model in bipartite lattices. The honeycomb lattice of graphene is formed by
two triangular interpenetrating sublattices, A and B. Since triangular nanostructures have more
atoms in one sublattice, N4 > Np the total spin S of the ground state is 2S = N4 — Np >0. Here,
the main contribution to the magnetic moment comes from edge states around the zigzag edges
of the triangular structure. Such molecular graphene derivatives were suggested to function as
permanent magnets in future nanoscale memory devices.

Naturally, the effect of edge states reduces as the surface to edge ratio becomes larger. An
interesting question to address is at what length would the effect of the edges disappear and
the electronic structure of the system becomes essentially identical to that of the infinite sys-
tem? In a recent study, this question was addressed using a divide-and-conquer (D&C) DFT
approach, which enables the efficient and accurate calculation of the electronic properties and
charge transport through finite elongated systems (Hod et al. 2006). Within this approach, the
Hamiltonian H is given in a localized basis set representation by a block-tridiagonal matrix,
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where the first and last diagonal blocks correspond to the two terminating units of the ribbon
(see upper panel of © Fig. 24-14). The remaining diagonal blocks correspond to the central part
of the GNR which is composed of a replicated unit cell. The terminating units and the replicated
central part unit cell are chosen to be long enough such that the block-tridiagonal representation
of H (and the overlap matrix S) is valid. The terminating unit diagonal Hamiltonian blocks and
their coupling to the central part are evaluated via a molecular calculation involving the two ter-
minating units and one unit cell cut out of the central part. The replicated unit cell blocks of the
central part and the coupling between two such adjacent blocks are approximated to be constant
along the GNR and obtained from a periodic boundary conditions calculation. The resulting
block-tridiagonal matrix ES — H is then partially inverted for each value of the energy E using
an efficient algorithm, to obtain the relevant Green’s function blocks needed for the DOS and
transport calculations using the following formula

p(E) - 77ltlm{Tr[Gr(E)S]}, (24.2)

where G"(E) = [ES - H] ™. A detailed account of the D&C method can be found in Hod et al.
(2006).

DOS (eV~" per electron)

E-Eg (eV)

O Fig. 24-14

Upper panel: A finite elongated graphene nanoribbon. Lower panels: DOS of the finite GNR at dif-
ferent lengths. The red curve in the lowermost panel is the DOS of the infinite system (Reprinted
with permission from Hod et al. (2007b). © (2006) by the American Physical Society)
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To study these edge effects in graphene, three graphene nanoribbons with consecutive
widths were considered and their DOS as a function of the ribbons’ length were calculated
using this D&C approach (Hod et al. 2007b). As an example, @ Fig. 24-14 presents the DOS
of a finite graphene nanoribbon of different lengths. It can be seen that for graphene nanodots
up to 12 nm in length, the DOS resembles that of a finite molecular system characterized by a
discrete set of energy levels. When the ribbon is further elongated to 38 nm, a constant DOS
around the Fermi energy of the infinite system arises and typical Van Hove singularities start
to build up. For this specific system, at a length of 72 nm most of the features that are related
to the edge states disappear, and the DOS almost perfectly matches that of an infinite armchair
graphene nanoribbon. The rate of convergence of the electronic properties of finite systems to
those of the infinite counterparts will depend on the type of the system and the specific inter-
actions that govern its electronic character. Therefore, the divide-and-conquer method allows
the quantitative estimation of this rate based on state-of-the-art DFT approximations.

We now turn back to the case of carbon nanotubes. When a zigzag nanotube is cut into
finite segments, the zigzag edges are exposed. We have shown in the previous section that quan-
tum confinement effects may play an important role in determining the electronic character of
such structures. Similar to the case of graphene nanoribbons, these effects are now accompa-
nied by the formation of spin-polarized edges states which put their own fingerprints on the
electronic structures of the system (see © Fig. 24-15). There has been a debate in the litera-
ture regarding the energetic stability of these edge states, and whether they would appear for
all finite zigzag nanotubes regardless of their diameter (Higuchi et al. 2004; Kim et al. 2003;
Okada and Oshiyama 2003). It is now well accepted that all finite zigzag SWNT segments are
expected to present a spin-polarized ground state (Hod and Scuseria 2008; Kim et al. 2003; Man-
anes et al. 2008). Furthermore, as for ZGNRs, the application of an axial electric field will drive

(10,0,7)

O Fig. 24-15

Antiferromagnetic-type ground state spin density maps of the (7,0) (upper left panel), (8,0) (upper
right panel), (9,0) (lower left panel), (10,0) (lower right panel) finite zigzag SWNT segments as
obtained using the HSE functional with the 6-31G** basis set. Red and blue isosurfaces indicate the
two spin flavors with an isovalue of 0.0015 aa3 (Reprinted (Adapted) with permission from Hod and
Scuseria (2008). © (2008) American Chemical Society)
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the system into a half-metallic state, thus forming a perfect spin filter. If one now eliminates
only one zigzag edge of the tube by capping it with a half-fullerene, spin frustration results in a
spin-polarized ferromagnetic ground state (Kim et al. 2003), which resembles the case of trian-
gular graphene derivatives discussed above and forms a molecular magnet bearing a permanent
magnetic moment.

Two-dimensional graphene and its lower dimensional derivatives present a diversity of
electronic behaviors, making them particularly attractive as building blocks for future nano-
devices. Simplified model Hamiltonian approaches may give important insights on the general
physical trends in these systems. Nevertheless, density functional theory in general, and the
screen exchange hybrid functional approximation, in particular, seem to be excellent tools to
quantitatively study the structure-function relations in these systems and the effects of external
perturbations such as chemical substitutions and electric and magnetic fields.

Electromechanical Properties of One-Dimensional Graphitic
Structures

Electromechanical devices are based on systems for which the mechanical properties can be
controlled via the application of external electric potentials and/or the electronic properties
may be altered via induced mechanical deformations. Such devices can be scaled down to form
microelectromechanical systems (MEMS), which are small integrated devices or systems that
combine electrical and mechanical components. Their dimensions may vary from the submi-
cron level up to a few millimeters. By fabricating miniature mechanical elements such as beams,
gears, diaphragms, and springs MEMS enabled the realization of diverse applications includ-
ing ink-jet-printer cartridges, accelerometers, miniature robots, microengines, locks, inertial
sensors, microtransmissions, micromirrors, micro actuators, optical scanners, fluid pumps,
transducers, and chemical, pressure, and flow sensors. Nanoelectromechanical (NEMS) systems
present the ultimate miniaturization of such devices, scaling them further down to the molec-
ular level. Apart from the reduced dimensions, these systems are characterized by lower energy
consumption and increased sensitivity toward external perturbations. Furthermore, due to their
quantum-mechanical nature, molecular-sized NEMS may present unique physical properties
that cannot be obtained from their microscopic and macroscopic counterparts. The unique
electronic and mechanical properties of carbon nanotubes have marked them as promising can-
didates for key components in NEMS. In recent years, several theoretical investigations as well
as experimental realization of NEMS have been presented (Cao et al. 2003; Cohen-Karni et al.
2006; Fennimore et al. 2003; Gomez-Navarro et al. 2004; Hall et al. 2007; Maiti 2003; Minot
et al. 2003; Nagapriya et al. 2008; Paulson et al. 1999; Rueckes et al. 2000; Sazonova et al. 2004;
Semet et al. 2005; Stampfer et al. 2006; Tombler et al. 2000).

The key components in most of the suggested setups are suspended carbon nanotubes bridg-
ing the gap between two conducting electrodes without making contact with the underlying
surface (see © Fig. 24-16). One may then induce mechanical deformations via manipulation of
an external nanoscale tip while simultaneously measuring the changes in the conductance of
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O Fig. 24-16

SEM image of a cantilever-SWNT-based NEMS sensing device. The white arrows indicate the loca-
tion of the suspended SWNT (Reprinted (Adapted) with permission from Stampfer et al. (2006).
© (2006) American Chemical Society)

the system. Strong reversible electromechanical response of carbon nanotubes under combined
bending and stretching deformations have been recorded by several experimental groups (Cao
et al. 2003; Maiti 2003; Minot et al. 2003; Semet et al. 2005; Stampfer et al. 2006; Tombler et al.
2000). In © Fig. 24-17, the change in the SWNT'’s resistance as a function of the depression
applied to the top cantilever (@ Fig. 24-16) is plotted. The resistance of the system increases by
more than an order of magnitude over a depression range of less than 4 nm, suggesting that such
setups may be used for highly sensitive and reliable displacement sensors. A similar setup, where
a floating pedal is attached to a suspended multi-walled nanotube, has enabled the investigation
of the electromechanical response of single (Hall et al. 2007) and multi-walled (Cohen-Karni
etal. 2006) nanotubes under the application of torsional deformations. In this setup, an atomic
force microscope (AFM) tip presses down on the floating pedal. Since the SWNT is fixed at both
edges to the conducting electrodes, the central section experiences torsion. This change in helic-
ity of the system induces considerable variations in the electronic conductance. Interestingly,
pronounced bandgap oscillations are observed as a function of the deflection angle of the pedal.
The origin of these oscillations has been associated with the distortion of the first Brillouin zone
(fBZ), which results in the shifting of the Dirac points (Cohen-Karni et al. 2006; Nagapriya et al.
2008). As the Dirac points shift within the fBZ they may approach an allowed electronic band
thus increasing the conductance of the system. Once the Dirac point crosses the allowed band
the conductance reaches a maximum value. Further deformation results in shifting the Dirac
points away from the allowed band and thus a decrease in the conductance. This process is
repeated anytime the Dirac point crosses one of the many parallel allowed bands. Other proto-
type devices such as nanotube actuators (Fennimore et al. 2003; Gomez-Navarro et al. 2004),
and nonvolatile memory components based on SWNTs junctions (Rueckes et al. 2000) have
been successfully fabricated as well, demonstrating the potential of SWNTSs as nanoscale elec-
tromechanical devices. Aiming to obtain a microscopic understanding of these experimental
observations and to guide further experiments with carbon nanotubes under various mechan-
ical deformation modes, many theoretical investigations have been performed (Maiti 2009).
Due to the complexity of the deformed systems, most of the computational treatments were
based on semiempirical or DFT-based TB calculations.
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Electromechanical measurements of an electromechanical device based on a metallic SWNT
(© Fig. 24-16). The upper insert shows the resistance plotted as a function of strain. The lower insert
shows a force versus deflection measurement performed on the cantilever-SWNT contact point
(Reprinted (Adapted) with permission from Stampfer et al. (2006). © (2006) American Chemical
Society)

The effects of axial stretching (Heyd et al. 1997; Jiang et al. 2004; Kane and Mele 1997; Kleiner
and Eggert 2001; Yang et al. 1999), bending (Kane and Mele 1997; Liu et al. 2000; Nardelli 1999;
Nardelli and Bernholc 1999; Rochefort et al. 1998, 1999a; Yang and Han 2000), torsion (Jiang
etal. 2004; Kleiner and Eggert 2001; Rochefort et al. 1999a; Yang and Han 2000; Yang et al. 1999;
Zhang et al. 2009), and radial compression (Lammert et al. 2000; Lu et al. 2003; Peng and Cho
2002; Svizhenko et al. 2005) were studied extensively showing high sensitivity of the electronic
properties and transport characteristics of the deformed nanotubes to the applied deformations.

Several DFT calculations were conducted to study the effect of axial strain (Guo et al. 2005),
bending (Maiti 2001; Maiti et al. 2002), radial compression (Mehrez et al. 2005; Wu et al. 2004),
and torsional deformations in carbon nanotubes (Nagapriya et al. 2008):

1. Axial strain: While isolating the effect of axial stretching and compression is a challeng-
ing experimental task (Cao et al. 2003), pure axial deformations are easy to study using
modern computational tools (Guo et al. 2005). Bandgap variations due to axial compres-
sion and stretching were studied using the local density approximation. As it can be seen in
© Fig. 24-18 for strains up to 3%, linear variations in the bandgap are predicted. The slope
of the bandgap response depends on the tube type and on the sign of the axial deformation.
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Calculated bandgap variation of zigzag (9,0), (12,0), (15,0), and (27,0) SWNTs as a function of axial
strain (Reprinted with permission from Guo et al. (2005). © (2005) American Institute of Physics)

For all systems studied, the relative changes in bandgap are of the order of 0.5¢V and are
definitely measurable in experimental conditions.

2. Bending: The effect of pure bending and AFM tip-induced bending was studied using the
Harris functional approximation (Maiti 2001; Maiti et al. 2002). It was shown that both pure
bending and tip-induced compression maintain the hexagonal sp” lattice structure up to
relatively high bending angles. Armchair tubes remain significantly conducting even at large
deformations. However, metallic zigzag tubes display a dramatic drop in conductance, in
particular under tip-induced deformations.

3. Compression: Radial compression was studied via a combined molecular dynamics
and density functional theory-based nonequilibrium Green’s function approach (Wu
et al. 2004). Reversible pressure-induced metal-to-semiconductor transitions of armchair
SWNTs were predicted suggesting that SWNTs may be used as miniature sensitive pressure
detectors (Mehrez et al. 2005; Wu et al. 2004).

4. Torsion: While the torsional electromechanical response was successfully explained via
the deformation of the Brilluoin zone, another possible explanation for the bandgap
oscillations may be the periodic formation of Moire patterns due to registry mismatch
between the different walls of the multi-walled tubes, which have a different curvature.
In order to rule out this possibility, DFT calculations within the LSDA were used to
show that the interlayer coupling is weak and the electronic structure of the individ-
ual walls resembles that of single-walled nanotubes for different intertube orientations
(Nagapriya et al. 2008).

As can be seen from all of the examples given above, the study of the physical prop-
erties of nanotubes in general and their electromechanical behavior in particular requires
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an intimate relation between theory and experiment, where the theoretical tools enable
an atomic scale understanding of the experimental observations and provide guidelines
for the design of new experiments. As we have seen above, when considering finite size
effects and chemical functionalization, DFT presents new insights that are not captured
within the simple TB approximations. When considering the electromechanical response of
SWNTs to different mechanical deformations, TB calculations seem to give a reliable descrip-
tion. Nevertheless, calculations based on DFT are required for comparison and validation
purposes.

Soon after the successful isolation of a single graphene sheet (Novoselov et al. 2004) the
first experimental realization of an electromechanical device based on graphene nanorib-
bons was presented (Bunch et al. 2007). In this setup, atomic thick layers of graphene were
suspended above predesigned trenches carved in the underlying silicon oxide surface while
bridging the gap between gold electrodes. Both optical and electrical actuation procedures
were demonstrated resulting in vibrational frequencies in the MHz regime. High charge sen-
sitivities suggested the possibility of using similar devices as ultrasensitive mass and force
detection (Bunch et al. 2007). Following this novel experimental fabrication and manipulation
of graphene nanoribbons as nanoelectromechanical components, several other studies have
explored the mechanical (Frank et al. 2007; Poot and van der Zant 2008) and electromechani-
cal response of these systems (Milaninia et al. 2009). The effects of uniaxial strains in isolated
graphene nanoribbons were recently studied in details using the generalized gradient approxi-
mation of the exchange correlation functional within the framework of DFT (Faccio et al. 2009;
Sun et al. 2008). It was found that the electronic properties of zigzag GNRs are not sensitive
to uniaxial strain, while the energy gap of armchair nanoribbons displays an oscillatory pat-
tern as a function of the applied strain. By comparison to TB calculations, it was deduced that
the nearest-neighbor hopping terms between atomic sites within the carbon hexagonal lattice
are responsible for the observed electromechanical response. To simulate the effects of bending
and torsional deformations in suspended graphene nanoribbons, DFT calculations utilizing the
screened-exchange HSE density functional were performed (Hod and Scuseria 2009). A large
set of short armchair graphene nanoribbons was considered, where narrow strips of atoms close
to the zigzag edges of the ribbon were fixed to simulate a doubly clamped suspended nanoribbon
(see © Fig. 24-19).

The effect of a driven deformation due to an external tip were simulated by constraining a
strip of hexagons at the central part of the ribbon to be either depressed or rotated with respect
to the fixed edge atoms. Extreme mechanical deformations, way beyond the linear response
regime, were applied to the full set of nanoribbons studied. Most of the nanoribbons consid-
ered stayed stable under depressions of 1 nm as well as torsional angles of 90° maintaining their
spin-polarized ground state character. As it can be seen in @ Fig. 24-20, pronounced electrome-
chanical responses for both bending and torsion (torsion not presented in @ Fig. 24-20) have
been obtained including evidence of dimension-dependent bandgap oscillations similar to the
case of SWNTs (Cohen-Karni et al. 2006; Nagapriya et al. 2008).

Apart from indicating the promise that graphene nanoribbons hold from an electrome-
chanical perspective, such calculations based on state-of-the-art density functional theory
approaches, enhance the molecular scale understanding of the physical processes governing
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O Fig. 24-19

An artist view of an electromechanical device based on graphene nanoribbons. An external tip may

induce bending and torsion of the nanoribbon (Reprinted (Adapted) with permission from Hod and
Scuseria (2009). © (2009) American Chemical Society)
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the behavior of these intriguing materials. Furthermore, theory and computations may guide
future experiments to pursue promising scientific and technological routes toward which efforts
and resources should be directed.

Concluding Remarks

In this chapter, we have given several examples of how theoretical investigations can be applied
to elucidate the behavior of carbon nanostructures with emphasis on the understanding of the
basic physical mechanisms that take place at the molecular level. In particular, we have shown
that density functional theory is a powerful tool to this end, and we have provided several exam-
ples where density functional theory has been utilized to investigate electronic and structural
properties of graphene nanoribbons, carbon nanotubes, and other low-dimensional graphitic
materials. We hope that this chapter will furnish the reader with an ample background on this
growing field and that it will serve as a starting point for readers interested in pursuing research
in this exciting field.
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