1. For the trial function

$$
\psi(x)= \begin{cases}N\left(A^{2}-x^{2}\right) & -A<x<A \\ 0 & \text { otherwise }\end{cases}
$$

a) The normalized wavefunction is obtained by requiring

$$
\begin{aligned}
\langle\psi \mid \psi\rangle & =\int \mathrm{d} x|\psi|^{2}=\int_{-A}^{A} \mathrm{~d} x N^{2}\left(A^{2}-x^{2}\right)^{2}=N^{2} \int_{-A}^{A} \mathrm{~d} x\left(A^{4}-2 A^{2} x^{2}+x^{4}\right) \\
& =\left.N^{2}\left[A^{4} x-\frac{2}{3} A^{2} x^{3}+\frac{1}{5} x^{5}\right]\right|_{-A} ^{A}=N^{2} A^{5} \cdot 2\left(1-\frac{2}{3}+\frac{1}{5}\right)=\frac{16}{15} N^{2} A^{5}=1
\end{aligned}
$$

such that

$$
N=\sqrt{\frac{15}{16 A^{5}}}
$$

b) Using the Hamiltonian inside a 1D box, the variational energy is

$$
\begin{aligned}
\varepsilon & =\langle\psi| \hat{H}|\psi\rangle=\int_{-A}^{A} \mathrm{~d} x \frac{15}{16 A^{5}}\left(A^{2}-x^{2}\right)\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}\right)\left(A^{2}-x^{2}\right) \\
& =2 \frac{\hbar^{2}}{2 m} \frac{15}{16 A^{5}} \int_{-A}^{A} \mathrm{~d} x\left(A^{2}-x^{2}\right)=\left.\frac{15 \hbar^{2}}{16 m A^{5}} \mathrm{~d} x\left[A^{2} x-\frac{1}{3} x^{3}\right]\right|_{-A} ^{A} \\
& =\frac{15 \hbar^{2}}{16 m A^{5}} \frac{4 A^{3}}{3}=\frac{5 \hbar^{2}}{4 m A^{2}}=1.25 \frac{\hbar^{2}}{m A^{2}}
\end{aligned}
$$

The exact ground-state energy for a box of length $L=2 A$ is

$$
E=\frac{h^{2} 1^{2}}{8 m L^{2}}=\frac{4 \pi^{2} \hbar^{2}}{8 m \cdot 4 A^{2}}=\frac{\pi^{2} \hbar^{2}}{8 m A^{2}} \approx 1.23 \frac{\hbar^{2}}{m A^{2}}<\varepsilon
$$

So, the variational principle holds and the approximation is quite good.
c) Replacing the box Hamiltonian with that of a harmonic oscillator,

$$
\begin{aligned}
\varepsilon & =\langle\psi| \hat{H}|\psi\rangle=\int_{-A}^{A} \mathrm{~d} x \frac{15}{16 A^{5}}\left(A^{2}-x^{2}\right)\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+\frac{1}{2} k x^{2}\right)\left(A^{2}-x^{2}\right) \\
& =\frac{5 \hbar^{2}}{4 m A^{2}}+\frac{1}{2} k \frac{15}{16 A^{5}} \overbrace{-A}^{A} \mathrm{~d} x\left(A^{2}-x^{2}\right) x^{2}\left(A^{2}-x^{2}\right) \\
& =\frac{5 \hbar^{2}}{4 m A^{2}}+\frac{1}{2} k \frac{A^{2}}{7}
\end{aligned}
$$

Minimizing this gives

$$
\frac{\partial \varepsilon(A)}{\partial A}=-\frac{10 \hbar^{2}}{4 m A^{3}}+k \frac{A}{7}=0 \Rightarrow A_{\min }=\left(\frac{70 \hbar^{2}}{4 m k}\right)^{\frac{1}{4}}
$$

d) The minimum energy from the previous calculation is

$$
\varepsilon\left(A_{\min }\right)=\frac{5 \hbar^{2}}{4 m \sqrt{\frac{70 \hbar^{2}}{4 m k}}}+\frac{1}{2} k \frac{\sqrt{\frac{70 \hbar^{2}}{4 m k}}}{7}=\sqrt{\frac{5}{14}} \hbar \sqrt{\frac{k}{m}} \approx 0.59 \hbar \sqrt{\frac{k}{m}}
$$

while the exact answer is (note $k=m \omega^{2} \Rightarrow \omega=\sqrt{\frac{k}{m}}$)

$$
E_{0}=\frac{1}{2} \hbar \sqrt{\frac{k}{m}}<\varepsilon
$$

The variational principle therefore holds.
2. For the potential

$$
V(x)=-\operatorname{sech}^{2}(x)=-\left(\frac{2}{e^{x}+e^{-x}}\right)^{2}
$$

a) The Schrödinger equation in atomic units $(\hbar=m=1)$ is

$$
\left(-\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}-\left(\frac{2}{e^{x}+e^{-x}}\right)^{2}\right) \psi(x)=E \psi(x)
$$

b) At $x \rightarrow \infty$, the positive exponent diverges while the negative exponent goes to zero; at $x \rightarrow-\infty$ the opposite of this happens. Therefore, at each of these limits the denominator diverges and the potential approaches zero.
The only minimum of the function is at $x=0$, where $V=-1$:

$$
\begin{aligned}
\frac{\partial V(x)}{\partial x} & =\frac{8\left(e^{x}-e^{-x}\right)}{\left(e^{-x}+e^{x}\right)^{3}}=0 . \\
& \Downarrow \\
e^{x} & =e^{-x} \\
& \Downarrow \\
x & =0 .
\end{aligned}
$$

c) To perform the Taylor expansion, we need the second derivative of the potential at the minimum:

$$
\left.\frac{\partial^{2} V(x)}{\partial x^{2}}\right|_{x=0}=\left.\left[8\left(\frac{1}{\left(e^{x}+e^{-x}\right)^{2}}-3 \frac{\left(e^{x}-e^{-x}\right)^{2}}{\left(e^{x}+e^{-x}\right)^{4}}\right)\right]\right|_{x=0}=2
$$

With this,

$$
V(x) \simeq \overbrace{V(0)}^{=-1}+\overbrace{x\left(\left.\frac{\partial V(x)}{\partial x}\right|_{x=0}\right)}^{=0}+\frac{1}{2} x^{2} \overbrace{\left(\left.\frac{\partial^{2} V(x)}{\partial x^{2}}\right|_{x=0}\right)}^{=2}=\overbrace{-1+x^{2}} .
$$

The result is the Hamiltonian of a harmonic oscillator with $\frac{1}{2} m \omega^{2}=1 \Rightarrow \omega=\sqrt{2}$, and the zero point energy is $\frac{1}{2} \hbar \omega=\frac{\sqrt{2}}{2}$ (in atomic units, where $\hbar=m=1$). This must be added to the constant energy -1 , giving

$$
E_{0} \approx \frac{\sqrt{2}}{2}-1 \approx-0.29
$$

d) We replace the given function into the Schrödinger equation:

$$
\begin{aligned}
\left(-\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}-\left(\frac{2}{e^{x}+e^{-x}}\right)^{2}\right) \frac{2}{e^{x}+e^{-x}} & \stackrel{?}{=} E \frac{2}{e^{x}+e^{-x}} \\
& \Downarrow \\
-\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} \frac{2}{e^{x}+e^{-x}}-\left(\frac{2}{e^{x}+e^{-x}}\right)^{2} \frac{2}{e^{x}+e^{-x}} & \stackrel{?}{=} E \frac{2}{e^{x}+e^{-x}} \\
& \Downarrow \\
-\frac{1}{2} \frac{2}{e^{x}+e^{-x}}\left(\frac{2\left(e^{x}-e^{-x}\right)^{2}}{\left(e^{x}+e^{-x}\right)^{2}}-1\right)-\left(\frac{2}{e^{x}+e^{-x}}\right)^{3} \frac{2}{e^{x}+e^{-x}} & \stackrel{?}{=} E \frac{2}{e^{x}+e^{-x}} \\
-\frac{\left(e^{x}-e^{-x}\right)^{2}}{\left(e^{x}+e^{-x}\right)^{2}}+\frac{1}{2}-\left(\frac{2}{e^{x}+e^{-x}}\right)^{2} & \stackrel{?}{=} E \\
& \Downarrow \\
-\frac{e^{2 x}-2+e^{-2 x}+4}{\left(e^{x}+e^{-x}\right)^{2}}+\frac{1}{2} & \stackrel{?}{=} E
\end{aligned}
$$

So, this is an eigenfunction with $E=-\frac{1}{2}$. This is differs from the harmonic approximation by over 40%.
3. For the box with the mobile inner wall,
a) The Hamiltonian is

$$
\hat{H}=\frac{\hat{p}^{2}}{2 m} \text {, }
$$

with the boundary conditions

$$
\psi(\ell)=\psi(L)=0 \text {. }
$$

b) The eigenfunction and energies are those of a 1D box:

$$
\begin{aligned}
\psi_{n}(x) & =\sqrt{\frac{2}{L-\ell}} \sin \left(\frac{n \pi(x-\ell)}{L-\ell}\right), \\
E_{n} & =\frac{h^{2} n^{2}}{8 m(L-\ell)^{2}}
\end{aligned}
$$

c) We need only set n to 1 :

$$
\begin{aligned}
\psi_{1}(x) & =\sqrt{\frac{2}{L-\ell}} \sin \left(\frac{\pi(x-\ell)}{L-\ell}\right), \\
E_{1} & =\frac{h^{2}}{8 m(L-\ell)^{2}}
\end{aligned}
$$

The classical spring energy is

$$
E_{S}=\frac{1}{2} k(L-\ell)^{2}
$$

d) The equilibrium position will be the one having minimal energy, such that

$$
\begin{aligned}
\frac{\mathrm{d} E(\ell)}{\mathrm{d} \ell} & =\frac{\mathrm{d}}{\mathrm{~d} \ell}\left(\frac{h^{2}}{8 m(L-\ell)^{2}}+\frac{1}{2} k(L-\ell)^{2}\right) \\
& =\frac{2 h^{2}}{8 m(L-\ell)^{3}}-k(L-\ell)=0 \\
& \Downarrow \\
\ell_{0} & =L-\left(\frac{2 h^{2}}{8 m k}\right)^{\frac{1}{4}}
\end{aligned}
$$

Using this,

$$
E_{g}=\frac{h^{2}}{8 m \sqrt{\frac{2 h^{2}}{8 m k}}}+\frac{1}{2} k \sqrt{\frac{2 h^{2}}{8 m k}}
$$

e) We expand the potential in a Taylor series around the minimum:

$$
\begin{aligned}
\left.\frac{\mathrm{d}^{2} E(\ell)}{\mathrm{d} \ell^{2}}\right|_{\ell=\ell_{0}} & =\left.\frac{\mathrm{d}}{\mathrm{~d} \ell}\left(\frac{2 h^{2}}{8 m(L-\ell)^{3}}-k(L-\ell)\right)\right|_{\ell=\ell_{0}} \\
& =\frac{6 h^{2}}{8 m\left(L-\ell_{0}\right)^{4}}+k \\
& =4 k
\end{aligned}
$$

So,

$$
V(\ell) \simeq E_{g}+\frac{1}{2}(4 k)\left(\ell-\ell_{0}\right)^{2}
$$

and with $M \omega^{2}=4 k$ we have

$$
\Delta E=\frac{1}{2} \hbar \omega=\frac{1}{2} \hbar \sqrt{\frac{4 k}{M}} \text {. }
$$

4. For the LiH molecule,
a) According to the hydrogen-like atom model from class, using the fact that in atomic units $e=1$ and $a_{0}=1$,

$$
\alpha_{1 S}^{H}=-\frac{1^{2} e^{2}}{2 a_{0}} \frac{1}{1^{2}}=-\frac{1}{2}, \alpha_{2 S}^{L i}=-\frac{3^{2} e^{2}}{2 a_{0}} \frac{1}{2^{2}}=-\frac{9}{8} .
$$

b) With $\beta=\frac{1}{2}\left(-\frac{1}{2}-\frac{9}{8}\right)=-\frac{13}{16}$, the secular equation reads

$$
\left(\begin{array}{cc}
\alpha_{1 S}^{H}-\lambda & \beta \\
\beta & \alpha_{2 S}^{L i}-\lambda
\end{array}\right)\binom{a_{H}}{a_{L i}}=\left[\begin{array}{cc}
-\frac{1}{2}-\lambda & -\frac{13}{16} \\
-\frac{13}{16} & -\frac{9}{8}-\lambda
\end{array}\right)\binom{a_{H}}{a_{L i}}=0 .
$$

c) The determinant gives

$$
\left(-\frac{1}{2}-\lambda\right)\left(-\frac{9}{8}-\lambda\right)-\left(\frac{13}{16}\right)^{2}=0 \Rightarrow \lambda_{1,2}=\frac{1}{16}(-13 \pm \sqrt{194})=-1.68,0.058
$$

The corresponding eigenvectors are

$$
(0.56,0.82),(-0.82,0.56),
$$

Such that the molecular orbitals will be

$$
\begin{aligned}
& \left|\psi_{1}\right\rangle \approx 0.56\left|1 S_{H}\right\rangle+0.82\left|2 S_{L i}\right\rangle, \oplus \bigoplus \\
& \left|\psi_{2}\right\rangle \approx-0.82\left|1 S_{H}\right\rangle+0.56\left|2 S_{L i}\right\rangle . \circledast \oplus
\end{aligned}
$$

In the ground state we will have two electrons in ψ_{1} and a total energy of $2 \lambda_{1}$.
d) The charge density is twice the square of the amplitudes:

$$
n_{H} \approx 2 \times 0.56^{2} \approx 0.62, n_{L i} \approx 2 \times 0.82^{2} \approx 1.34 .
$$

e) In the second excited state, the particles have different spins and the wavefunction must have the symmetric form:

$$
\psi(1,2)=\psi_{2}(1) \psi_{2}(2)
$$

Once again, the charge density is twice the square of the amplitudes:

$$
n_{H} \approx 2 \times 0.82^{2} \approx 1.34, n_{L i} \approx 2 \times 0.56^{2} \approx 0.62 .
$$

