
1. Given Ĥ = −1
2

d2

dx2 + 1
2x

2 + 1
5x,

a) Ĥ0 = −1
2

d2

dx2 + 1
2x

2 describes an HO with ~ = m = ω = α = 1, so:

ε0 = 1
2
, ε1 = 3

2
,

ψ0 (x) =
( 1
π

) 1
4
e−

x2
2 , ψ1 (x) =

( 4
π

) 1
4
xe−

x2
2 .

b) There are three matrix elements to calculate:

H00 = 〈ψ0| Ĥ |ψ0〉 = ε0 + 1
5
√
π

=0︷ ︸︸ ︷�
dxxe−x2 = 1

2
,

H11 = 〈ψ1| Ĥ |ψ1〉 = ε1 + 2
5
√
π

=0︷ ︸︸ ︷�
dxx3e−x

2 = 3
2
,

H01 = H∗10 = 〈ψ0| Ĥ |ψ1〉 =
=0︷ ︸︸ ︷

〈ψ0| ε1 |ψ1〉+
√

2
π

1
5

=
√
π

2︷ ︸︸ ︷(�
dxx2e−x

2
)

= 1
5
√

2
.

The overlap matrix is Sij = δij , since the states are orthogonal.
c) For φ = c0ψ0 + c1ψ1, we must solve

∑
j

(Hij − εδij) (cj) = 0⇒
∣∣∣∣∣

1
2 − ε

1
5
√

2
1

5
√

2
3
2 − ε

∣∣∣∣∣ = 0⇒
(1

2
− ε

)(3
2
− ε

)
− 1

50
= 0,

or

ε0,1 = 1± 3
√

3
10

.

d) These are both 0 (as we have seen in the earlier calculation).
e) The results are:

Variational Perturbation Exact
ε0 0.480385 1

2 0.48
ε1 1.51962 3

2 1.48
ε1 − ε0

3
√

3
5 ≈ 1.039 1 1

So, variation gives a better ground state but worse excitation energy.

2. For the Lorentzian wavefunction ψ (x) = 1
π

α
x2+α2 ,

a) The potential must be even and have a minimum at zero, which is also the most probable
position for the electron to be measured in and its expectation value. This is the ground
state, since it has no nodes.

b) The Schrödinger equation is:(
p̂2

2m
+ V (x)

)
1
π

α

x2 + α2 = ε
1
π

α

x2 + α2 .
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c) Applying the definition of the momentum operator gives:

− ~2

2m
∂2

∂x2
1
π

α

x2 + α2 = (ε− V (x)) 1
π

α

x2 + α2

⇓
~2

2m
1
π

∂

∂x

2xα
(x2 + α2)2 = (ε− V (x)) 1

π

α

x2 + α2

⇓
~2

2m
1
π

2α
(x2 + α2)2 −

~2

2m
1
π

2αx · 2 · 2x
(x2 + α2)3 = (ε− V (x)) 1

π

α

x2 + α2

⇓

V (x) = ε− ~2

m

1
x2 + α2 + 4~2

m

x2

(x2 + α2)2 .

The constant determines the energy of the state.

d) The shifted wavefunction is ψ = 1
π

α

(x− x0)2 + α2
, no change in energy.

3. For the box with the mobile wall,

a) The single particle Hamiltonians are:

Ĥ1 = p̂2
1

2m
, Ĥ2 = p̂2

2
2m

,

The boundary conditions are

ψ1 (0) = ψ1 (`) = 0,
ψ2 (`) = ψ2 (L) = 0.

This describes particles in a box, so:

ψ1n (x1) =
√

2
`

sin nπx1
`

, E1n = h2

8m
n2

`2
,

ψ2n (x2) =
√

2
L− `

sin nπ (x2 − `)
L− `

, E2n = h2

8m
n2

(L− `)2 .

The assumption is similar to the one behind the Born-Oppenheimer approximation: the
wall is much more massive, therefore its motion can be neglected when solving for the
electronic wavefunction.

b) The full Hamiltonian is
Ĥ = Ĥ1 + Ĥ2 ,

and it has the eigenfunctions

Ψnm (x1, x2) = ψ1n (x1)ψ2m (x2)

and energies
Enm = E1n + E2m .

c) The ground state is

Ψ11 (x1, x2) = ψ11 (x1)ψ21 (x2) = 2√
` (L− `)

sin
(
πx1
`

)
sin
(
π (x2 − `)
L− `

)
.
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(with the understanding that each wavefunction is nonzero only within the appropriate
box.) Its energy is

E0 (`) = E11 (`) + E21 (`) = h2

8m

(
1
`2

+ 1
(L− `)2

)
= h2

8m
(L− `)2 + `2

`2 (L− `)2 .

d) We need to minimize the energy with respect to `:

∂E0 (`)
∂`

= h2

8m

(
− 2
`3

+ 2
(L− `)3

)
= 0

⇓
2
`3

= 2
(L− `)3

⇓
(L− `)3 = `3.

While this is a third-order equation, we can safely assume that both ` and L − ` are real

and positive such that we can take the third root of both sides, giving L− ` = `⇒ ` = L

2
.

Another way is to guess from symmetry that the answer must be either ` = 0, L (which
doesn’t solve the above equation) or ` = L

2 (which does). Therefore,

E0 = E0 (`)|`=L
2

= h2

8m

( 4
L2 + 4

L2

)
= h2

mL2 .

This is four times the energy for two particles in an L-sized box. If the wall is treated
classically, it lies at the bottom of the particle potential and has no further energy.

e) We expand the potential in a Taylor series around its minimum. First,

∂2E0 (`)
∂`2

∣∣∣∣∣
`=L

2

=
[
h2

8m

(
6
`4

+ 6
(L− `)4

)]∣∣∣∣∣
`=L

2

= 24h2

mL4 .

With this, comparing to a harmonic oscillator,

E0 (`) ' h2

mL2 +

≡ 1
2Mω2︷ ︸︸ ︷

1
2

24h2

mL4

(
`− L

2

)2
,

and we can find

ω =

√
24h2

MmL4 ,

such that the correction to the energy is

1
2

~ω = 1
4π

√
24h4

MmL4 =

√
3h4

2π2MmL4 .

4. For Na3,

a) 1S22S22P63S1. Only the 3S orbitals will be used in the approximation.
b) For the linear configuration,

3



i. The secular determinant: ∣∣∣∣∣∣∣
α− ε β 0
β α− ε β
0 β α− ε

∣∣∣∣∣∣∣ .
ii. We need to solve

(α− ε)
(
α2 − 2αε− 2β2 + ε2

)
= 0.

The answers, in decreasing order of size, are

ε3 = α−
√

2β,
ε2 = α,

ε1 = α+
√

2β.

iii. The molecular orbitals are given by:

ε3 →
√

2c1 =
√

2c3 = −c2, ⊕	⊕
ε2 → c2 = 0, c1 = −c3,⊕#	
ε1 →

√
2c1 =

√
2c3 = c2, ⊕⊕⊕

(the central one should be “bigger” in the first and last cases...)
iv. The ground state has two electrons in ε1 and one in ε2. The electron in the higher

orbit will be in the doublet state, since the total spin in the unfilled orbital is 1/2.

O

�

O

v. The degeneracy is 2 (due to the spin).
c) For the cyclic configuration,

i. The determinant is ∣∣∣∣∣∣∣
α− ε β β
β α− ε β
β β α− ε

∣∣∣∣∣∣∣ .
ii. Shown by substitution (it’s easy to see that the first two rows are all β). Factor the

determinant to show that α− β is degenerate.

ε2,3 = α− β,
ε1 = α+ 2β.

iii. The molecular orbitals are given by:

ε3 →
√

2c1 =
√

2c3 = −c2, ⊕	⊕
ε2 → c2 = 0, c1 = −c3, ⊕#	
ε1 →

√
2c1 =

√
2c3 = c2, ⊕⊕⊕
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iv. The spin state is still a doublet, since the total spin in the unfilled orbitals is 1/2.

O

�

O

v. The degeneracy is 4.
d) The linear configuration has energy 2 ·

(
α+
√

2β
)

+ 1 · α = 3α + 2
√

2β, while the cyclic
configuration has the energy 2 · (α+ 2β) + 1 · (α− β) = 3α + 3β. Therefore, the cyclic
configuration (which has the lower energy) is more stable.

e) In the linear case, we have the following configuration:

O

O

O

This has total spin 1.5, and is therefore a quadruplet with energy
(
α+
√

2β
)

+ α +(
α−
√

2β
)

= 3α. In the cyclic case, the configuration is:

O O

O

This is also a quadruplet, and has energy α+2β+2 · (α− β) = 3α. Therefore, both isomers
are equally stable in this case.
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