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Abstract

For a graph G whose number of edges is divisible by k, let R(G,Zk) denote the minimum

integer r such that for every function f : E(Kr) 7→ Zk there is a copy G′ of G in Kr so that∑
e∈E(G′) f(e) = 0 (in Zk). We prove that for every integer k, R(Kn, Zk) ≤ n + O(k3 log k)

provided n is sufficiently large as a function of k and k divides
(
n
2

)
. If, in addition, k is an

odd prime-power then R(Kn, Zk) ≤ n + 2k − 2 and this is tight if k is a prime that divides n.

A related result is obtained for hypergraphs. It is further shown that for every graph G on n

vertices with an even number of edges R(G,Z2) ≤ n+ 2. This estimate is sharp.
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1 Introduction

The starting point of almost all the recent combinatorial research on zero-sum problems is the

following theorem.

Theorem 1.1 (Erdös, Ginzburg and Ziv [17]) Let m ≥ k ≥ 2 be two integers and suppose

k|m. Then any sequence of m+ k − 1 integers contains a non-empty subsequence of cardinality m

the sum of whose elements is divisible by k.

Inspired by this beautiful result, Bialostocki and Dierker ([6],[7]) raised several interesting vari-

ants of the classical Ramsey Theory problems. To describe these we need a few definitions.

All graphs considered here are finite, undirected and simple (i.e., have no loops and no parallel

edges). Let Zk denote the cyclic additive group of order k. A Zk-coloring of the edges of a graph

G = (V (G), E(G)) is a function f : E(G) 7→ Zk. If
∑
e∈E(G) f(e) = 0 (in Zk), we say that G is a

zero-sum graph (with respect to f). If k divides the number e(G) of edges of G, then the zero-sum

Ramsey number R(G,Zk) is the smallest integer r such that for every Zk-coloring of the edges of

Kr there is a zero-sum copy of G in Kr. (Note that this number is finite and is at most the classical

Ramsey number R(G, k) that guarantees a monochromatic copy of G when k colors are used. Note

also that the assumption that k|e(G) is necessary, since otherwise the constant Zk-coloring f ≡ 1

would give no zero-sum copy of G. Finally, observe that for k = e(G), R(G,Zk) ≥ R(G, 2) as can

be seen by considering Zk-colorings f whose image is {0, 1}.)

There is a rapidly growing literature on zero-sum problems. See, e.g., [6], [7],[8], [16], [21], [22],

[5], [11],[12], [13],[14],[15].

The first problem we consider here, in Section 2, is that of estimating R(Kn, Zk) for a fixed

k as n tends to infinity. As shown in [15], for every inetger k there exists a constant c(k) such

that for all n satisfying k|
(n

2

)
, R(Kn, Zk) ≤ n + c(k). The proof relies on Ramsey Theorem, and

supplies a huge upper bound for c(k), roughly the Ramsey number R(K3k−1, k). By combining an

algebraic approach, similar to the one used in [2], [3], [4], with Ramsey theorem we prove that if n

is sufficiently large as a function of k then, in fact, R(Kn, Zk) ≤ n+O(k3 log k), and if, in addition,

k is an odd prime-power then R(Kn, Zk) ≤ n + 2k − 2. This last inequality holds as an equality

in case k is a prime which divides n. Note that the assumption that n is large as a function of k

cannot be omitted, since, e.g., R(Kn, Z(n2)
) ≥ R(Kn, 2) which is known to be bigger than 2n/2.
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The above result can be generalized to the case of hypergraphs. The interesting part of this

generalization is given in Section 3 together with several applications. Finally, in Section 4 , we

return to the case of graphs and show that for every graph G on n vertices with an even number

of edges R(G,Z2) ≤ n+ 2. This settles a conjecture of Bialostocki.

2 Zero-sum Ramsey numbers for complete graphs

In this section we prove the following theorem.

Theorem 2.1 Let k be an integer and suppose k|
(n

2

)
.

(i) If k is an odd prime-power, and n + k is at least the Ramsey number R(K2k−1, k), then

R(Kn, Zk) ≤ n+ 2k − 2. If, in addition, k is a prime that divides n then R(Kn, Zk) = n+ 2k − 2.

(ii) If n ≥ R(K3k−1, k) then R(Kn, Zk) ≤ n+ k(k + 1)(k + 2) log2 k.

A basic tool in the proof of the first part of the theorem is the following theorem of Baker and

Schmidt [9].

Theorem 2.2 (Baker and Schmidt [9]) Let q be a prime-power. If t ≥ d(q − 1) + 1 and

h1(x1, . . . , xt), h2(x1, . . . , xt), . . . , hl(x1, . . . , xt) ∈ Z[x1, . . . , xt] satisfy h1(0) = . . . = hl(0) = 0,

and
∑l
i=1 deg hi ≤ d, then there exists an 0 6= ε ∈ {0, 1}t such that h1(ε) ≡ . . . ≡ hl(ε) ≡ 0

(mod q).

When q is a prime this theorem is an easy consequence of the classical Chevalley-Warning

Theorem (see, e.g., [10]). A short proof of it, following the method in [2], is given in [4] (only for

the special case l = 1, but the proof can be easily extended to the general case). See also [1] for

various related results.

Lemma 2.3 Let q be a prime power and let r and t be integers satisfying r = t+ 2q− 2 and q|
(t
2

)
.

Then for every Zq-coloring f : E(Kr) 7→ Zq there is an m ≥ t satisfying m ≡ t(mod q) and a

zero-sum copy of Km in Kr.

Proof Since q|
(t
2

)
it follows that either t ≡ 0(mod q) or t ≡ 1(mod q). Let m be the largest integer

satisfying m ≡ t(mod q) such that there exists a zero-sum copy of Km in Kr. (Such an m clearly
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exists since we can take a copy of the trivial empty graph K0 or the trivial one point graph K1

corresponding to the value of t(mod q).)

Let M be the vertex set of a zero-sum copy of Km in Kr. If m ≥ t we have nothing to prove.

Otherwise, there are at least 3q− 2 vertices outside M . Let {v1, . . . , v3q−2} be 3q− 2 of them. For

each i, 1 ≤ i ≤ 3q − 2, let bi =
∑
u∈M f(vi, u) be the sum of the f -values of the edges connecting

vi to M , computed in Zq.

Consider the following two polynomial equations;

f1 =
3q−2∑
i=1

xi ≡ 0(mod q) (the vertex counter equation),

and

f2 =
3q−2∑
i=1

bixi +
∑

1≤i<j≤3q−2

f(vi, vj)xixj ≡ 0(mod q) (the edge sum equation).

Obviously, x1 = . . . = x3q−2 = 0 is a solution of these two equations and 3q−2 = 1+(q−1)(deg(f1)+

deg(f2)). Therefore, by Theorem 2.2 there is a nontrivial solution xi = εi for this system, where

εi ∈ {0, 1} for each 1 ≤ i ≤ 3q − 2. Define V = {vi : 1 ≤ i ≤ 3q − 2 and εi = 1}. It is easy to

check that M ∪ V is the set of vertices of a zero-sum complete subgraph in Kr, contradicting the

maximality of m. This completes the proof of the lemma. 2

Proof of Theorem 2.1, part (i) Suppose r = n + 2q − 2, where q is an odd prime-power, and

suppose n + q ≥ R(K2q−1, q). Let f : E(Kr) 7→ Zq be a Zq-coloring. We must show that there

is a zero-sum copy of Kn in Kr. By Lemma 2.3 there is a zero-sum copy of Km, where m ≥ n

and m ≡ n(mod q). If m = n this completes the proof. Otherwise m = n + q ≥ R(K2q−1, q). Let

M be the vertex set of a zero-sum copy of Km. Since |M | = m ≥ R(K2q−1, q) there is a set A of

2q − 1 vertices in M so that f(a, a′) is constant (say c) for all distinct a, a′ ∈ A. For each a ∈ A,

define fa =
∑
u∈M\A f(a, u), where the sum is taken in Zq. By Theorem 1.1 there is a subset I of

cardinality q of A so that
∑
a∈I fa = 0 (in Zq). Define N = M \I. Observe that |N | = n. Moreover,

N is the set of vertices of a zero-sum complete graph KN in Kr, since

∑
e∈E(KN )

f(e)

=
∑

e∈E(KM )

f(e)−
∑

e∈E(KI)

f(e)−
∑
a∈I

fa −
∑

i∈I,j∈A\I
f(i, j)
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≡ 0− c
(
q

2

)
− 0− cq(q − 1)(mod q) ≡ 0(mod q).

This completes the proof of the upper bound in Theorem 2.1, part (i).

We next show that this is tight, provided q is an odd prime that divides n. (It is certainly

tight when q = 2 as shown in Lemma 4.3). Let D,C1, C2 be three disjoint sets of vertices, where

|D| = n − 1 and |C1| = |C2| = q − 1. Let K be the complete graph whose set of vertices is

D∪C1 ∪C2. Clearly K has n+ 2q− 3 vertices. Define a Zq-coloring f of the edges of K as follows.

Choose an element b ∈ Zq so that b2 − 1 is a quadratic non-residue and define f(e) = 1 if e joins a

vertex in D with a vertex in C1 ∪ C2, f(e) = 2b+ 2 if e has one end in C1 and one end in C2 and

f(e) = 0 otherwise.

In order to complete the proof it suffices to show that there is no zero-sum copy of Kn in K.

Indeed, suppose this is false, and there is such a copy containing x vertices in C1 and y in C2 (and

hence n− x− y in D). Therefore

(2b+ 2)xy + (x+ y)(n− x− y) = 0 (in Zq),

and since q divides n we conclude that (x+y)2− (2b+ 2)xy = 0 (in Zq), i.e., (x− by)2 = (b2−1)y2.

Since b2−1 is a quadratic non-residue this is possible only if x = y = 0, but this is impossible since

in this case D has n vertices in the zero-sum copy of Kn, contradicting the fact that |D| = n− 1.

This completes the proof. 2

Remark An easy modification of the proof works for the case q = 2r with a little worse bound.

The details are left to the reader. (For q = 2 we observe in Section 4 that R(Kn, Z2) = n + 2 for

all n satisfying 2|
(n

2

)
.)

In order to prove the second part of Theorem 2.1 we need the following result of van Emde

Boas and Kruyswijk [18], (see also [20] for a different proof). We note that we can also derive this

second part, with a slightly worse estimate, from Theorem 6 in [9].

Theorem 2.4 ([18]) Let Zrk denote the sum of r copies of the group Zk (i.e., the abelian group of

all vetors of length r over Zk). Let v1, . . . , vp be a sequence of p (not necessarily distinct) members

of Zrk. If p > r(k − 1) log2 k then there is a nonempty subset I ⊂ {1, 2, . . . , p} such that in Zrk∑
i∈I vi = 0.
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Proof of Theorem 2.1, part (ii) Suppose

k|
(
n

2

)
where n ≥ R(K3k−1, k) (1)

and suppose m ≥ n+ k(k + 1)(k + 2) log2 k. Let f : E(Km) 7→ Zk be a Zk-coloring of the edges of

the complete graph Km.

Let t be the maximum integer such that there is a subset T ⊂ V (Km), of cardinality |T | = t

satisfying

t ≡ n(mod 2k), (2)

and ∑
e∈E(KT )

f(e) = 0 (in Zk), (3)

where KT denotes the complete graph on the vertex set T .

Observe that since k divides
(n

2

)
and t ≡ n(mod 2k), k divides

(t
2

)
as well. Note also that (1)

and Ramsey Theorem imply the existence of a set T satisfying (2) and (3). The main part of the

proof is the following.

Claim: t ≥ n.

Proof Suppose this is false and t < n. Let N = {1, . . . ,m} denote the vertex set of Km and

let T ⊂ N , |T | = t be a set satisfying (2) and (3). Our objective is to show that there is a set

T ′ ⊂ N which strictly contains T and satisfies (2) and (3), contradicting the maximality of t. To

do so we prove that there exist k non-empty pairwise disjoint subsets A1, . . . , Ak of N , satisfying

the following conditions.

(∪ki=1Ai) ∩ T = ∅ (4)

|Ai| ≡ 0(mod 2k) for all 1 ≤ i ≤ k (5)∑
u∈Ai,v∈T

f(u, v) ≡ 0(mod k) for all 1 ≤ i ≤ k (6)

∑
u∈Ai,v∈Aj

f(u, v) ≡ 0(mod k) for all 1 ≤ i < j ≤ k (7)

The existence of the desired set T ′ that contradicts the maximality of t follows easily from the

existence of the above sets. Indeed, simply define ai =
∑
e∈E(KAi )

f(e) and let I be a nonempty

subset of {1, . . . , k} so that
∑
i∈I ai ≡ 0(mod k). Define T ′ = T ∪ (∪i∈IAi) and observe that by (4),

(5), (6) and (7), T ′ satisfies (2) and (3).
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It thus remains to prove the existence of A1, . . . , Ak as above. To this end we prove by induction

on i, that for every i, 0 ≤ i ≤ k, there exist non-empty and pairwise disjoint subsets A1, . . . , Ai of

N \ T so that:

|Aj | ≡ 0(mod 2k) for all 1 ≤ j ≤ i (8)

|Aj | ≤ 2(j + 1)k log2 k for all 1 ≤ j ≤ i (9)∑
u∈Aj ,v∈T

f(u, v) ≡ 0(mod k) for all 1 ≤ j ≤ i (10)

∑
u∈Aj ,v∈Al

f(u, v) ≡ 0(mod k) for all 1 ≤ j < l ≤ i. (11)

The special case i = k gives the required assertion of the claim. The induction conclusion holds

trivially for i = 0. Assuming it holds for i−1 we prove it for i. Given T ,A1, . . . , Ai−1 satisfying (8),

(9), (10), (11), split arbitrarily the vertices of N \ (T ∪ (∪i−1
j=1Aj)) into pairs (leaving one isolated

vertex in the odd case). Let x, y be one of these pairs. Define a vector vxy in Zi+1
k as follows.

(i) For 1 ≤ l ≤ i− 1, the l-th component of vxy is

∑
u∈Al

f(x, u) +
∑
u∈Al

f(y, u),

(where the sum is taken in Zk).

(ii) The i-th component of vxy is

∑
u∈T

f(x, u) +
∑
u∈T

f(y, u).

(iii) The i+ 1-st component of vxy is simply 1.

By Theorem 2.4, any family of more than (i + 1)(k − 1) log2 k such vectors contains a non-

empty subfamily of the vectors whose sum is 0 (in Zi+1
k ). The set of all the vertices in the pairs

corresponding to the vectors in such a subfamily can be taken as Ai. By (iii), (8) holds whereas the

construction implies the validity of (9),(10) and (11). Since, by (1), m ≥ n+ k(k+ 1)(k+ 2) log2 k,

the process of successively forming new subsets Ai as above can be performed until k sets are

generated, completing the proof of the induction and that of the claim.

Returning to the proof of the second part of Theorem 2.1, we now observe that the rest of this

proof is almost identical to that of the first part of the theorem. If t = n there is nothing to prove,

since KT is the required zero-sum copy of Kn. Otherwise, there is a subset L of cardinality 3k − 1

6



of T , such that f(e) is a constant on the edges of KL. By Theorem 1.1 there is a subset F of

cardinality 2k of L such that ∑
u∈F,v∈T\F

f(u, v) ≡ 0(mod k).

As before, this implies that T1 = T \ F is a zero-sum copy of Kt−2k in our complete graph. This

process may be repeated and since in the beginning t ≥ n, by the claim, and t ≡ n(mod 2k) this

proves the existence of a zero-sum copy of Kn in Km, completing the proof of Theorem 2.1. 2

3 Hypergraphs

The main result of the previous section can be generalized to the case of hypergraphs. Since such a

generalization is somehwat lengthy we merely present part of it together with some consequences.

By a hypergraph we mean here, as ususal, a pair H = (V,E), where V is a finite set of vertices,

and E is a finite multiset of subsets of V . (The same subset can appear several times). The rank

of H = (V,E) is the maximum number of vertices in an edge of it. If U ⊂ V , then the induced

sub-hypergraph of H on U , denoted by H(U), is the hypergraph whose set of vertices is U and

whose set of edges is the set of all edges of H which are subsets of U . If H = (V,E) is a hypergraph

and f : E 7→ Zk is a Zk-coloring of the set of its edges, we call an induced subhypergraph H(U) a

zero-sum subgraph of H if
∑
e∈E(H(U)) f(e) = 0, (where the sum is computed in Zk).

Theorem 3.1 Let q be a prime-power, let H = (V,E) be a hypergraph of rank r and let f : E 7→ Zq

be a Zq-coloring of E. Then there is a subset U of V , where |U | ≥ |V |−r(q−1) such that H(U) is a

zero-sum subgraph of H. The above lower bound for |U | is sharp for all r ≥ 1 and all prime-powers

q.

Proof Let m be the maximum inetger such that there exists a set M of m vertices of H so that

H(M) is a zero-sum subgraph of H. If m ≥ |V | − r(q − 1) there is nothing to prove. Otherwise,

there are more than r(q− 1) vertices in V \M . Define W = V \M and let F be the set of all edges

of H that contain at least one vertex of W . Associate each vertex w in W with a variable xw and

consider the following polynomial equation.

h =
∑
e∈F

f(e)
∏
w∈e

xw ≡ 0(mod q).
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The trivial vector xw = 0 for all w ∈ W is clearly a solution of this equation. Since the degree of

h is at most r, Theorem 2.2 implies that there is a nontrivial solution in which each variable xw is

either 0 or 1. Let W ′ be the set of all the vertices w for which xw = 1 in this solution. It is easy

to check that H(M ∪W ′) is a zero-sum subgraph of H, contradicting the maximality of m. This

proves the assertion of the theorem.

We next show that this assertion is sharp. Given an integer r and an integer q (which is not

necessarily a prime-power), let H(r, q) denote the following hypergraph. Its set of vertices is the

union of q − 1 pairwise disjoint sets V1, . . . , Vq−1, each of cardinality r. Its set of edges is the set

E = {e : e 6= ∅, and e ⊂ Vi for some 1 ≤ i ≤ q − 1}. Define f : E 7→ Zq by f(e) = (−1)|e| for

all e ∈ E. It is easy to see that there is no nonempty zero-sum subgraph of H(r, q), completing the

proof of the theorem. 2

Remarks

1). The above theorem can be extended to the case of non prime-powers q, by applying Theorem

6 in [9]. The estimate obtained for this case is not sharp.

2). A straightforward generalization of the proof of the last theorem shows that ifH1 = (V,E1),...,Hl =

(V,El) are l hypergraphs of ranks r1, . . . , rl respectively, and all have the same set of vertices V ,

then for every prime power q and every fi : Ei 7→ Zq, there exists a subset U ⊂ V so that

|U | ≥ |V | − (q− 1)
∑l
i=1 ri and each Hi(U) is a zero-sum subgraph of Hi. Observe that Lemma 2.3

(for t ≡ 0(mod q) ) is a special case of this statement obtained by letting one of the hypergraphs

be the trivial rank 1 hypergraph in which each singleton is mapped by the Zq-coloring to 1. We

omit the detailed proof.

3). The following proposition is an immediate application of Theorem 3.1, which we state as

a representing example. Obviously, one can give various additional similar applications of this

theorem and of the previous remark, and in particular, these obtained from the next proposition

by replacing the cycle of length 6 by any other graph.

Proposition 3.2 For any prime power q, any graph with n vertices contains an induced subgraph

on at least n− 6(q − 1) vertices in which the number of cycles of length 6 is divisible by q.

Proof Let G = (V,E) be a graph on n vertices. Let H be the hypergraph whose set of vertices is

V and whose set of edges F is the set of all subsets of cardinality 6 of V . Define f : F 7→ Zq by
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letting f(e) be the number of cycles of length 6 of G whose set of vertices is e, reduced modulo q.

The result now clearly follows from Theorem 3.1. 2

4 The binary case

The main result in this section is the following theorem which deals with zero-sum Ramsey numbers

for graphs over the group Z2.

Theorem 4.1 Let G be a graph with n vertices and with an even number of edges. Then:

(i) R(G,Z2) ≤ n+ 2, and this inequality is sharp.

(ii) If n ≡ 3(mod 4) is a prime-power then R(G,Z2) = n.

(iii) If G is bipartite then R(G,Z2) = n unless all the degrees in G are odd, in which case R(G,Z2) =

n+ 1.

The proof is rather lengthy. We start with the following definition.

Let H1, . . . ,Hr be a family of subgraphs of Kn. The sum modulo 2 of H1, . . . ,Hr, denoted by

⊕
∑r
i=1Hi, is the subgraph of Kn consisting of all edges of Kn that belong to an odd number of

the graphs Hi.

Note that this is precisely the sum (in Z2) of the characteristic vectors of the edge-sets of the graphs

Hi, where the characteristic vector of Hi is simply the binary vector of length
(n

2

)
whose coordinates

are indexed by the edges of Kn in which there is a 1 in each coordinate corresponding to an edge

of Hi.

If ⊕
∑r
i=1Hi is the empty graph we write ⊕

∑r
i=1Hi = 0 and say that H1, . . . ,Hr is a family with

an empty sum.

The following lemma is very simple but useful. Since it will be used extensively in the rest of

the section we name it, for future reference.

Lemma 4.2 (The parity Lemma) Let G be a graph with an even number of edges. Then R(G,Z2)

is the least integer n such that there is an odd family of copies of G in Kn with an empty sum. I.e.,

it is the least n such that there is a family of subgraphs H1, . . . ,Hm of Kn, where m is odd, each

Hi is isomorphic to G, and ⊕
∑m
i=1Hi = 0.
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Proof Let In(G) denote the family of all copies of G in Kn. For each edge e of Kn, let xe be

a variable. Associate each member H ∈ In(G) with the following linear equation over Z2 in the

variables xe; ∑
e∈E(H)

xe = 1.

Note that this equation asserts that H is not a zero-sum copy of G (for the coloring defined by

f(e) = xe). Therefore, the resulting system of |In(G)| linear equations corresponding to all members

of In(G) does not have a solution over Z2 iff for every Z2-coloring of Kn there is a zero-sum copy

of G, i.e., iff n ≥ R(G,Z2). By standard linear algebra there is no solution iff there is a set of

equations whose sum in Z2 gives the contradiction 0 = 1. Such a set is clearly the set of equations

corresponding to an odd family of copies of G in Kn, whose sum is empty. Since R(G,Z2) is the

smallest n for which there is no solution, the assertion of the lemma follows. 2

Lemma 4.3 If 2|
(n

2

)
then R(Kn, Z2) = n+ 2.

Proof Observe that 2|
(n

2

)
iff either n ≡ 0(mod 4) or n ≡ 1(mod 4). In both cases the family of all(n+2

2

)
copies of Kn in Kn+2 is an odd family of copies of Kn with an empty sum. Hence, by the

Parity Lemma, R(Kn, Z2) ≤ n+ 2.

On the other hand, if n ≡ 0(mod 4) the coloring of Kn+1 which maps the edges of a Hamilton

cycle Cn+1 to 1 and every other edge to 0 contains no zero-sum copy of Kn. If n ≡ 1(mod 4) then

the coloring which maps the edges of a wheel of order n+ 1 in Kn+1 to 1 and every other edge to

0 contains no zero-sum copy of Kn. Thus R(Kn, Z2) > n + 1 in both cases and the desired result

follows. 2

Lemma 4.4 Let G be a bipartite graph with an odd number of vertices n and with an even number

of edges. Then R(G,Z2) = n.

Proof We apply induction on n. For n ≤ 3 the result is trivial. Assuming it holds for all odd

values of n′ < n, we prove it for n, n ≥ 5. let G be a bipartite graph on an odd number of

vertices n ≥ 5, and suppose G has an even number of edges. Since G is bipartite it contains an

independent set of at least three vertices and hence it has two non-adjacent vertices u and v such

that deg(u) + deg(v) ≡ 0(mod 2).
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Put H = G \ {u, v}. By the induction hypothesis and by the Parity Lemma, there is an odd

family A = {H1, . . . ,Hm} of copies of H in Kn−2 whose sum is empty. Let V denote the set of n−2

vertices of the complete graph Kn−2 containing the subgraphs Hi, and let x, y be two additional

vertices. To complete the proof we construct an odd family of copies of G with an empty sum in

the complete graph K on V ′ = V ∪ {x, y}.

To do so, we first denote the vertices of V by 0, 1, . . . , n− 3, and define, for each cyclic permu-

tation π of V and for each member Hi of A, another copy of H, denoted by π(Hi), obtained from

Hi by mapping each of its vertices j to its image π(j). Let A′ be the family of all (n− 2)m copies

of H in Kn−2 obtained in this manner. Observe that this is an odd family of copies of H with an

empty sum, and that each vertex of H appears as each vertex of V in exactly m members of this

family.

We now ”lift” each copy of H in A′ to a copy of G in K by letting x play the role of u and

y play the role of v. This gives a family B of m(n − 2) copies of G in K. Note that m(n − 2)

is odd. It is not too difficult to check that the sum modulo 2 of the members of B is empty,

if deg(u) ≡ deg(v) ≡ 0(mod 2). In this case, the desired result follows by the Parity Lemma.

Otherwise, deg(u) ≡ deg(v) ≡ 1(mod 2), and this sum is the complete bipartite graph K2,n−2 with

classes of vertices {x, y} and V . In this latter case, extend B to a family of n|B| copies of G in K by

replacing each member of B by its n cyclic shifts obtained by cyclically shifting the vertices in V ′,

which we label 0, 1, . . . n− 1, where n− 2, n− 1 are the labels of x and y respectively. A moment’s

reflection shows that the sum modulo 2 of the members of this extended family is precisely the sum

modulo 2 of the n cyclic shifts of our complete bipartite graph K2,n−2, which is empty, as can be

easily checked. By the Parity Lemma this shows that R(G,Z2) = n, completing the proof. 2

The ”lift and shift” technique used in the last proof and the Parity Lemma are the main tools

in the proofs of the first and third part of Theorem 4.1. We start with the proof of the third part,

which is simpler.

Proof of Theorem 4.1, part (iii) Let G be a bipartite graph with n vertices and with an even

number of edges. If n is odd then, by Lemma 4.4, R(G,Z2) = n, as needed. Therefore, we may

assume that n is even. Consider, first, the case that G has a vertex v with an even degree. Define

H = G \ {v}. Observe that H is bipartite, and has an odd number of vertices and an even number

of edges. Therefore, by Lemma 4.4, R(H,Z2) = n − 1. By the Parity Lemma there is an odd
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family A = {H1, . . . ,Hm} of copies of H in Kn−1 with an empty sum. Let V be the vertex set of a

complete graph Kn−1 containing these subgraphs, and let A′ be the family of all nm cyclic shifts

of the members of A. This is again an odd family of copies of H with an empty sum. Let x be an

additional vertex and lift each copy of H in A′ to a copy of G in the complete graph on V ∪ {x}

by letting x play the role of v. The resulting family is an odd family of copies of G and one can

easily check that since the degree of v is even its sum modulo 2 is empty. Therefore, by the Parity

Lemma R(G,Z2) = n, as claimed in Theorem 4.1,(iii).

To complete the proof of this part of the theorem it remains to show that if n is even and all

the degrees in G are odd then R(G,Z2) = n+1. The Z2-coloring of Kn in which all the n−1 edges

incident with a fixed vertex are colored 1 and all the other edges are colored 0 contains no zero-sum

copy of G, showing that R(G,Z2) ≥ n + 1. On the other hand, the graph G′ obtained from G

by adding an isolated vertex is bipartite and has an even number of edges and an odd number of

vertices. Hence, by Lemma 4.4, R(G,Z2) ≤ R(G′, Z2) = n+ 1, completing the proof. 2

Proof of Theorem 4.1, part (i) Observe first that by Lemma 4.3 the estimate, if true, is sharp.

To prove the upper bound for R(G,Z2) we apply induction on n. The result is trivial for n ≤ 3.

Assuming it holds for all n′ < n, we prove it for n. Let G be a graph on n vertices with an even

number of edges. We consider two possible cases.

Case 1: G contains two non-adjacent vertices u and v such that deg(u) + deg(v) ≡ 0(mod 2). Let

s be the smallest odd integer which is at least n − 2 (i.e., s is n − 2 if n is odd and n − 1 if n is

even), and define t = 3 + s (≤ n+ 2). Let U and W be two disjoint sets of vertices, where |U | = 3

and |W | = s and let K denote the complete graph on U ∪W . Fix a copy G′ of G in K in which

u, v are mapped into two of the three vertices in U and the rest of the vertices of G are mapped

into vertices in W . Let A be the family of all 3s copies of G in K obtained from G′ by applying, in

all possible ways, a cyclic shift to the vertices in U and a cyclic shift to these in W . Observe that

A is an odd family, and let H = ⊕
∑
F∈A F denote its sum modulo 2. Since the sum of the degrees

of u and v in G is even and these two vertices are not adjacent, it follows that H has only edges

whose two endpoints are in W . Moreover, H clearly has an even number of edges, since it is the

sum modulo 2 of graphs each of which has an even number of edges and the set of all such graphs

forms a linear subspace of the set of all graphs with respect to addition in Z2.
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Therefore, by the induction hypothesis and the Parity Lemma, there is an odd family E of

copies of H in Kn+1 (and hence of course in Kn+2) with an empty sum. Let B be the family of

copies of G in Kn+2 obtained by replacing each member H ′ of E by an odd family of copies of G

in Kn+2 whose sum modulo 2 is H ′. (This is possible since by the definition of H it is obtained as

the sum of such a family, and hence the same holds for each of its copies.) The resulting family B

is an odd family of copies of G in Kn+2 with an empty sum. Therefore, by the Parity Lemma, in

this case R(G,Z2) ≤ n+ 2, as needed.

Case 2: If deg(u) + deg(v) ≡ 0(mod 2) in G, then u and v are adjacent. In this case the set of all

vertices of odd degree in G, which we denote by O, forms a clique and the set of all vertices of even

degree, which we denote by E forms a clique. Clearly, |O| ≡ 0(mod 2) and hence every member of

O has an even number of neighbors in E. It follows that the number of edges between O and E is

even, and since the total number of edges of G is even this implies that(
|O|
2

)
+

(
|E|
2

)
≡ 0(mod 2),

and hence, since |O| is even, it follows that(
n

2

)
=

(
|E|+ |O|

2

)
≡ 0(mod 2).

Therefore, either n ≡ 0(mod 4) or n ≡ 1(mod 4). We consider each of these two possibilities

separately.

Subcase 2a: n ≡ 1(mod 4). Given a Z2-coloring f : E(Kn+2) 7→ Z2 of the edges of the complete

graph on n+ 2 vertices, there exists, by Lema 4.3, a zero-sum copy K of Kn in it. Let Gc denote

the complement of our graph G. This is a bipartite graph with an odd number of vertices and

an even number of edges. Therefore, by Lemma 4.4 there is a zero-sum copy G′ of Gc in K. The

complement of G′ in K is a copy G′′ of G and

∑
e∈E(G′′)

f(e) =
∑

e∈E(K)

f(e)−
∑

e∈E(G′)

f(e) ≡ 0(mod 2).

Therefore, in this subcase, R(G,Z2) ≤ n+ 2, as needed.

Subcase 2b: n ≡ 0(mod 4). If G contains no vertex of even degree then G = Kn and by

Lemma 4.3 R(G,Z2) = n + 2, as needed. Otherwise, let v be a vertex of even degree in G and

put H = G \ {v}. Since H has an even number of edges the induction hypothesis implies that
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R(H,Z2) ≤ n+ 1. Therefore, by the Parity Lemma there is an odd family D of copies of H in the

complete graph K on a set V of n + 1 vertices so that ⊕
∑
F∈D F = 0. Let D′ be the family of

(n+ 1)|D| copies of H obtained by taking all the cyclic shifts of each member of D. This is again

an odd family of copies of H with an empty sum, and each vertex of H appears as each vertex of

V in precisely |D| members of this family.

Let x be a new vertex and let E be the family of all copies of G in the complete graph on

V ∪ {x} obtained by lifting each member of D′ to a copy of G by letting x play the role of v. It

is not too difficult to check that E is an odd family of copies of G in the complete graph on n+ 2

vertices, with an empty sum. Thus, by the Parity Lemma, R(G,Z2) ≤ n + 2 in this subcase as

well, completing the proof. 2

Proof of Theorem 4.1, part (ii) Suppose n ≡ 3(mod 4) is a prime-power, and let G be a graph

on n vertices with an even number of edges. In order to prove that R(G,Z2) = n it suffices to

construct in Kn an odd family of copies of G with an empty sum. This can be done by mapping a

fixed copy of G according to the members of a 2-set transitive permutation group of odd order, as

we show next.

Let F be the finite field with n elements and let A ⊂ F \ {0} be a set of cardinality (n− 1)/2

such that for every x ∈ F \ {0} either x ∈ A or −x ∈ A (but not both). For each a ∈ A and b ∈ F ,

let πa,b denote the permutation of the elements of F defined by πa,b(x) = ax + b for all x ∈ F ,

(where the addition and the multiplication are, of course, performed in F ). Let P denote the set

of all these n(n − 1)/2 permutations. Observe that P is a group of permutations. We claim that

it is 2-set transitive, i.e., for every two distinct x1, x2 ∈ F and for every two distinct y1, y2 ∈ F

there is a unique member πa,b ∈ P mapping the set {x1, x2} onto the set {y1, y2}. This is because

if (y1 − y2)/(x1 − x2) ∈ A then there is a unique b ∈ F and a = (y1 − y2)/(x1 − x2) ∈ A such that

πa,b(xi) = yi for i = 1, 2, and there is no πa,b ∈ P mapping x1 to y2 and x2 to y2. On the other

hand, if (y1 − y2)/(x1 − x2) 6∈ A then its inverse (y2 − y1)/(x1 − x2) ∈ A and there is a unique

member of P mapping x1 to y2 and x2 to y1, and no member of P mapping xi to yi for i = 1, 2.

This establishes the assertion of the claim.

Let Kn be a complete graph on n vertices labelled by the elements of F and fix a copy G′ of G

in Kn. For each permutaion πa,b ∈ P let πa,b(G′) denote the copy of G in Kn obtained from G′ by

applying the permutation πa,b to each of its vertices. Let E denote the family of n(n− 1)/2 copies
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of G obtained in this manner. Note that since n ≡ 3(mod 4), E is an odd family. Moreover, the

claim above implies that each edge of Kn appears as each edge of G exactly in one of the copies,

and hence it belongs to precisely |E(G)| ≡ 0(mod 2) members of E. Thus E is an odd family of

copies of G with an empty sum, and hence, by the Parity Lemma, R(G,Z2) = n, completing the

proof of Theorem 4.1. 2

Remarks

1). In the last proof we used 2-set transitive permutation groups of odd order. These groups are

fully characterised in [19], and in particular they are known to exist if and only if the number of

elements permuted is a prime power congruent to 3 modulo 4.

2). Let Cn denote the cycle on n vertices and let tK2 denote the graph consisting of t isolated

edges. By Theorem 4.1, part(iii),

R(C4m, Z2) = 4m < 4m+ 1 = R(2mK2, Z2).

Note that 2mK2 is a subgraph of C4m showing that unlike the usual Ramsey numbers, the zero-sum

numbers do not share the monotonicity property.

3). The Parity Lemma holds, of course, not only for graphs but for other structures as well. As a

simple example we mention the zero-sum Van der Waerden numbers over Z2, denoted W (n,Z2),

and defined as follows. For every even integer n, W (n,Z2) is the smallest integer t such that for

every Z2-coloring f : {1, 2, . . . , t} 7→ Z2 there is a zero-sum arithmetic progresssion of length n, i.e.,

an arithmetic progression A ⊂ {1, . . . t} of length n satisfying
∑
a∈A f(a) = 0 (in Z2).

Proposition 4.5 For every even n, W (n,Z2) = 2n− 1.

Proof The Z2-coloring of 1, . . . , 2n− 2 which maps n− 1 to 1 and every other element to 0 shows

that W (n,Z2) > 2n − 2. On the other hand, the family of all n + 1 arithmetic progressions of

length n in {1, 2, . . . , 2n − 1} is an odd family of length-n arithmetic progressions with an empty

sum modulo 2, showing that W (n,Z2) ≤ 2n− 1 and hence that W (n,Z2) = 2n− 1. 2
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