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Abstract. We deal with two intimately related subjects: quasi-randomness and regular partitions. The pur-
pose of the concept of quasi-randomness is to measure how much a given graph “resembles” a random one.
Moreover, a regular partition approximates a given graph by a bounded number of quasi-random graphs.
Regarding quasi-randomness, we present a new spectral characterization of low discrepancy, which extends
to sparse graphs. Concerning regular partitions, we present a novel concept of regularity that takes into ac-
count the graph’s degree distribution, and show that if G = (V, E) satisfies a certain boundedness condition,
then G admits a regular partition. In addition, building on the work of Alon and Naor [4], we provide an
algorithm that computes a regular partition of a given (possibly sparse) graph G in polynomial time.
Key words: quasi-random graphs, Laplacian eigenvalues, regularity lemma, Grothendieck’s inequality.

1 Introduction and Results

This paper deals with quasi-randomness and regular partitions. Loosely speaking, a graph is quasi-
random if the global distribution of the edges resembles the expected edge distribution of a random
graph. Furthermore, a regular partition approximates a given graph by a constant number of quasi-
random graphs; such partitions are of algorithmic importance, because a number of NP-hard problems
can be solved in polynomial time on graphs that come with regular partitions. In this section we present
our main results. References to related work can be found in Section 2, and the remaining sections
contain proof sketches and detailed descriptions of the algorithms.

Quasi-Randomness: discrepancy and eigenvalues. Random graphs are well known to have a num-
ber of remarkable properties (e.g., excellent expansion). Therefore, quantifying how much a given
graph “resembles” a random graph is an important problem, both from a structural and an algorithmic
point of view. Providing such measures is the purpose of the notion of quasi-randomness. While this
concept is rather well developed for dense graphs (i.e., graphs G = (V,E) with |E| = Ω(|V |2)),
less is known in the sparse case, which we deal with in the present work. In fact, we shall actually
deal with (sparse) graphs with general degree distributions, including but not limited to the ubiquitous
power-law degree distributions (cf. [1]).
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We will mainly consider two types of quasi-random properties: low discrepancy and eigenvalue
separation. The low discrepancy property concerns the global edge distribution and basically states
that every set S of vertices approximately spans as many edges as we would expect in a random graph
with the same degree distribution. More precisely, if G = (V,E) is a graph, then we let dv signify the
degree of v ∈ V . Furthermore, the volume of a set S ⊂ V is vol(S) =

∑
v∈S dv. In addition, e(S)

denotes the number of edges spanned by S.

Disc(ε): We say that G has discrepancy at most ε (“G has Disc(ε)” for short) if

∀S ⊂ V :
∣∣∣∣e(S)− vol(S)2

2vol(V )

∣∣∣∣ < ε · vol(V ). (1)

To explain (1), let d = (dv)v∈V , and let G(d) signify a uniformly distributed random graph with
degree distribution d. Then the probability pvw that two vertices v, w ∈ V are adjacent in G(d) is
proportional to the degrees of both v and w, and hence to their product. Further, as the total num-
ber of edges is determined by the sum of the degrees, we have

∑
(v,w)∈V 2 pvw = vol(V ), whence

pvw ∼ dvdw/vol(V ). Therefore, in G(d) the expected number of edges inside of S ⊂ V equals
1
2

∑
(v,w)∈S2 pvw ∼ 1

2vol(S)2/vol(V ). Consequently, (1) just says that for any set S the actual num-
ber e(S) of edges inside of S must not deviate from what we expect in G(d) by more than an ε-fraction
of the total volume.

An obvious problem with the bounded discrepancy property (1) is that it is quite difficult to check
whether G = (V,E) satisfies this condition. This is because one would have to inspect an exponential
number of subsets S ⊂ V . Therefore, we consider a second property that refers to the eigenvalues of
a certain matrix representing G. More precisely, we will deal with the normalized Laplacian L(G),
whose entries (`vw)v,w∈V are defined as

`vw =


1 if v = w and dv ≥ 1,

−(dvdw)−
1
2 if v, w are adjacent,

0 otherwise;

L(G) turns out to be appropriate for representing graphs with general degree distributions.

Eig(δ): Letting 0 = λ1(L(G)) ≤ · · · ≤ λ|V |(L(G)) denote the eigenvalues of L(G), we say that G
has δ-eigenvalue separation (“G has Eig(δ)”) if 1− δ ≤ λ2(L(G)) ≤ λ|V |(L(G)) ≤ 1 + δ.

As the eigenvalues of L(G) can be computed in polynomial time (within arbitrary numerical preci-
sion), we can essentially check efficiently whether G has Eig(δ) or not.

It is not difficult to see that Eig(δ) provides a sufficient condition for Disc(ε). That is, for any
ε > 0 there is a δ > 0 such that any graph G that has Eig(δ) also has Disc(ε). However, while the
converse implication is true if G is dense (i.e., vol(V ) = Ω(|V |2)), it is false for sparse graphs. In
fact, providing a necessary condition for Disc(ε) in terms of eigenvalues has been an open problem
in the area of sparse quasi-random graphs since the work of Chung and Graham [9]. Concerning this
problem, we basically observe that the reason why Disc(ε) does in general not imply Eig(δ) is the
existence of a small set of “exceptional” vertices. With this in mind we refine the definition of Eig as
follows.

ess-Eig(δ): We say that G has essential δ-eigenvalue separation (“G has ess-Eig(δ)”) if there
is a set W ⊂ V of volume vol(W ) ≥ (1 − δ)vol(V ) such that the following is true. Let
L(G)W = (`vw)v,w∈W denote the minor of L(G) induced on W × W , and let λ1(L(G)W ) ≤
· · · ≤ λ|W |(L(G)W ) signify its eigenvalues; then we require that 1 − δ < λ2(L(G)W ) <
λ|W |(L(G)W ) < 1 + δ.
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Theorem 1. There is a constant γ > 0 such that the following is true for all graphs G = (V,E) and
all ε > 0.

1. If G has ess-Eig(ε), then G satisfies Disc(10
√

ε).
2. If G has Disc(γε3), then G satisfies ess-Eig(ε).

The proof of Theorem 1 is based on Grothendieck’s inequality and the duality theorem for semidefinite
programs. In effect, the proof actually provides us with an efficient algorithm that computes a set W
as in the definition of ess-Eig(ε), provided that the input graph has Disc(δ). In Appendix E we show
that the second part of Theorem 1 is best possible, up to the precise value of the constant γ.

The algorithmic regularity lemma. Loosely speaking, a regular partition of a graph G = (V,E) is
a partition of (V1, . . . , Vt) of V such that for “most” index pairs i, j the bipartite subgraph spanned
by Vi and Vj is quasi-random. Thus, a regular partition approximates G by quasi-random graphs.
Furthermore, the number t of classes may depend on a parameter ε that rules the accuracy of the
approximation, but it does not depend on the order of the graph G itself. Therefore, if for some class
of graphs we can compute regular partitions in polynomial time, then this graph class will admit
polynomial time algorithms for quite a few problems that are NP-hard in general.

In the sequel we introduce a new concept of regular partitions that takes into account the degree
distribution of the graph. If G = (V,E) is a graph and A,B ⊂ V are disjoint, then the relative density
of (A,B) in G is %(A,B) = e(A,B)

vol(A)vol(B) . Further, we say that the pair (A,B) is ε-volume regular if
for all X ⊂ A, Y ⊂ B satisfying vol(X) ≥ εvol(A), vol(Y ) ≥ εvol(B) we have

|e(X, Y )− %(A,B)vol(X)vol(Y )| ≤ ε · vol(A)vol(B)/vol(V ), (2)

where e(X, Y ) denotes the number of X-Y -edges in G. This condition essentially means that the
bipartite graph spanned by A and B is quasi-random, given the degree distribution of G. Indeed, in a
random graph the proportion of edges between X and Y should be proportional to both vol(X) and
vol(Y ), and hence to vol(X)vol(Y ). Moreover, %(A,B) measures the overall density of (A,B).

Finally, we state a condition that ensures the existence of regular partitions. While every dense
graph G (of volume vol(V ) = Ω(|V |2)) admits a regular partition, such partitions do not necessarily
exist for sparse graphs, the basic obstacle being extremely “dense spots”. To rule out such dense spots,
we say that a graph G is (C, η)-bounded if for all X, Y ⊂ V with vol(X ∪ Y ) ≥ ηvol(V ) we have
%(X, Y )vol(V ) ≤ C.

Theorem 2. For any two numbers C > 0 and ε > 0 there exist η > 0 and n0 > 0 such that for
all n > n0 the following holds. If G = (V,E) is a (C, η)-bounded graph on n vertices such that
vol(V ) ≥ η−1n, then there is a partition P = {Vi : 0 ≤ i ≤ t} of V that enjoys the following two
properties.

REG1. For all 1 ≤ i ≤ t we have ηvol(V ) ≤ vol(Vi) ≤ εvol(V ), and vol(V0) ≤ εvol(V ).
REG2. Let L be the set of all pairs (i, j) ∈ {1, . . . , t}2 such that (Vi, Vj) is not ε-volume-regular.

Then
∑

(i,j)∈L vol(Vi)vol(Vj) ≤ εvol2(G).

Furthermore, for fixed C > 0 and ε > 0 such a partition P of V can be computed in time polynomial
in n.

Condition REG1 states that each of the classes V1, . . . , Vt has some non-negligible volume, and
that the “exceptional” class V0 is not too big. Moreover, REG2 requires that the share of edges of G
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that belongs to irregular pairs (Vi, Vj) is small. Thus, a partition P that satisfies REG1 and REG2
approximates G by a bounded number of bipartite quasi-random graphs, i.e., the number t of classes
can be bounded solely in terms of ε and the boundedness parameter C.

We illustrate the use of Theorem 2 with the example of the MAX CUT problem. While approxi-
mating MAX CUT within a ratio better than 16

17 is NP-hard on general graphs [16, 21], the following
theorem provides a polynomial time approximation scheme for (C, η)-bounded graphs.

Theorem 3. For any δ > 0 and C > 0 there exist two numbers η > 0, n0 and a polynomial time
algorithm ApxMaxCut such that for all n > n0 the following is true. If G = (V,E) is a (C, η)-
bounded graph on n vertices and vol(V ) > η−1|V |, then ApxMaxCut(G) outputs a cut (S, S̄) of G
that approximates the maximum cut within a factor of 1− δ.

The corresponding result for dense graphs was obtained by Frieze and Kannan [11].

2 Related Work

Quasi-random graphs. Quasi-random graphs with general degree distributions were first studied by
Chung and Graham [8]. They considered the properties Disc(ε) and Eig(δ), and a number of further
related ones (e.g., concerning weighted cycles). Chung and Graham observed that Eig(δ) implies
Disc(ε), and that the converse is true in the case of dense graphs (i.e., vol(V ) = Ω(|V |2)).

Regarding the step from Disc(ε) to Eig(δ), Butler [7] proved that any graph G such that for all
sets X, Y ⊂ V the bound

|e(X, Y )− vol(X)vol(Y )/vol(V )| ≤ ε
√

vol(X)vol(Y ) (3)

holds, satisfies Eig(O(ε(1 − ln ε))). His proof builds heavily on the work of Bilu and Linial [5],
who derived a similar result for regular graphs, and on the earlier related work of Bollobás and Niki-
forov [6].

Butler’s result relates to the second part of Theorem 1 as follows. The r.h.s. of (3) refers to the
volumes of the sets X , Y , and may thus be significantly smaller than εvol(V ). By contrast, the sec-
ond part of Theorem 1 just requires that the “original” discrepancy condition Disc(δ) is true, i.e., we
just need to bound |e(S)− 1

2vol(S)2/vol(V )| in terms of the total volume vol(V ). Thus, Theorem 1
requires a considerably weaker assumption. Indeed, providing a characterization of Disc(δ) in terms
of eigenvalues, Theorem 1 answers a question posed by Chung and Graham [8, 9]. Furthermore, re-
lying on Grothendieck’s inequality and SDP duality, the proof of Theorem 1 employs quite different
techniques than those used in [5–7].

In the present work we consider a concept of quasi-randomness that takes into account the graph’s
degree sequence. Other concepts that do not refer to the degree sequence (and are therefore restricted
to approximately regular graphs) were studied by Chung, Graham and Wilson [10] (dense graphs)
and by Chung and Graham [9] (sparse graphs). Also in this setting it has been an open problem to
derive eigenvalue separation from low discrepancy, and concerning this simpler concept of quasi-
randomness, our techniques yield a similar result as Theorem 1 as well (details omitted).

Regular partitions. Szemerédi’s original regularity lemma [20] shows that any dense graph G =
(V,E) (with |E| = Ω(|V |2)) can be partitioned into a bounded number of sets V1, . . . , Vt such that
almost all pairs (Vi, Vj) are quasi-random. This statement has become an important tool in various
areas, including extremal graph theory and property testing. Furthermore, Alon, Duke, Lefmann, Rödl,
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and Yuster [3] presented an algorithmic version, and showed how this lemma can be used to provide
polynomial time approximation schemes for dense instances of NP-hard problems (see also [18] for
a faster algorithm). Moreover, Frieze and Kannan [11] introduced a different algorithmic regularity
concept, which yields better efficiency in terms of the desired approximation guarantee.

A version of the regularity lemma that applies to sparse graphs was established independently by
Kohayakawa [17] and Rödl (unpublished). This result is of significance, e.g., in the theory of random
graphs, cf. Gerke and Steger [12]. The regularity concept of Kohayakawa and Rödl is related to the
notion of quasi-randomness from [9] and shows that any graph that satisfies a certain boundedness
condition has a regular partition.

In comparison to the Kohayakawa-Rödl regularity lemma, the new aspect of Theorem 2 is that
it takes into account the graph’s degree distribution. Therefore, Theorem 2 applies to graphs with
very irregular degree distributions, which were not covered by prior versions of the sparse regularity
lemma. Further, Theorem 2 yields an efficient algorithm for computing a regular partition (see e.g. [13]
for a non-polynomial time algorithm in the sparse setting). To achieve this algorithmic result, we
build upon the algorithmic version of Grothendieck’s inequality due to Alon and Naor [4]. Besides,
our approach can easily be modified to obtain a polynomial time algorithm for computing a regular
partition in the sense of Kohayakawa and Rödl, which was not known previously.

3 Preliminaries

If S ⊂ V is a subset of some set V , then we let 1S ∈ RV denote the vector whose entries are 1
on the entries corresponding to elements of S, and 0 otherwise. Moreover, if A = (avw)v,w∈V is a
matrix, then AS = (avw)v,w∈S denotes the minor of A induced on S × S. In addition, if ξ = (ξv)v∈V

is a vector, then diag(ξ) signifies the V × V matrix with diagonal ξ and off-diagonal entries equal
to 0. Further, for a vector ξ ∈ RV we let ‖ξ‖ signify the `2-norm, and for a matrix we let ‖M || =
sup0 6=ξ∈RV

‖Mξ‖
‖ξ‖ denote the spectral norm. If M is symmetric, then λmax(M) denotes the largest

eigenvalue of M .
An important ingredient to our proofs and algorithms is Grothendieck’s inequality. Let M =

(mij)i,j∈I be a matrix. Then the cut-norm of M is ‖M‖cut = maxI,J⊂I

∣∣∣∑i∈I,j∈J mij

∣∣∣ . In addition,
consider the following optimization problem:

SDP(M) = max
∑
i,j∈I

mij 〈xi, yj〉 s.t. ‖xi‖ = ‖yi‖ = 1, xi, yi ∈ RI .

Then SDP(M) can be reformulated as a linear optimization problem over the cone of positive
semidefinite 2|I| × 2|I| matrices, i.e., as a semidefinite program (cf. Alizadeh [2]). Hence, an op-
timal solution to SDP(M) can be approximated within any numerical precision, e.g., via the ellipsoid
method [15]. Grothendieck [14] established the following relation between SDP(M) and ‖M‖cut.

Theorem 4. There is a constant θ > 1 such that for all matrices M we have ‖M‖cut ≤ SDP(M) ≤
θ · ‖M‖cut .

The best current bounds on the above constant are π
2 ≤ θ ≤ π

2 ln(1+
√

2)
[14, 19]. Furthermore, by

applying an appropriate rounding procedure to a near-optimal solution to SDP(M), Alon and Naor [4]
obtained the following algorithmic result.

Theorem 5. There are a constant θ′ > 0 and a polynomial time algorithm ApxCutNorm that com-
putes on input M two sets I, J ⊂ I such that θ′ · ‖M‖cut ≤

∣∣∣∑i∈I,j∈J mij

∣∣∣.
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Alon and Naor presented a randomized algorithm that guarantees an approximation ration θ′ > 0.56,
and a deterministic one with θ′ ≥ 0.03.

4 Quasi-Randomness: Proof of Theorem 1

The proof of the first part of Theorem 1 is similar to the proof given in [8, Section 4] (cf. Appendix D).
Thus, we focus on the second implication, and hence assume that G = (V,E) is a graph that has
Disc(γε3), where γ > 0 signifies some small enough constant (e.g., γ = (6400θ)−1 suffices for the
proof below). Moreover, we let dv denote the degree of v ∈ V , n = |V |, and d̄ = n−1

∑
v∈V dv. In

addition, we introduce a further property.

Cut(ε): We say G has Cut(ε), if the matrix M = (mvw)v,w∈V with entries

mvw =
dvdw

vol(V )
− e({v}, {w})

has cut norm ‖M‖cut < ε · vol(V ), where e({v}, {w}) = 1 if {v, w} ∈ E and 0 otherwise.

Since for any S ⊂ V we have 〈M1S ,1S〉 = vol(S)2

vol(V ) − 2e(S), one can easily derive the following (cf.
Appendix A).

Proposition 6. Each graph that has Disc(0.01δ) enjoys Cut(δ).

To show that Disc(γε3) implies ess-Eig(ε), we proceed as follows. By Proposition 6, Disc(γε3)
implies Cut(100γε3). Moreover, if G satisfies Cut(100γε3), then Theorem 4 entails that not only
the cut norm of M is small, but even the semidefinite relaxation SDP(M) satisfies SDP(M) <
βε3vol(V ), for some β with 0 < β ≤ 100θγ. This bound on SDP(M) can be rephrased in terms
of an eigenvalue minimization problem for a matrix closely related to M . More precisely, using the
duality theorem for semidefinite programs, we can infer the following (cf. Appendix B).

Lemma 7. For any symmetric n× n matrix Q we have

SDP(Q) = n · min
z∈Rn, z⊥1

λmax

[(
0 1
1 0

)
⊗Q− diag

(
z

z

)]
.

Let D = diag(dv)v∈V . Then Lemma 7 entails the following.

Lemma 8. Suppose that SDP(M) < βε3vol(V ) for some β, 0 < β < 1/64. Then there exists a
subset W ⊂ V of volume vol(W ) ≥ (1−ε) ·vol(V ) such that the matrixM = D− 1

2 MD− 1
2 satisfies

‖MW ‖ < ε.

Proof. Let U = {v ∈ V : dv > β
1
3 εd̄}. Then

vol(V \ U) ≤ β
1
3 εd̄|V \ U | ≤ εvol(V )/2. (4)

Since SDP(MU ) ≤ SDP(M), Lemma 7 entails that there is a vector 1 ⊥ z ∈ RU such that

λmax

[(
0 1
1 0

)
⊗MU − diag

(
z
z

)]
< βε3d̄. Hence, setting y = D−1

U z, we obtain

λmax

[(
0 1
1 0

)
⊗MU − diag

(
y

y

)]
< β

2
3 ε2, (5)



7

because all entries of the diagonal matrix DU exceed β
1
3 εd̄. Moreover, as z ⊥ 1, we have

y ⊥ DU1. (6)

Now, let W = {v ∈ U : |yv| < β
1
3 ε} consist of all vertices v on which the “correcting vector” y

is small. Since on W all entries of the diagonal matrix diag
(
y
y

)
are smaller than β

1
3 ε in absolute value,

(5) yields

λmax

[(
0 1
1 0

)
⊗MW

]
< β

1
3 ε + β

2
3 ε2 ≤ 2β

1
3 ε; (7)

in other words, on W the effect of y is negligible. Further, (7) entails that ‖MW ‖ ≤ 2β
1
3 ε < ε.

Finally, we need to show that vol(W ) is large. To this end, we consider the set S = {v ∈ U :

yv < 0} and let ζ = D
1
2
U1S . Thus, for each v ∈ U the entry ζv equals d

1
2
v if yv < 0, while ζv = 0 if

yv ≥ 0, so that ‖ζ‖2 = vol(S). Hence, (5) yields that

2β
2
3 ε2vol(S) = 2β

2
3 ε2‖ζ‖2 ≥

〈[(
0 1
1 0

)
⊗MU − diag

(
y

y

)]
·
(

ζ

ζ

)
,

(
ζ

ζ

)〉
= 2 〈MUζ, ζ〉 − 2

∑
v∈S

dvyv = 2 〈MU1S ,1S〉 − 2
∑
v∈S

dvyv. (8)

Further, as SDP(MU ) ≤ SDP(M) ≤ βε3vol(V ), Theorem 4 entails that 〈MU1S ,1S〉 ≤ ‖MU‖cut ≤
βε3vol(V ). Plugging this bound into (8) and recalling that yv < 0 for all v ∈ S, we conclude that∑

v∈S

dv|yv| ≤ β
2
3 ε2vol(S) + βε3vol(V ) ≤ 2β

2
3 ε2vol(V ). (9)

Hence, (6) entails that actually
∑

v∈U dv|yv| ≤ 4β
2
3 ε2vol(V ). As |yv| ≥ β

1
3 ε for all v ∈ U \ W ,

we obtain vol(U \ W ) ≤ 4β
1
3 εvol(V ) < 1

2εvol(V ). Thus, (4) yields vol(V \ W ) < εvol(V ), as
desired. ut

Finally, setting γ = (6400θ)−1 and combining Theorem 4, Proposition 6, and Lemma 8, we
conclude if G has Disc(γε3), then there is a set W such that vol(W ) ≥ (1−ε)vol(V ) and ‖MW ‖ < ε.
AsM is closely related to the normalized Laplacian L(G), one can infer via elementary linear algebra
that the minor L(G)W corresponding to W satisfies 1− ε ≤ λ2(L(G)W ) ≤ λ|W |(L(G)W ) ≤ 1 + ε,
whence G has ess-Eig(ε) (cf. Appendix C for details).

5 The Algorithmic Regularity Lemma

In this section we present a polynomial time algorithm Regularize that computes for a given
graph G = (V,E) a partition satisfying REG1 and REG2, provided that G satisfies the assumptions
of Theorem 2. In particular, this will show that such a partition exists. We will outline Regularize
in Section 5.1. The crucial ingredient is a subroutine Witness for checking whether a given pair
(A,B) of subsets of V is ε-volume regular. This subroutine is the content of Section 5.2.

Throughout this section, we let ε > 0 be an arbitrarily small but fixed and C > 0 an arbitrarily
large but fixed number. In addition, we define a sequence (tk)k≥1 by letting t1 = d2/εe and tk+1 =
tk2tk . Let k∗ = dCε−3e, η = t−6

k∗ ε−8k∗ , and choose n0 > 0 big enough.
We always assume that G = (V,E) is a graph on n = |V | > n0 vertices that is (C, η)-bounded,

and that vol(V ) ≥ η−1n.
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5.1 The Algorithm Regularize

In order to compute the desired regular partition of its input graph G, the algorithm Regularize
proceeds as follows. In its first step, Regularize computes any initial partition P1 = {V 1

i : 0 ≤
i ≤ s1} such that each class Vi (1 ≤ i ≤ s1) has a decent volume.

Algorithm 9. Regularize(G)
Input: A graph G = (V,E). Output: A partition of V .

1. Compute an initial partition P1 = {V 1
0 : 0 ≤ i ≤ s1} such that 1

4
εvol(V ) ≤ vol(V 1

i ) ≤ 3
4
εvol(V ) for all

1 ≤ i ≤ s1; thus, s1 ≤ 4ε−1. Set V 1
0 = ∅.

Then, in the subsequent steps, Regularize computes a sequence Pk of partitions such that
Pk+1 is a “more regular” refinement of Pk (k ≥ 1). As soon as Regularize can verify that Pk

satisfies both REG1 and REG2, the algorithm stops.
To check whether the current partition Pk = {V k

i : 1 ≤ i ≤ s1} satisfies REG2, Regularize
employs a subroutine Witness. Given a pair (V k

i , V k
j ), Witness tries to check whether (V k

i , V k
j )

is ε-volume-regular.

Proposition 10. There is a polynomial time algorithm Witness that satisfies the following. Let
A,B ⊂ V be disjoint.

1. If Witness(G, A,B) answers “yes”, then the pair (A,B) is ε-volume regular.
2. On the other hand, if the answer is “no”, then (A,B) is not ε/200-volume regular. In this case

Witness outputs a pair (X∗, Y ∗) of subsets X∗ ⊂ A, Y ∗ ⊂ B such that vol(X∗) ≥ ε
200vol(A),

vol(Y ∗) ≥ ε
200vol(B), and |e(X∗, Y ∗)− %(A,B)vol(X∗)vol(Y ∗)| > εvol(A)vol(B)

200vol(V ) .

We call a pair (X∗, Y ∗) as in 2. an ε
200 -witness for (A,B).

By applying Witness to each pair (V k
i , V k

j ) of the partition Pk, Regularize can single out a
set Lk such that all pairs Vi, Vj with (i, j) 6∈ Lk are ε-volume regular. Hence, if∑

(i,j)∈Lk

vol(V k
i )vol(V k

j ) < εvol(V )2,

then Pk satisfies REG2. As we will see below that by construction Pk satisfies REG1 for all k, in
this case Pk is a feasible regular partition, whence Regularize stops.

2. For k = 1, 2, 3, . . . , k∗ do
3. Initially, let Lk = ∅.

For each pair (V k
i , V k

j ) (i < j) of classes of the previously partition Pk

4. call the procedure Witness(G, V k
i , V k

j , ε).
If it answers “no” and hence outputs an ε

200
-witness (Xk

ij , X
k
ji) for (V k

i , V k
j ), then add (i, j) to

Lk.
5. If

P
(i,j)∈Lk vol(V k

i )vol(V k
j ) < εvol(V )2, then output the partition Pk and halt.

If Step 5 does not halt, Regularize constructs a refinement Pk+1 of Pk. To this end, the
algorithm decomposes each class V k

i of Pk into up to 2sk pieces. Consider the sets Xij with (i, j) ∈
Lk and define an equivalence relation ≡k

i on Vi by letting u ≡k
i v iff for all j such that (i, j) ∈ Lk

it is true that u ∈ Xij ↔ v ∈ Xij . Thus, the equivalence classes of ≡k
i are the regions of the Venn

diagram of the sets Vi and Xij with (i, j) ∈ Lk. Then Regularize obtains Pk+1 as follows.
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6. Let Ck be the set of all equivalence classes of the relations ≡k
i (1 ≤ i ≤ sk). Moreover, let Ck

∗ =
{V k+1

1 , . . . , V k+1
sk+1} be the set of all classes W ∈ C such that vol(W ) > ε4(k+1)vol(V )/(15t3k+1).

Finally, let V k+1
0 = V k

0 ∪
S

W∈Ck\Ck
∗

W , and set Pk+1 = {V k+1
i : 0 ≤ i ≤ sk+1}.

Since for each i there are at most sk indices j such that (i, j) ∈ Lk, in Pk+1 every class V k
i gets

split into at most 2sk pieces. Hence, sk+1 ≤ sk2sk . Thus, as s1 ≤ t1, we conclude that sk ≤ tk for
all k. Therefore, our choice of η ensures that vol(V k+1

i ) ≥ ηvol(V ) for all 1 ≤ i ≤ sk+1 (because
Step 6 puts all equivalence classes W ∈ Ck of “extremely small” volume into the exceptional class).
Moreover, it is easily seen that vol(V k+1

0 ) ≤ ε(1− 2k+2)vol(V ). In effect, Pk+1 satisfies REG1.
Thus, to complete the proof of Theorem 2 it just remains to show that Regularize will actually

succeed and output a partition Pk for some k ≤ k∗. To show this, we define the index of a partition
P = {Vi : 0 ≤ i ≤ s} as

ind(P) =
∑

1≤i<j≤s

%(Vi, Vj)2vol(Vi)vol(Vj) =
∑

1≤i<j≤s

e(Vi, Vj)2

vol(Vi)vol(Vj)
.

Note that we do not take into account the (exceptional) class V0 here. Using the boundedness-condition,
we derive the following.

Proposition 11. If G = (V,E) is a (C, η)-bounded graph and P = {Vi : 0 ≤ 1 ≤ t} is a partition
of V with vol(Vi) ≥ ηvol(V ) for all i ∈ {1, . . . , t}, then ind(P) ≤ C.

Lemma 11 entails that ind(Pk) ≤ C for all k. In addition, since Regularize obtains Pk+1 by
refining Pk according to the witnesses of irregularity computed by Witness, the index of Pk+1 is
actually considerably larger than the index of Pk. More precisely, the following is true.

Lemma 12. If
∑

(i,j)∈Lk vol(V k
i )vol(V k

j ) ≥ εvol(V )2, then ind(Pk+1) ≥ ind(Pk) + ε3/8.

Since the index of the initial partition P1 is non-negative, Lemmas 11 and 12 readily imply that
Regularize will terminate and output a feasible partition Pk for some k < k∗.

Finally, we point out that the overall running time of Regularize is polynomial. For the run-
ning time of Steps 1–3 and 5–6 is O(vol(V )), and the running time of Step 4 is polynomial due to
Proposition 10.

5.2 The Procedure Witness

The subroutine Witness for Proposition 10 employs the algorithm ApxCutNorm from Theorem 5
for approximating the cut norm as follows.

Algorithm 13. Witness(G, A,B)
Input: A graph G = (V,E), disjoint sets A,B ⊂ V , and a number ε > 0.
Output: A partition of V .

1. Set up a matrix M = (mvw)(v,w)∈A×B with entries mvw = 1 − %(A, B)dvdw if v, w are adjacent in G,
and mvw = −%(A, B)dvdw otherwise.
Call ApxCutNorm(M) to compute sets X ⊂ A, Y ⊂ B such that | 〈M1X ,1Y 〉 | ≥ 3

100
‖M‖cut.

2. If | 〈M1X ,1Y 〉 | < 3ε/100, then return “yes”.
3. Otherwise, pick an arbitrary set X ′ ⊂ A \X of volume 3ε

100
vol(A) ≤ vol(X ′) ≤ 4ε

100
vol(A).

– If vol(X) ≥ 3ε
100

vol(A), then let X∗ = X.
– If vol(X) < 3ε

100
vol(A) and |e(X ′, Y )− %(A, B)vol(X ′)vol(Y )| > εvol(A)vol(B)

100vol(V )
, set X∗ = X ′.

– Otherwise, set X∗ = X ∪X ′.
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4. Pick a further set Y ′ ⊂ B \ Y of volume ε
200

vol(B) ≤ vol(Y ′) ≤ 2ε
300

vol(B).

– If vol(Y ) ≥ ε
200

vol(B), then let Y ∗ = Y .
– If vol(Y ) < ε

200
vol(B) and |e(X∗, Y ′)− %(A, B)vol(X∗)vol(Y ′)| > εvol(A)vol(B)

200vol(V )
, let Y ∗ = Y ′.

– Otherwise, set Y ∗ = Y ∪ Y ′.

5. Answer “no” and output (X∗, Y ∗) as an ε/8-witness.

Given the graph G along with two disjoint sets A,B ⊂ V , Witness sets up a matrix M . The
crucial property of M is that for any two subsets S ⊂ A and T ⊂ B we have 〈M1S ,1T 〉 = e(S, T )−
%(A,B)vol(S)vol(T ). Therefore, if ‖M‖cut ≤ εvol(A)vol(B)/vol(V ), then the pair (A,B) is ε-
volume regular. Hence, in order to find out whether (A,B) is ε-volume regular, Witness employs the
algorithm ApxCutNorm to approximate ‖M‖cut. If Step 2 of Witness answers “yes”, then (A,B)
is ε-volume regular, because ApxCutNorm achieves an approximation ratio > 3

100 by Theorem 5.
On the other hand, if ApxCutNorm yields sets X , Y such that |〈M1X ,1Y 〉| > 3εvol(A)vol(B)

100vol(V ) ,
then Witness constructs an ε/200-witness for (A,B). Indeed, if the volumes of X and Y are “large
enough” – say, vol(X) ≥ ε

200vol(A) and vol(Y ) ≥ ε
200vol(B) – then (X, Y ) actually is an ε/200-

witness. However, as ApxCutNorm does not guarantee any lower bound on vol(X), vol(Y ), Steps 3–
5 try to enlarge the sets X , Y a little if their volume is too small. Finally, it is straightforward to verify
that this procedure yields an ε/200-witness (X∗, Y ∗), which entails Proposition 10.

6 An Application: Max Cut

As an application of Theorem 2 and, in particular, the polynomial time algorithm Regularize for
computing a regular partition, we obtain the following algorithm for approximating the max cut of a
graph G = (V,E) that satisfies the assumptions of Theorem 3.

Algorithm 14. ApxMaxCut(G)
Input: A graph G = (V,E). Output: A cut (S, S̄) of G.

1. Use Regularize to compute an ε = δ
40C

-volume regular partition P = {Vi : 0 ≤ i ≤ t} of G.
2. Determine an optimal solution (c1, . . . , ct) to the optimization problem

max
X

1≤i<j≤t

[εci(1− εcj) + (1− εci)εcj ] e(Vi, Vj)

s.t. ∀1 ≤ j ≤ t : 0 ≤ cj ≤ ε−1, cj ∈ ZZ.

3. For each 1 ≤ i ≤ t let Si ⊂ Vi be a subset of volume vol(Si) ∼ εcivol(Vi). Output S =
St

i=1 Si and
S̄ = V \ S.

The basic insight behind ApxMaxCut is the following. If (Vi, Vj) is an ε-volume regular pair of
P , then for any subsets X, X ′ ⊂ Vi and Y, Y ′ ⊂ Vj such that vol(X) = vol(X ′) and vol(Y ) =
vol(Y ′) the condition REG2 ensures that |e(X, Y )− e(X ′, Y ′)| ≤ 2εvol(Vi)vol(Vj)

vol(V ) ; that is, the differ-
ence between e(X, Y ) and e(X ′, Y ′) is negligible. In other words, as far as the number of edges is
concerned, subsets that have the same volume are “interchangeable”.

Therefore, to compute a good cut (S, S̄) of G we just have to optimize the proportion of volume
of each Vi that is to be put into S or into S̄, but it does not matter which subset of Vi of this volume we
choose. However, determining the optimal fraction of volume is still a somewhat involved (essential
continuos) optimization problem. Hence, in order to discretize this problem, we chop each Vi into at
most ε−1 chunks of volume (1 + o(1))εvol(Vi). Then, we just have to determine the number ci of
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chunks of each Vi that we join to S. This is exactly the optimization problem detailed in Step 2 of
ApxMaxCut.

Observe that the time required to solve this problem is independent of n, i.e., Step 2 has a constant
running time. For the number t of classes of P is bounded by a number independent of n, and the
number dε−1e + 1 of choices for each ci does not depend on n either. In addition, Step 3 can be
implemented so that it runs in linear time, because Si ⊂ Vi can be any subset that satisfies vol(Si) ∼
εcivol(Vi).

To prove that ApxMaxCut does indeed guarantee an approximation ratio of 1−δ, we have to cope
with a number of technicalities. For instance, we have to show that the number of edges belonging to
irregular pairs of the partition P as well as the number of edges inside the classes Vi are negligible.
We omit the details of the analysis from this extended abstract.
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A Proof of Proposition 6

Suppose that G = (V,E) has Disc(0.01δ). We shall prove below that for any two S, T ⊂ V we have

|〈M1S ,1T 〉| ≤ 0.03δvol(V ) if S ∩ T = ∅, (10)

|〈M1S ,1T 〉| ≤ 0.02δvol(V ) if S = T. (11)
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Letting Z = X ∩ Y and combining (10) and (11), we obtain

|〈M1X ,1Y 〉| ≤
∣∣〈M1X\Z ,1Y \Z

〉∣∣+ ∣∣〈M1Z ,1Y \Z
〉∣∣+ ∣∣〈M1Z ,1X\Z

〉∣∣+ 2 |〈M1Z ,1Z〉|
≤ δvol(V ).

Since this bound holds for all X, Y , we conclude that ‖M‖cut ≤ δvol(V ).
To prove (10), we note that Disc(0.01δ) implies that∣∣∣∣e(S)− vol(S)2

2vol(V )

∣∣∣∣ ≤ 0.01δvol(V ), (12)∣∣∣∣e(T )− vol(T )2

2vol(V )

∣∣∣∣ ≤ 0.01δvol(V ), (13)∣∣∣∣e(S ∪ T )− (vol(S) + vol(T ))2

2vol(V )

∣∣∣∣ ≤ 0.01δvol(V ). (14)

Moreover, since S, T are disjoint, we have e(S, T ) = e(S ∪T )− e(S)− e(T ). Therefore, the desired
bound on |〈M1S ,1T 〉| =

∣∣∣e(S, T )− vol(S)vol(T )
vol(V )

∣∣∣ follows from (12)–(14). Finally, as | 〈M1S ,1S〉 | =

2
∣∣∣e(S)− vol(S)2

2vol(V )

∣∣∣, we obtain (11).

B Proof of Lemma 7

Suppose that Q is an n×n matrix, and letQ = 1
2

(
0 1
1 0

)
⊗Q. If A = (aij)1≤i,j≤n, B = (bij)1≤i,j≤n

are symmetric n×n matrices, we use the notation A ≤ B to state that B−A is positive semidefinite.
Moreover, diag(A) ∈ Rn signifies the diagonal of A, and 〈A,B〉 =

∑n
i,j=1 aijbij .

Lemma 15. Consider the semidefinite program

DSDP(Q) = min 〈1, y〉
s.t. Q ≤ diag(y), y ∈ R2n.

Then SDP(Q) = DSDP(Q).

Proof. We first rewrite the vector program SDP(Q) in the standard form of a semidefinite program:

SDP(Q) = max 〈Q, X〉 s.t. diag(X) = 1, X ≥ 0, X ∈ R(2n)×(2n).

Then the lemma follows directly from the SDP duality theorem as stated in [2]. ut

DSDP(Q) is dual of SDP(Q). To infer Lemma 7, we shall simplify DSDP and reformulate this
semidefinite program as an eigenvalue minimization problem. First, we show that it suffices to opti-
mize over y ∈ Rn rather than y ∈ R2n.

Lemma 16. Let DSDP′(Q) = min 2 〈1, y′〉 s.t. Q ≤ diag
(
1
1

)
⊗ y′, y′ ∈ Rn. Then DSDP(Q) =

DSDP′(Q).
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Proof. It is clear that DSDP(Q) ≤ DSDP′(Q), because for any feasible solution y′ to DSDP′(Q)
the vector y =

(
1
1

)
⊗ y′ is a feasible solution to DSDP(Q). Thus, we just need to establish that

DSDP′(Q) ≤ DSDP(Q).
To this end, let F(Q) ⊂ R2n signify the set of all feasible solutions y to DSDP(Q). We shall

prove that F(Q) is closed under the linear operator

I : R2n → R2n, (y1, . . . , yn, yn+1, . . . , y2n) 7→ (yn+1, . . . , y2n, y1, . . . , yn),

i.e., F(Q) is closed under swapping the first and the last n entries of y. To see that this implies the
assertion, consider an optimal solution y = (yi)1≤i≤2n ∈ F(Q). Then 1

2(y + Iy) ∈ F(Q). Now, let
y′ = (y′i)1≤i≤n be the projection of 1

2(y + Iy) onto the first n coordinates. Since 1
2(y + Iy) is a fixed

point of I, we have 1
2(y + Iy) =

(
1
1

)
⊗ y′. Hence, the fact that 1

2(y + Iy) is feasible to DSDP(Q)
implies that y′ is feasible to DSDP′(Q). Thus, we conclude that

DSDP′(Q) ≤ 2
〈
1, y′

〉
= 〈1, y〉 = DSDP(Q).

To show that F(Q) is closed under I, consider a vector y ∈ F(Q). Then we know that

∀η ∈ R2n : 〈(diag(y)−Q)η, η〉 ≥ 0.

Furthermore, our objective is to show that

∀ξ ∈ R2n : 〈(diag(Iy)−Q)ξ, ξ〉 ≥ 0.

Decompose y into its two halfs y =
(
u
v

)
(u, v ∈ Rn). Then Iy =

(
v
u

)
. Moreover, let ξ =

(
α
β

)
, where

α, β ∈ Rn, and set η = Iξ =
(
β
α

)
. Then

〈(diag(Iy)−Q)ξ, ξ〉 = 〈diag(u)α, α〉+ 〈diag(v)β, β〉 − 2 〈Qα, β〉
= 〈(diag(y)−Q)η, η〉 ≥ 0,

because Q is symmetric. ut

Proof of Lemma 7. Let

DSDP′′(Q) = n · min
z∈Rn, z⊥1

λmax

[(
0 1
1 0

)
⊗Q + diag

(
1
1

)
⊗ z

]
.

By Lemmas 15 and 16, it suffices to prove that DSDP′(Q) = DSDP′′(Q).
To see that DSDP′′(Q) ≤ DSDP′(Q), consider an optimal solution y′ to DSDP′(Q). Let λ =

n−1 〈1, y′〉 and z = λ1− y′. Then 2z ⊥ 1, i.e., 2z is a feasible solution to DSDP′′(Q). Furthermore,
the feasibility of y′ implies that

Q ≤ diag
(

1
1

)
⊗ y′ = λE − diag

(
1
1

)
⊗ z,

where E is the identity matrix. Hence,

DSDP′′(Q) ≤ nλmax

[(
0 1
1 0

)
⊗Q + diag

(
1
1

)
⊗ 2z

]
= 2nλmax

[
Q+ diag

(
1
1

)
⊗ z

]
≤ 2nλ = 2

〈
1, y′

〉
= DSDP′(Q).
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Conversely, consider an optimal solution z to DSDP′′(Q). Set

µ = λmax

[(
0 1
1 0

)
⊗Q− diag

(
1
1

)
⊗ z

]
= n−1DSDP′′(Q), y′ =

1
2
µ1 + z.

Then the definition of µ implies that
(

0 1
1 0

)
⊗Q− diag

(
1
1

)
⊗ z ≤ µE, whence

Q =
1
2

(
0 1
1 0

)
⊗Q ≤ 1

2

(
µE + diag

(
1
1

)
⊗ z

)
= diag

(
1
1

)
⊗ y′.

Hence, y′ is a feasible solution to DSDP′(Q). Furthermore, since z ⊥ 1 we obtain

DSDP′(Q) ≤ 2
〈
1, y′

〉
= µn = DSDP′′(Q),

as desired. ut

C Proof of Theorem 1, 2nd part

Let W ⊂ V be a set of volume vol(W ) ≥ (1 − ε)vol(V ) such that ‖MW ‖ < ε. Moreover, let ∆ =
(
√

dv)v∈W ∈ RW . Then we can rewrite MW as a difference MW = vol(V )−1∆∆T − LW , where
for v, w ∈ W the corresponding entry of LW is −(dvdw)−

1
2 if v, w are adjacent, and 0 otherwise.

Furthermore, the normalized Laplacian L of G satisfies LW = E−LW . Therefore, for all unit vectors
ξ ⊥ ∆ we have

|〈LW ξ, ξ〉 − 1| = |〈LW ξ, ξ〉| = |〈MW ξ, ξ〉| ≤ ‖MW ‖ < ε. (15)

In addition, since ‖∆‖2 = vol(W ) ≥ 1
2vol(V ), we have

‖LW ∆‖2

‖∆‖2
=
∑
v∈W

2(e(v,W )− dv)2

dv · vol(V )
≤ 2

∑
v∈W

dv − e(v,W )
vol(V )

≤ vol(V \W )
vol(V )

< 2ε. (16)

Finally, combining (15) and (16) with the Rayleigh characterizations of λ2(LW ) and λmax(LW ), we
conclude that 1− ε < λ2(LW ) ≤ λmax(LW ) < 1 + ε, thereby completing the proof.

D Proof of Theorem 1, 1st part

Let W ⊂ V be a set of volume vol(W ) ≥ (1 − ε)vol(V ) such that the normalized Laplacian L of
G satisfies 1 − ε ≤ λ2(LW ) ≤ λmax(LW ) ≤ 1 + ε; we may assume without loss of generality that
ε < 10−6. Our goal is to show that then G has Disc(10

√
ε). Let ∆ = (

√
dv)v∈W ∈ RW , and set

MW = vol(V )−1∆∆T −LW , where for v, w ∈ W the corresponding entry of LW is −(dvdw)−
1
2 if

v, w are adjacent, and 0 otherwise. Note that the normalized Laplacian L of G satisfies LW = E−LW .
Therefore, for all unit vectors ξ ⊥ ∆ we have

LW ξ − ξ = −LW ξ = MW ξ. (17)

If S ⊂ W , then we let ∆S denote the vector that coincides with ∆ on all coordinates v ∈ S, and
whose entries on W \ S equal 0. Then

|〈MW ∆S ,∆S〉| =
∣∣∣∣vol(S)2

vol(V )
− 2e(S)

∣∣∣∣ .
Therefore, it is straightforward to derive the assertion from the following lemma.
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Lemma 17. We have ‖MW ‖ ≤ 10
√

ε.

Proof. Let ζ be an eigenvector of LW with eigenvalue λ1(LW ) of unit length. Since

〈LW ∆, ∆〉 = e(W,V \W ) ≤ vol(V \W ) ≤ εvol(V ),

and ‖∆‖2 = vol(W ) ≥ 0.99vol(V ), we conclude that

0 ≤ λ1(LW ) ≤ 2ε. (18)

Thus, decomposing ∆ as ∆
‖∆‖2 = sζ + tχ, where s2 + t2 = 1 and χ ⊥ ζ is a unit vector, we obtain

2ε ≥ ‖∆‖−2 〈LW ∆, ∆〉 = s2 〈LW ζ, ζ〉+ t2 〈LW χ, χ〉 ≥ t2

2
〈LW χ, χ〉 ,

because λ2(LW ) ≥ 1− ε. Consequently,

t2 ≤ 4ε, s2 ≥ 1− 4ε. (19)

Now, let ξ ⊥ ∆ be a unit vector, and decompose ξ = xζ + yη, where η ⊥ ζ is a unit vector.
Because ζ = s−1

(
∆
‖∆‖ − tχ

)
, we have

x = 〈ζ, ξ〉 = s−1

〈
∆

‖∆‖
, ξ

〉
− t

s
〈χ, ξ〉 .

Hence, as ξ ⊥ ∆, (19) entails that

x2 ≤ 5ε, y2 ≥ 1− 5ε. (20)

Combining, (17), (18) and (20), we conclude that

‖MW ξ‖ = ‖LW ξ − ξ‖ ≤ x(1− λ1(LW )) + y‖LW η − η‖ ≤ 3
√

ε.

Hence, we have established that

sup
0 6=ξ⊥∆

‖MW ‖
‖ξ‖

≤ 3
√

ε. (21)

Furthermore, a direct computation yields

|〈MW ∆, ∆〉|
‖∆‖2

≤ 2vol(V \W )
vol(V )

< 2ε. (22)

Finally, combining (21) and (22), we conclude that ‖MW ‖ ≤ 10
√

ε. ut

E Construction of a Graph with a Small Spectral Gap

In this section we show that the second part of Theorem 1 is tight up to the precise value of the
constant γ. To this end, we sketch a (probabilistic) construction of a graph G = (V,E) on n vertices
that has Disc(ε) but does not have ess-Eig(C−2α), where C > 0 is a sufficiently large constant and
α = C−1ε

1
3 . We assume ε > 0 is a sufficiently small number, and choose n = n(ε) sufficiently large.

Let X ⊂ V = {1, . . . , n} be a set of cardinality αn. Then G is a graph with the following
properties chosen uniformly at random.
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1. All vertices in V \X have degree d = n
1
4 .

2. All vertices in X have degree αd.
3. Each vertex in X has exactly dvol(X)/vol(V ) neighbors in X .
4. All vertices in V \X have the same number of neighbors in X .

Thus, G features a rather large set X of vertices of relatively small degree such that X is much denser
than one would expect in a random graph G(d) with the same degree distribution as G. We say that G
has some property with high probability (“w.h.p.”) if the probability that X has the property is 1−o(1)
as n →∞.

To show that w.h.p. G does not have ess-Eig(C−2α), let Y ⊂ X be a set of size |Y | = 1
2 |X|. Since

G is a random graph, w.h.p. any such set Y satisfies e(Y ) ≥ 0.1e(X). Furthermore, the construction
of G ensures that

2e(Y )vol(V )
vol(Y )2

≥ 0.9α−1. (23)

On the other hand, if W ⊂ V is such that vol(V \W ) ≤ C−2αvol(V ) and 1−C−2α ≤ λ2(L(G)W ) ≤
λmax(L(G)W ) ≤ 1 + C−2α, then any Y ⊂ X \W , |Y | ≥ 1

2 |X| would satisfy∣∣∣∣2e(Y )− vol(Y )2

vol(V )

∣∣∣∣ ≤ C−1αvol(Y ) (24)

w.h.p., as can be shown by similar arguments as in Appendix D. Since (23) contradicts (24), we
conclude that G violates ess-Eig(C−2α) w.h.p.

Furthermore, to prove that G has Disc(ε), we observe that for any Y ⊂ X , Z ⊂ V \X we have

2e(Y )
vol(V )

≤ αdnvol(X)
vol(V )2

≤ 2α3 < 0.01ε, (25)∣∣∣∣e(Y, Z)− vol(Y )vol(Z)
vol(G)

∣∣∣∣ ≤ α2dn

∣∣∣∣1− dn

vol(G)

∣∣∣∣ ≤ 3α3dn ≤ 0.01εvol(G). (26)

Since the subgraph of G induced on V \ X is a random regular graph, (25) and (26) entail that G
satisfies Disc(ε) w.h.p.

F Proof of Lemma 12

To prove of the Lemma 12 we follow the lines of the original proof of Semerédi. First we need the
following observation.

Proposition 18. Let P ′ = {V ′
j : 0 ≤ j ≤ s} and P = {Vi : 0 ≤ i ≤ t} be two partitions of V . If P ′

refines P then ind(P ′) ≥ ind(P).

Proof. For Vi ∈ P , i ∈ [t] let Ii = {j : V ′
j ∈ P ′, V ′

j ⊂ Vi}. Then, using the Cauchy-Schwarz-
inequality, we conclude

ind(P ′) =
∑

1≤i<j≤s

e2(V ′
i , V ′

j )
vol(V ′

i )vol(V ′
j )
≤

∑
1≤k<l≤t

∑
i∈Ik
j∈Il

e2(V ′
i , V ′

j )
vol(V ′

i )vol(V ′
j )

≥
∑

1≤k<l≤t

(∑
i∈Ik
j∈Il

e(V ′
i , V ′

j )
)2

∑
i∈Ik
j∈Il

vol(V ′
i )vol(V ′

j )
=

∑
1≤k<l≤t

e2(Vk, Vl)
vol(Vk)vol(Vl)

= ind(P).

ut
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Furthermore the proof will use the following defect-form of the Cauchy-Schwarz-Lemma.

Lemma 19 (Defect form of Cauchy-Schwarz-inequality). For all i ∈ I let σi, di be positive real
numbers satisfying

∑
i∈I σi = 1. Furthermore let J ⊂ I , % =

∑
i∈I σi%i and σJ =

∑
j∈J σj . If∑

j∈J

σj%j = σJ(% + ν)

then ∑
i∈I

σi%
2
i ≥ %2 + ν2σJ .

Lastly, for technical reasons we state the following proposition. Its proof is straightforward and
we omit it here.

Proposition 20. Let 1/5 > δ > 0, G = (V,E) and A,B ⊂ V be disjoint subsets of V . Furthermore
let A′ ⊂ A and B′ ⊂ B with vol(A \A′) < δvol(A) and vol(B \B′) < δvol(B). Then the following
inequalities hold ∣∣∣∣ e(A,B)

vol(A)vol(B)
− e(A′, B′)

vol(A′)vol(B′)

∣∣∣∣ ≤ 5δ

min{vol(A), vol(B)}
(27)∣∣∣∣ e2(A,B)

vol(A)vol(B)
− e2(A′, B′)

vol(A′)vol(B′)

∣∣∣∣ ≤ 15δ. (28)

Proof of the Lemma 12
Without loss of generality let assume ε ≤ 1/8 and let K ⊂ V be the union of the equivalence

classes with a negligible volume size, more precisely

K =
⋃

W∈Ck
∗\Ck

vol(W ) =
⋃{

W ∈ Ck : vol(W ) ≤ ε4(k + 1)vol(V )
15t3k+1

}
.

Now let P ′ = {V ′
i : 0 ≤ i ≤ sk} be an auxiliary partition given by

V ′
i =

{
V k

0 ∪K if i = 0,

V k
i \K otherwise.

To show the index increment ind(Pk+1) ≥ ind(Pk) + ε3/8 we will proceed in two steps. In the
first step we will compare the index of P ′ to the index of Pk. This will yield the following.

Claim 1 |ind(Pk)− ind(P ′)| ≤ ε4.

The second step will reveal the index increment of Pk+1 compared to P ′.

Claim 2 ind(Pk+1) ≥ ind(P) + ε3/4.

Together, with ε ≤ 1/8, this yields an index increment

ind(Pk+1) ≥ ind(Pk) + ε3/8.

ut
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Proof of Claim 1. Let (V k
i , V k

j ) be a pair of partition classes of Pk and let V ′
i = V k

i \ K and V ′
j =

V k
j \K. Note that vol(V k

i ) ≥ ε4kvol(V )/15t3k. Thus we have

vol(V ′
i ) ≥ vol(V k

i )− vol(K) ≥ vol(V k
i )− ε4

(
ε4k

15
vol(G)
t2k+1

)
≥
(

1− ε4

15t2k

)
vol(V k

i ).

Analogously vol(V ′
j ) ≥

(
1− ε4/(15t2k)

)
vol(V k

j ) holds. In effect, using the Proposition 20 we get∣∣∣∣∣ e2(V ′
i , V ′

j )
vol(V ′

i )vol(V ′
j )
−

e2(V k
i , V k

j )

vol(V k
i )vol(V k

j )

∣∣∣∣∣ ≤ ε4

t2k
.

Consequently

|ind(Pk)− ind(P ′)| ≤
∑

1≤i<j≤sk

∣∣∣∣∣ e2(V k
i , V k

j )

vol(V k
i )vol(V k

j )
−

e2(V ′
i , V ′

j )
vol(V ′

i )vol(V ′
j )

∣∣∣∣∣ ≤ ε4.

ut
Proof of Claim 2. Let (V k

i , V k
j ) be an irregular pair and (A,B) = (V k

i \K, V k
j \K). Furthermore let

(Xk
ij , X

k
ji) be the witness of irregularity. Then, for X = Xk

ij \ K ⊂ A and Y = Xk
ji \ K ⊂ B, we

have ∣∣∣∣ e(X, Y )
vol(X)vol(Y )

− e(A,B)
vol(A)vol(B)

∣∣∣∣ = ε
vol(A)vol(B)

vol(Xk
ij)vol(Xk

ji)vol(G)
− 10ε4

tk+1vol(B)

≥ ε

2
vol(A)vol(B)

vol(X)vol(Y )vol(G)

due to Proposition 20. Thus, (X, Y ) witnesses that (A,B) is not ε/2-volume-regular.
Now we’ll use the Lemma 19 to prove ind(Pk+1) ≥ ind(P ′) + ε3/4. So let I = (A×B) and for

all (u, v) ∈ I let

σuv =
deg(u) deg(v)
vol(A)vol(B)

and duv = %(V k+1(u), V k+1(y))

where V k+1(x) denote the partition class V k+1
i ∈ Pk+1 such that x ∈ V k+1

i . Then∑
(u,v)∈I

σuv = 1 and d =
∑

(u,v)∈I

σuvduv = %(A,B).

Moreover, let J = (X × Y ) and σJ =
∑

(u,v)∈J σuv = vol(X)vol(Y )
vol(A)vol(B) . Then we have

1
σJ

∑
(u,v)∈J

σuvduv =
vol(A)vol(B)
vol(X)vol(Y )

∑
V k+1

i ⊂A

V k+1
j ⊂B

∑
u∈V k+1

i

v∈V k+1
j

deg(u) deg(v)
vol(A)vol(B)

%(V k+1
i , V k+1

j )

=
e(X, Y )

vol(X)vol(Y )
= %(X, Y ) = %(A,B) + ν

for some |ν| ≥ ε
2

vol(A)vol(B)
vol(X)vol(Y )vol(G) due to (29).
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So from Cauchy-Schwarz-inequality (Lemma 19) we deduce∑
(u,v)∈I

σuvd
2
uv =

∑
u,v∈I

deg(u) deg(v)
vol(A)vol(B)

%2(V k+1(u), V k+1(v)) (29)

=
1

vol(A)vol(B)

∑
V k+1

i ⊂A

V k+1
j ⊂B

%2(V k+1
i , V k+1

j )vol(V k+1
i )vol(V k+1

j ) (30)

≥ %2(A,B) +
(

εvol(A)vol(B)
2vol(X)vol(Y )vol(G)

)2

× vol(X)vol(Y )
vol(A)vol(B)

(31)

≥ 1
vol(A)vol(B)

(
ind(A,B) +

ε2vol(A)vol(B)
4vol2(G)

)
. (32)

¿From (30) and (32) we infer the amount of the index increment on the irregular pair (A,B). So,
summing over all irregular pairs we get

ind(Pk+1)− ind(P ′) ≥
∑

(i,j)∈L

ε2

4
vol(A)vol(B)

vol2(G)
− ε4 ≥ ε3

4
.

ut


