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Abstract

It is shown that in the random graph Gn,p with (fixed) edge probability
p > 0, the number of edges that have to be examined in order to identify an
acyclic orientation is Θ(n log n) almost surely. For unrestricted p, an upper
bound of O(n log3 n) is established. Graphs G = (V,E) in which all edges
have to be examined are considered, as well.

1 Introduction

In this note we investigate the typical length of the following 2-person game. Given
a graph G = (V,E), in each step of the game player A (Algy) selects an edge e ∈ E
and player S (Strategist) orients e in the way he likes; the only restriction is that
S must not create a directed circuit. The game is over when the actually obtained
partial orientation of G extends to a unique acyclic orientation. The goal of A is
to locate such an orientation with as few questions as possible, while S aims at the
opposite. Assuming that both A and S play optimally, the number of questions
during the game on G is denoted by c(G).

A different but equivalent formulation of this nice game was first given by Manber
and Tompa [8], who were motivated by a problem of testing whether a given coloring
of a graph is a proper coloring. Some recent results concerning c(G) have been
obtained by Aigner, Triesch and the second author in [1], including the general
estimates

n log
n

α
−O(n) ≤ c(G) ≤ αn(log

n

α
+ 1) (1)

where n is the number of vertices, α denotes the (vertex) independence number,
and “ log ” means logarithm in base 2. Let us note that a related lower bound can
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be deduced also from one of the results of [7] stating that a graph G with degree
sequence d1, . . . , dn has at least

∏n
i=1((di + 1)!)1/(di+1) acyclic orientations. This

clearly implies that for any such G,

c(G) ≥
n∑
i=1

log
di + 1

e
.

Let Gn,p denote, as usual, the random graph on n labelled vertices with edge
probability p. (See, e.g., [6] for the model and some of its properties.) When
the edge probability p is fixed, the above inequalities determine c(Gn,p) within the
accuracy of a multiplicative factor of O(log n) (with probability that tends to 1 as n
tends to infinity). In the present note we first derive a more exact estimate, showing
that in fact O(n log n) is the correct order of magnitude, i.e., the lower bound is
tight for all (fixed) p > 0.

Theorem 1 For any fixed edge probability p > 0, the random graph G = Gn,p has
c(G) = Θ(n log n) with probability 1− o(1).

Our argument proving the above theorem supplies very little information for the
case where p(n) tends to zero as n gets large, and it remains an open problem to
analyze the exact behavior of c(Gn,p) where the edge probability p = p(n) tends to
zero as n → ∞. It may be true, however, that c(Gn,p) = O(n log n) holds for all p.
By (1), this bound, if true, would be tight for p = cn−c

′
for all admissible choices of

the constants c > 0 and 0 ≤ c′ < 1. Note that the gap between the upper and lower
bounds in (1) increases when p(n) decreases, and is a power of n when 1/p(n) is a
power of n.

The next theorem supplies a much sharper estimate for sparse random graphs.

Theorem 2 For any edge probability p = p(n), the random graph G = Gn,p has
c(G) = O(n log3 n) with probability 1− o(1).

The proofs of Theorems 1 and 2 are different, but both combine some of the
techniques used in the study of parallel comparison algorithms (see [3], [4], [2], [9])
with several new ideas. We note that the exponent of log n in Theorem 2 can
be reduced slightly below 3 at the cost of making the argument somewhat more
complicated, but—as this would not reduce the exponent to less than 2, and as we
suspect that the optimum value of the exponent is 1 actually—we do not present
the more complicated proof.

Let us recall from [1] that another challenging unsolved problem is to prove that
c(G) ≤ 1

4
n2 + o(n2) for all graphs G on n vertices. If valid, this upper bound would

be best possible in general. We also note that there is no known sequence (Gn)n>0

of graphs, where Gn has n vertices, for which the difference c(Gn) − 1
4
n2 tends to

infinity with n.
The proofs of Theorems 1 and 2 are presented in Sections 2 and 3, respectively.

The final Section 4 contains some comments on graphs G = (V,E) for which c(G) =
|E|.
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2 Fixed edge probability

In this section we prove Theorem 1. For simplicity, we denote Gn,p by G, where
p is any fixed positive edge probability. The argument is based on the following
properties that hold for G almost surely. (Here and in what follows, “almost surely”
always means “with probability that tends to 1 as n tends to infinity”. In addition,
as usual, for two positive real functions f(x) and g(x), the notation f(x) = Θ(g(x))
means “ f(x) = O(g(x)) and g(x) = O(f(x)) ”.)

1. For some function k = k(n) of order Θ(log n), any two disjoint sets of k vertices
each are joined by at least one edge.

2. There is a function k′ = k′(n) = Θ(log n) such that, for any two disjoint sets
X and Y of k′ vertices each, there is a vertex x ∈ X with at least k neighbors
in Y , where k = k(n) is a function satisfying the requirements of (1) above.

The first property is well-known, and the second one is a fairly simple consequence
of the Chernoff inequality. Indeed,the expected number of edges between X and Y
is pc2 log2 n for k′ = c log n, while the nonexistence of x ∈ X with sufficiently many
neighbors in Y would admit no more than kc log n edges; and the pair X, Y can be
chosen in at most exp(2c log2 n) different ways. Thus, choosing c sufficiently large
(here “large” also depends on the value of the edge probability p) the requirement
holds for all X and Y almost surely.

An essential step in the proof of Theorem 1 is the following “deterministic”
statement concerning linear extensions of partial orders. To fix the notation, for an
oriented acyclic digraph D = (V,A) we denote by D∗ the transitive closure of D,
i.e., D∗ = (V,A∗) is the smallest digraph in which A ⊂ A∗ and xy, yz ∈ A∗ implies
xz ∈ A∗ for all x, y, z ∈ V . Two vertices x, y ∈ V are comparable if xy ∈ A∗ or
yx ∈ A∗; for xy ∈ A∗ we also say “x is smaller than y ” or “ y is larger than x ”. A
linear extension L of D is an ordering v1v2 . . . vn of V such that i < j holds whenever
vi is smaller than vj.

In the next assertion we need not assume that the values of k and k′ are propor-
tional to log n.

Lemma 3 Suppose that the underlying undirected graph of an acyclic oriented graph
D = (V,A) of order n satisfies the properties (1) and (2) above, for some k and k′.
Then, in every linear extension L = v1v2 . . . vn of D, for every integer r between 1
and n there is a subscript i (r−2k′ < i < r+2k′) for which there are at least r−2k′

vertices smaller than vi and at least n− r − 2k′ vertices larger than vi.

Proof. Consider the set Y + = {vi | r + k′ < i ≤ r + 2k′}. By (2), there are
fewer than k′ vertices in {vj | 1 ≤ i ≤ r + k′} having at most k − 1 neighbors in
Y +. Denote by Z+ the set of vertices vj having at least k neighbors in Y +, with
j ≤ r + k′. By (2), |Z+| > r holds. For each vj ∈ Z+, the (at least) k neighbors of
vj in Y + dominate all but at most k − 1 vertices of {vi | r + 2k′ < i ≤ n}, by (1).
Thus, every vertex vj ∈ Z+ is smaller than at least k vertices in Y + and at least
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n − r − k − 2k′ vertices following Y +, i.e., vj is smaller than at least n − r − 2k′

vertices of D. Similarly, for the set Y − = {vi | r − 2k′ < i ≤ r − k′} we can find a
set Z− ⊆ {vj | r − k′ < j ≤ n} of cardinality |Z−| > n− r such that every vj ∈ Z−
is larger than k vertices of Y − and r−k−2k′ vertices preceding Y −, i.e., vj is larger
than at least r − 2k′ vertices of D. Since |Z−| + |Z+| > n, we can choose a vertex
w ∈ Z− ∩ Z+; this w = vi satisfies the requirements of the lemma. 2

We now turn to the proof of Theorem 1, locating the acyclic orientation to be
found, by applying an inductive algorithm. Let v be an arbitrary vertex of the
random graph G = Gn,p. Assuming that we have complete information about the
orientation of G− v, we are going to show that the orientations of all edges incident
to v can be determined by O(log n) questions (provided that G satisfies (1) and (2)
above).

If the orientation of G − v is not transitive, we first take its transitive closure,
denoted D∗. Let D′ = (V ′, E ′) be the subdigraph of D∗ induced by the neighbors
of v. Denoting n′ = |V ′|, let v1v2 . . . vn′ be a linear extension of D′. To find the
orientations of all edges from v to V ′, we are going to apply binary search on an
appropriately chosen restricted set V ′′ ⊆ V ′, and then complete the algorithm with
a few further questions.

As we already know, by the properties (1) and (2), Lemma 3 implies that for
every r (1 ≤ r ≤ n′) there is a vertex vi which is larger than r − 2c log n vertices of
V ′ and smaller than n′ − r − 2c log n vertices of V ′, for some appropriately chosen
constant c (we have taken k′ = c log n here; note that if G satisfies (1) and (2), so
does its induced subgraph on the neighbors of v). Define V ′′ as the set of those
i satisfying the above requirements for at least one value of r. Note that the gap
between any two consecutive members of V ′′ is smaller than 4c log n.

Now, by a binary search on V ′′ we can locate a pair vi, vj ∈ V ′′ of vertices in
log |V ′′| < log n steps, such that vi is smaller than v, v is smaller than vj, and
moreover i < j < i + 4c log n. Since i and j belong to some initial values r = ri, rj
of Lemma 3 with |ri − i| < 2c log n and |rj − j| < 2c log n, we can immediately
conclude that v is larger than at least i− 4c log n vertices of V ′, and smaller than at
least n′ − j − 4c log n vertices of V ′. Thus, with at most 12c log n further questions
we can detect all orientations between v and V ′ not known so far.

Since the number of steps involving v is less than 13c log n, the total number of
questions required for Gn,p does not exceed O(n log n). 2

3 Sparse random graphs

In this section we prove Theorem 2.
Given a graph G = (V,E), let the random strategy be the following strategy of

player A: pick a random permutation e1, e2, . . . , em of the edges of G and ask for
the orientation of the edges in this order, where the orientation of the edge ei is
probed if and only if it does not follow from the orientations of the edges e1, . . . , ei−1

(and the assumption that the orientation is acyclic). We claim that for every edge
probability p, if player A applies this strategy on the random graph G = Gn,p, then
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almost surely he will not have to ask more than O(n log3 n) questions even if he
tells the order in which he is going to ask the questions to the Strategist already at
the beginning. This clearly implies the assertion of Theorem 2. The advantage in
considering this variation of the game is that since the first player A announces his
full strategy already at the beginning, the second player S does not have to decide
step by step; instead, he can create his strategy at once, by choosing an acyclic
orientation of G.

Therefore, the version of the game we consider now is as follows. Player A
chooses a random permutation e1, e2, . . . of the edges of G = Gn,p and reports it to
the Strategist. The Strategist next chooses a linear order on the vertices of G and
orients its edges according to this order (by orienting each edge from its smaller end
to its larger end). The value of the game is the number of edges ei in the oriented
graph G that do not lie in the transitive closure of the oriented edges e1, . . . , ei−1, as
this is the number of questions A will actually have to ask. Therefore, our objective
is to prove the following.

Proposition 4 For any edge probability p and for a random ordering e1, e2, . . . of
the set of edges of the random graph Gn,p, the following holds almost surely. For
every linear order of the vertices of G and for the associated acyclic orientation of
G, the number of oriented edges ei that do not lie in the transitive closure of the
oriented edges e1, . . . , ei−1 does not exceed O(n log3 n).

Notice that the subgraph of Gn,p = (V,E) consisting of its first i randomly
chosen edges e1, . . . , ei—denoted by Gi—is simply a random graph with i edges and
n vertices. This fact plays a crucial role in our proof. It is worth noting that in
view of this fact it suffices to prove the above proposition for the case p = 1, i.e.,
for the case that G is the complete graph. However, since this does not simplify the
argument, we consider the general case G = Gn,p.

The proof relies on some of the ideas applied in the study of parallel comparison
algorithms for approximation problems (see [2], [9], [3], [4]). In particular, we need
the following known result implicit in [2] (cf. [9], [3]).

Lemma 5 There exists an absolute constant b > 0 with the following property. Let
G be a graph on n vertices in which there is at least one edge between any two disjoint
sets of q vertices each. Then, the number of edges in the transitive closure of any
acyclic orientation of G is at least

(
n
2

)
− bnq log n. 2

The next lemma can be proved by a straightforward calculation which we omit.

Lemma 6 There exists an absolute constant c so that for every i, n log n ≤ i ≤
(
n
2

)
,

if Gi is a random graph with n vertices and i edges, then the probability that Gi has
at least one edge between any two disjoint sets of (cn2 log n)/i vertices each is at
least 1− 1/nlogn. 2

Proof of Proposition 4. Throughout the proof we assume, whenever this is
needed, that n is sufficiently large. To simplify the presentation, we make no attempt
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to optimize the various multiplicative constants appearing here. Recall that for each
admissible i ≥ 1, Gi denotes the subgraph of G = Gn,p consisting of the edges
e1, . . . , ei. By Lemma 6, and since each Gi is a random graph with i edges, the
following event denoted by E occurs almost surely: for every i ≥ n log n there is an
edge of Gi between any two disjoint sets of (cn2 log n)/i vertices each.

Fix a linear order L on the vertices of G, and let EL denote the event that the
number of edges ei that do not lie in the transitive closure of the edges e1, . . . ei−1

once these are oriented according to L exceeds 32bcn log3 n, where b and c are the
constants from Lemmas 5 and 6, respectively. We next show that for each fixed
L, the conditional probability Prob[EL|E] is much smaller than 1/n!. To do so, let
us split the choice of the edges of Gn,p and the random permutation on them into
phases as follows. For each power of 2, i.e. 2j ≥ 1, phase j consists of the choice of
the edges er for all 2j ≤ r < 2j+1 of G (assuming G has at least that many edges).
An equivalent, more precise, description of the random procedure of choosing the
edges ei in the various phases is as follows. First choose the number m of edges
of G according to a binomial distribution: Prob[m = s] =

(
N
s

)
ps(1 − p)N−s, where

N =
(
n
2

)
. Next, starting with j = 0, in phase j choose 2j edges at random among

the ones not chosen so far, as long as 2j+1 − 1 ≤ m. In the last phase, the one
corresponding to the largest j for which 2j ≤ m, we choose only m− 2j + 1 random
edges. Let EL,j denote the event that during phase j the number of edges er that do
not lie in the transitive closure of the first 2j−1 oriented edges exceeds 16bcn log2 n.
Since EL is contained in the union ∪j≥0EL,j (as the number of phases is less than
2 log n), we have

Prob[EL|E] ≤
∑
j≥0

Prob[EL,j|E].

If 2j ≤ 16bcn log2 n, then clearly Prob[EL,j|E] = 0. For any larger j, observe that

Prob[EL,j|E] =
Prob[EL,j ∧ E]

Prob[E]
≤ 2Prob[EL,j ∧ E].

(Here we used the fact that Prob[E] ≥ 1/2; in fact this probability is 1 − o(1).)
However, if E happens then, by Lemma 5, the transitive closure of the graph G2j−1

(oriented according to L) contains at least
(
n
2

)
− bcn3 log2 n

2j−1
edges. If 2j − 1 ≥ n2/16,

then certainly the event EL,j will not occur, as the total number of edges which are
not in the transitive closure we consider is at most 16bcn log2 n. Otherwise, in phase
j we are choosing 2j (≤ n2/16 + 1) edges at random among the

(
n
2

)
− 2j + 1 ≥

(1 + o(1)) 7
16
n2 remaining ones, and the number of edges among those which are not

in the transitive closure of G2j−1 is at most bcn3 log2 n
2j−1

, i.e., a fraction of at most

(1 + o(1))
16bcn log2 n

7(2j − 1)
< 3bcn log2 n/2j

of the remaining edges (here we assumed that n is large enough). Therefore, the

expected number of edges chosen in the jth phase which are not in the transitive

6



closure of G2j−1 is smaller than 3bcn log2 n. By standard estimates (see, e.g., [5], Ap-
pendix A, Theorem A.12) it follows that the probability that more than 16bcn log2 n
such edges are chosen (i.e, that EL,j happens) is at most exp{−Ω(n log2 n)}. This
bounds Prob[EL,j ∧ E] and hence Prob[EL,j|E] as well, and implies that for every
fixed L, Prob[EL|E] ≤ 2 log n exp{−Ω(n log2 n)}.

To complete the proof of the proposition, observe now that the probability that
there exists a linear order L for which there are more than 32bcn log3 n edges ei that
do not lie in the transitive closure of the previous edges is at most

Prob[E] +
∑
L

Prob[EL|E] · Prob[E] ≤ o(1) + 2n! log n exp{−Ω(n log2 n)},

which tends to zero as n tends to infinity. This completes the proof of Proposition
4, and implies the assertion of Theorem 2. 2

4 Exhaustive graphs

Trivially, any (acyclic) orientation of a graph G = (V,E) can be identified by |E|
questions. Call G exhaustive if it admits nothing better than this trivial algorithm,
i.e., if c(G) = |E|. We do not know too much about the structure of exhaustive
graphs. It is observed in [1] that every bipartite graph is exhaustive, and it is also
shown there that exhaustive graphs on n vertices have at most 1

4
n2 edges (for all

n ≥ 6). Using arguments similar to those used in the proof of Theorem 2 we can show
that a random graph with n vertices and more than n log n log log n edges is almost
surely non-exhaustive. Similar techniques can be used to show that there are non-
exhaustive graphs of arbitrarily high girth. A couple of small non-exhaustive graphs
are mentioned in [1]. The next proposition exhibits a further explicit example and
answers a question raised in [1], where the authors wonder if there are line graphs
of triangle-free cubic graphs which are non-exhaustive.

Proposition 7 The line graph L(K3,3) of the complete bipartite graph K3,3 is non-
exhaustive.

Proof. If three vertices x, y, z induce a triangle in an exhaustive graph and
the orientation of precisely one edge, say x → z, is known, then the next answer
concerning the edge xy or yz is determined, namely if xy (yz) is probed next then
the answer must be x → y (y → z), for otherwise the orientation of the third edge
of the triangle were determined by the other two. For such situations we shall use
the shorthand “x → z forces x → y ” or “x → z forces y → z ” which will also
mean that the next edge asked is xy or yz, respectively.

Suppose now on the contrary that L(K3,3) is exhaustive. Assuming that the
vertex classes of K3,3 are {x1, x2, x3} and {y1, y2, y3}, we denote by vij the vertex of
L(K3,3) that represents the edge xiyj; hence, vij and vi′j′ are adjacent if and only if
i = i′ or j = j′. At the beginning we ask about the orientations of v11v12 and v13v23.
By symmetry, we may assume without loss of generality that these two orientations
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are v11 → v12 and v13 → v23. Then we ask about v21v31 and prove that either answer
will allow us to save at least one question.

Suppose first v21 → v31. Then v21 → v31 forces v21 → v11 and v11 → v12

forces v11 → v13, therefore the directed path v21 → v11 → v13 → v23 determines
the orientation of v21 → v23 and this question need not be asked. Hence, suppose
v31 → v21. Then v31 → v21 forces v31 → v11, v11 → v12 forces v11 → v13, and
v13 → v23 forces v13 → v33. Thus, the directed path v31 → v11 → v13 → v33

determines the orientation of v31 → v33. 2

We note that apart from the density-type results, so far the non-exhaustiveness
of particular graphs has been proved by ad hoc arguments. It would be interesting
to know more about the structural reasons that make a graph non-exhaustive.
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