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Abstract

We show that in any edge-coloring of the complete graph Kn on n vertices, such that each

color class forms a complete bipartite graph, there is a spanning tree of Kn no two of whose

edges have the same color. This strengthens a theorem of Graham and Pollak and verifies a

conjecture of de Caen. More generally we show that in any edge-coloring of a graph G with p

positive and q negative eigenvalues, such that each color class forms a complete bipartite graph,

there is a forest of at least max{p, q} edges no two of which have the same color. In case G is

bipartite there is always such a forest which is a matching.
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A bipartite decomposition of a graph G is an edge-coloring of G such that each color class is
the set of all edges of a complete bipartite subgraph of G. A well known theorem of Graham
and Pollak ([4], [5], see also [6], Problem 11.22 ) asserts that the number of colors in any bipartite
decomposition of Kn is at least n−1. Simple proofs of this theorem were given by Tverberg [10] and
Peck [7]. See also [1] for an extension of the result to hypergraphs. The Graham-Pollak result is,
of course, sharp, and there are many non-isomorphic bipartite decompositions of Kn using exactly
n − 1 colors. All the proofs of this result mentioned above apply some simple ideas from linear
algebra.

D. de Caen [2] conjectured that in any bipartite decomposition of Kn using n−1 colors there is
a multicolored tree, i.e., a spanning tree of Kn no two of whose edges have the same color. In this
note we prove the following stronger result.

Theorem 1 In any bipartite decomposition of Kn there is a spanning tree of Kn no two of whose

edges have the same color.

Graham and Pollak obtained their result as a special case of a more general theorem which
asserts that the number of colors in any bipartite decomposition of an arbitrary graph G is at least
the maximum of the number of positive and the number of negative eigenvalues of G. Since Kn

has n− 1 negative eigenvalues, Theorem 1 is a special case of the following more general result.

Theorem 2 Let G be a graph with p positive and q negative eigenvalues. Then in any bipartite

decomposition of G there is a forest with max{p, q} edges no two of which have the same color.

Our proof combines the interlacing inequalities for symmetric matrices with the following well
known theorem of Rado, usually called the Rado-Hall Theorem.

Theorem 3 (Rado [8],[11]) Let {Ci : i ∈ I} be a finite family of finite subsets of a vector space

and let t be an integer with 0 ≤ t ≤ |I|. Then there exists a subfamily of cardinality t which has a

linearly independent set of distinct representatives if and only if rank(∪j∈JCj) ≥ |J | − (|I| − t) for

all J ⊆ I, where rank(W ) is the dimension of the subspace spanned by W . 2

Let G be a graph with n vertices and m edges, and let B be the n by m vertex-edge incidence
matrix of G. Identifying the edges of G with the columns of B, considered as vectors over GF (2),
we see that a set of edges is linearly independent if and only if they determine a forest. Thus
the rank of a set E of edges equals n − k where k is the number of connected components of the
spanning subgraph of G with edge set E.

Proof of Theorem 2 Let {Ci : i ∈ I} be the family of color classes of a bipartite decomposition of
G. Let J be a subset of I, and let H be the spanning subgraph of G with edge set ∪i∈JCi. Suppose
that k is the number of connected components of H and let v1, v2, . . . , vk be k vertices, one from
each component of H. Let G′ be the subgraph of G induced on the set {v1, v2, . . . , vk}, and let
E′ be the set of edges of G′. The adjacency matrix of G′ is a principal submatrix of order k of
the adjacency matrix of G. By the interlacing inequalities for symmetric matrices, G′ has at least
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q − (n− k) negative eigenvalues and a least p− (n− k) positive eigenvalues. Applying the general
Graham-Pollak theorem to G′, we conclude that every bipartite decomposition of G′ requires at
least

k − n+ max{p, q} (1)

colors. Since {Ci ∩ E′ : i ∈ I − J} is a bipartite decomposition of G′,

|I| − |J | ≥ k − n+ max{p, q}.

Hence
rank(∪i∈JCi) = n− k ≥ |J | − (|I| −max{p, q}).

By Theorem 3 there is a subfamily of max{p, q} color classes having an independent set of distinct
representatives, that is a forest of max{p, q} edges each with a different color. 2

Remarks
(1) Let Gi be the complete bipartite graph with edge set Ci, and let Ti be the set of edges of a

spanning tree of Gi, (i ∈ I). Because rank(∪i∈JCi) = rank(∪i∈JTi) there is in fact a multicolored
forest with max{p, q} edges each of which belongs to some Ti.
(2) If G is the complete graph Kn, the interlacing inequalities can be avoided. This is because q

equals n − 1 and (1) equals k − 1, and the graph G′ is Kk. By the Graham-Pollak theorem every
bipartite decomposition of Kk requires at least k − 1 colors.
(3) In the case of a bipartite decomposition of Kn with exactly n − 1 colors, we showed that the

number of connected components of a spanning subgraph with edge set equal to the union of t color
classes is at most n − t. Thus a necessary condition for t edge-disjoint complete bipartite graphs
to be extendable to a bipartite decomposition of Kn with exactly n− 1 colors is that the resulting
spanning subgraph of Kn has at most n− t connected components.

If we have a bipartite decomposition of Kn with n colors, then we can find a special type of
multicolored graph with n edges. A near-tree is a connected graph with the same number of edges
as vertices whose unique cycle has odd length. A near-forest is a graph each of whose connected
components is a near-tree.

We now consider the columns of the n by m vertex-edge incidence matrix B as vectors over the
real field. Now a set F of edges of the graph G is linearly independent if and only if each connected
component of the graph GF spanned by F is a tree or a near-tree. If |F | = n, then F is linearly
independent if and only if GF is a near-forest. The rank of a set E of edges now equals n− l where
l is the number of bipartite connected components of the spanning subgraph of G with edge set E.
The linearly independent sets of edges are the independent sets of the matroid P3(G) defined on
the edges of G in [9].

Theorem 4 In any bipartite decomposition of Kn with at least n colors there is a spanning near-

forest no two of whose edges have the same color.

Proof Let {Ci : i ∈ I} be the family of color classes of a bipartite decomposition of Kn with
|I| ≥ n. Let J be a subset of I. By Rado’s theorem (with t = n) it suffices to show that the spanning
subgraph H of Kn with edge set ∪i∈JCi has at most |I| − |J | bipartite connected components. Let

3



k be the number of components of H and assume that l of them are bipartite. First suppose that
k > l. As in the proof of Theorem 2 (see Remark (2)) |I| − |J | ≥ k − 1. Hence l ≤ |I| − |J |. Now
suppose that l = k and hence all components of H are bipartite. If each component has at most
one edge, then 2|J |+ (l − |J |) = n ≤ |I| and hence |I| − |J | ≥ l. Hence we may assume that some
component has two vertices u and v which are not adjacent in H. Let w1, w2, . . . , wl−1 be l − 1
vertices one from each of the other components of H. Applying the Graham-Pollak theorem to the
complete graph Kl+1 induced on the set {u, v, w1, . . . , wl−1} we conclude that |I| − |J | ≥ l. 2

By using the interlacing inequalities and the general Graham-Pollak theorem, the following
more general result can be obtained.

Theorem 5 Let G be a graph with p positive and q negative eigenvalues. Then in any bipartite

decomposition of G with at least max{p, q}+ 1 colors, there is a graph with max{p, q}+ 1 edges no

two of which have the same color where each connected component is either a tree or a near-tree.

2

The proof of Theorem 4 can be modified to obtain a similar result on clique decompositions
of complete graphs. A clique decomposition of a graph G is an edge-coloring of G such that each
color class is the set of all edges of a complete subgraph of G. The decomposition is non-trivial if
it uses at least 2 colors. A well known inequality of Fisher ( see, e.g., [6] Problem 13.15) asserts
that the number of colors in any non-trivial clique decomposition of Kn is at least n. Combining
this with the method used in the proof of Theorem 4 one can obtain the following result, whose
detailed proof is left to the reader.

Theorem 6 In any non-trivial clique decomposition of Kn there is a spanning near-forest no two

of whose edges have the same color.

Let G be a spanning bipartite subgraph of the complete bipartite graph Kn,n with bipartition
U = {u1, . . . , un} and V = {v1, . . . , vn}. Let A be the adjacency matrix of G of order 2n and
let ρ be the rank of A. Theorem 2 asserts that in any bipartite decomposition of G there is a
multicolored forest with ρ/2 edges. We can show that in fact a stronger assertion holds; there
exists a multicolored matching with ρ/2 edges.

Without loss of generality we assume that

A =

[
O X
XT O

]

where X has order n.

Theorem 7 In any bipartite decomposition of the bipartite graph G there is a matching with r =

rank(X) edges no two of which have the same color.
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Proof A bipartite decomposition of G with c colors corresponds to a factorization X = Y Z into
(0,1)-matrices of sizes n by c and c by n, respectively. Clearly X has a nonsingular r by r submatrix.
By renumbering the vertices in V , if necessary, we may assume, without loss of generality, that
X has a nonsingular principal submatrix of order r. Hence there is a subset L of {1, 2, . . . , n} of
cardinality r such that the r by c submatrix Y [L, ∗] of Y determined by L has rank r, and the c
by r submatrix Z[∗, L] of Z determined by L has rank r. By the Cauchy-Binet theorem there is a
subset M of {1, 2, . . . , c} of cardinality r such that the matrices Y [L,M ] = [yij : i ∈ L, j ∈M ] and
Z[M,L] = [zji : j ∈M, i ∈ L] of order r are nonsingular. There exists a bijection σ : L→M such
that

∏
i∈L yiσ(i) 6= 0, and a bijection τ : M → L such that

∏
j∈M zjτ(j) 6= 0. It follows that the set

of edges {uσ−1(j), vτ(j)} with j ∈M is a multicolored matching of r edges. 2

As a special case we conclude, e.g., that in every bipartite decomposition of the complete
bipartite graph minus a perfect matching there is a perfect matching no two of whose edges have
the same color. Notice that the assertion of the last Theorem holds even if G does not have
color classes with equal cardinalities; we simply restrict the decomposition to an induced subgraph
with color classes of equal cardinality the rank of whose adjacency matrix is equal to that of the
adjacency matrix of G.

For several other results concerning bipartite decompositions of bipartite graphs see [3].
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