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Abstract. We study graph colorings avoiding periodic sequences with
large number of blocks on paths. The main problem is to decide, for
a given class of graphs F , if there are absolute constants t, k such that
any graph from the class has a t-coloring with no k identical blocks in
a row appearing on a path. The minimum t for which there is some k
with this property is called the rhythm threshold of F , denoted by t(F).
For instance, we show that the rhythm threshold of graphs of maximum
degree at most d is between (d+1)/2 and d+1. We give several general
conditions for finiteness of t(F), as well as some connections to existing
chromatic parameters. The question whether the rhythm threshold is
finite for planar graphs remains open.

1. Introduction

Let k ≥ 2 be a fixed integer. A vertex coloring f of a graph G is k-
repetitive if there is a positive integer n and a path on kn vertices v1, v2, ..., vkn

such that f(vi) = f(vi+n) = . . . = f(vi+(k−1)n) for all 1 ≤ i ≤ n. That is,
if there is at least one path in G that looks like a periodic sequence with
k blocks. Otherwise f is called k-nonrepetitive. In this case there are no k
identical blocks in a row on any path of G. This type of coloring is a graph
theoretic version of Thue sequences (see [1], [13], [14]). The minimum num-
ber of colors needed for a k-nonrepetitive coloring of G is denoted by πk(G).
Unlike for most graph coloring invariants, determining the exact value of
πk(G) is not trivial even for paths or cycles. By the results of Thue [16],
[17] (see also [6], [7], [8]) we have π2(Pn) = 3 and π3(Pn) = 2 for all n ≥ 4.
Recently it was proved by Currie [9] that π2(Cn) = 3 for all n ≥ 3, except
n = 5, 7, 9, 10, 14, 17, and by Currie and Fitzpatrick [10] that π3(Cn) = 2
for all n ≥ 3. Thus the picture is complete for graphs of maximum degree
d = 2.
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Let πk(d) denote the supremum of πk(G), where G ranges over all graphs
of maximum degree d. Extending the results of [2] we prove that there exist
absolute positive constants c1, c2 such that for all k ≥ 2

c1

k

dk/(k−1)

(log d)1/(k−1)
≤ πk(d) ≤ c2d

k/(k−1).

We also study the threshold value t = t(d), defined as the minimum num-
ber of colors guaranteeing that for some (possibly huge) k, each graph of
maximum degree d has a k-nonrepetitive coloring using at most t colors. By
the above mentioned results for paths and cycles it follows that t(2) = 2.
Curiously, this is the only known exact value of this function for d > 1. We
prove here that for every d

1
2

(d + 1) ≤ t(d) ≤ d + 1.

This concept may be studied for other classes of graphs as well. Let F
be a class of graphs. Define the rhythm threshold of F as the least number
t = t(F) for which there exists a finite number k such that each graph from
F has a k-nonrepetitive vertex coloring using at most t colors. Thus, for
every k there is a graph Gk in F such that any vertex coloring of Gk using
less than t colors is k-repetitive. The main problem is to decide whether
t(F) is finite for a given class F . The situation is especially interesting for
planar graphs. We discuss it briefly at the end of the paper.

2. Probabilistic bounds for πk(d)

In the proof of the upper bounds on πk(d) we use the following version
of the Local Lemma (see, e.g., [4]).

Lemma 1. (The Local Lemma; Multiple Version) Let A1, A2, ..., An be
events in any probability space with dependency graph D = (V,E). Let
V = V1 ∪ V2 ∪ ... ∪ Vk be a partition such that all members of each part
Vr have the same probability pr. Suppose that the maximum number of
vertices from Vs adjacent to a vertex from Vr is at most ∆rs. If there are
real numbers 0 ≤ x1, x2, ..., xk < 1 such that pr ≤ xr

∏k
s=1(1 − xs)∆rs then

Pr(
⋂n

i=1 Ai) > 0.

We also need the following simple fact, obtained by substituting x = 1/θ
in the identity

∑∞
s=1 sxs = x

(1−x)2
which follows by differentiating 1 + x +

x2 + . . . = 1
1−x , multiplying the resulting identity by x.

Fact: For every θ > 1 the series
∞∑

s=1

s
θs converges to θ/(θ − 1)2.

Theorem 1. For every k, d ≥ 2 we have πk(d) ≤
⌈
(6d)k/(k−1)

⌉
.

Proof. Let G be a graph of maximum degree d. Consider a random
coloring of the vertices of G with N =

⌈
(6d)k/(k−1)

⌉
colors. For each path
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P in G let AP be the event that the sequence of colors along P is periodic
and consists of k identical blocks. Let Vr be the set of all events AP with P
having kr vertices. Clearly we have pr = N−r(k−1).

Now define a dependency graph so that AP is adjacent to AQ iff the paths
P and Q have a common vertex. Since a fixed path with kr vertices intersects
at most k2rsdks paths with ks vertices in G, we may take ∆rs = k2rsdks.
Next set xs = (5d)−ks. Since (1− xs) ≥ e−kxs we get

xr

∏
s

(1− xs)∆rs ≥ (5d)−kr
∏
s

e−kxs∆rs .

Substituting for xs and ∆rs in the last expression gives

(5d)−kr
∏
s

e−k(5d)−ksk2rsdks
> (5d)−kr exp

(
−(kr)

∞∑
s=1

k2s

5ks

)
.

By the above fact, the series
∞∑

s=1

k2s
5ks converges to (k25k)/(5k−1)2. Therefore

we obtain

xr

∏
s

(1− xs)∆rs > (5e(k25k)/(5k−1)2d)−kr > (6d)−kr ≥ pr.

and by Lemma 1 the proof is complete.

Theorem 2. There is an absolute constant c > 0 such that for every
k, d ≥ 2 we have πk(d) ≥ c

k
dk/(k−1)

(log d)1/(k−1) .

Proof. As this is not crucial for the proof, we omit all floor and ceiling
signs. Clearly it suffices to prove the assertion for large values of d. Let k ≥ 2

be a fixed integer. Put p = p(n, k) = (36k2)1/k
(

log n
n

)1/k
, assume n is large,

and let G = G(n, p) be the random graph on the set of n labelled vertices
{1, 2, . . . , n} obtained by picking each pair of distinct vertices, randomly
and independently, to be an edge with probability p. We claim that almost
surely (that is, with probability that tends to 1 as n tends to infinity) G
satisfies the following properties.

(1) The maximum degree ∆ = ∆(G) of G, is at most 20n(k−1)/k(log n)1/k.

(2) Let m = n
2k and let U be any subset of n/2 vertices of G arranged in

a k × m matrix U = (uij), 1 ≤ i ≤ k, 1 ≤ j ≤ m. Then there is a set
S ⊂ {1, ...,m}, |S| ≥ m/3, such that:
(a) The graph on the set S in which st is an edge iff uisuit is an edge of G
for all i = 1, ..., k, is connected.
(b)There is a pair of indices s, t ∈ S such that G contains the following
matching

(2.1) u1tu2s, u2tu3s, . . . , u(k−1)tuks, uktu1s.

Claim 1 is clear. To prove Claim 2 fix a set U and its order in the
matrix, and consider the graph H on the set {1, ...,m} in which st is an
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edge iff uisuit is an edge of G for all i = 1, ..., k. This is a random graph
with edge probability exactly pk = 36k2 log n

n . Assume that there is no set S
as required in 2a. This means that the set of vertices of H can be partitioned
into two disjoint sets, each of size at least m/3 and at most 2m/3, with no
edges between them. As there are less than 2m possibilities for the choice
of these disjoint sets, the probability of this event is less than

2m

(
1− 36k2 log n

n

) 2m2

9

< n−n.

Since the number of ordered sets U is less than nn/2 it follows that the
probability that there is no S satisfying the assertion of 2a is at most n−n/2.

To prove that S satisfies Claim 2b as well, with high probability, it
suffices to show that almost surely for every set S of m/3 ordered k-tuples
of vertices uij , 1 ≤ i ≤ k, j ∈ S there are s and t satisfying (2.1). Indeed,
for a fixed S, the probability that this does not hold is

(1− pk)(
m/3

2 ) = (1− 36k2 log n

n
)( 1

72
−o(1))n2/k2

< n−n/3.

Since the number of choices of such an S is less than nn/6, the desired result
follows. This completes the proof of the claim.

Returning to the proof of the theorem, let G satisfy all three properties
in the claim, and consider any vertex coloring of G by at most n

2k colors.
By omitting if necessary at most k − 1 vertices from each color class, we
are left with a set of more than n/2 vertices in which the size of each color
class is divisible by k. Let U be a subset of cardinality n/2 of this set, and
arrange its vertices in a matrix (uij), 1 ≤ i ≤ k, 1 ≤ j ≤ m = n/(2k) so
that each column of U consists of vertices of the same color. Consider a set
S ⊂ {1, ...m} satisfying the assertion in Claim 2a and 2b. Let st be the pair
satisfying 2b and let s = s1, s2, ..., sl = t be a path in H, the existence of
which is guaranteed by 2a. Then the path

u1s, u1s2 , ..., u1t, u2s, ..., u2t, u3s, ..., u(k−1)t, uks, ..., ukt

is colored repetitively, showing that πk(G) > n
2k . By the first assertion of

the claim this implies that there is an absolute constant c > 0 such that

πk(G) > c
k

(
∆k

log ∆

)1/k−1
. This, and the fact that we can take any large n in

the proof imply the assertion of the theorem.

3. The threshold function t(d)

For the upper bound of t(d) we apply again the local lemma.

Theorem 3. For every d ≥ 1 we have t(d) ≤ d + 1.

Proof. Let G be any graph of maximum degree d ≥ 2. We will show
that d + 1 colors suffice to avoid all sufficiently long periodic sequences with
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j blocks, for some integer j. Consider a random coloring of the vertices of
G with d + 1 colors. Choose positive integers j, s0 and a real θ > 1 so that

(*) 1 + 1/d ≥ θ(d + 1)1/j exp

2
∑
s≥s0

sθ−s

 .

This can always be done since the series
∑∞

s=1 sθ−s converges for each θ > 1.
For a path P ⊆ G let A(P ) denote the bad event that the sequence of colors
along P consists of j identical blocks. Set Vr = {A(P ) : P is a path with r
vertices} and set xs = (θd)−s. Since each path of length r shares a vertex
with not more than rsds paths of length s, we may take ∆rs = rsds. Finally,
we have pr ≤ (d + 1)r(1/j−1) and the local lemma applies provided

(d + 1)(1/j−1)r ≤ xr

∏
s≥s0

(1− xs)rsds
.

Since (1− xs) ≥ e−2xs we will be done by showing that

(d + 1)(1/j−1)r ≤ (θd)−r
∏
s≥s0

e−2rsθ−s
.

This follows readily by our initial choice of j, s0 and θ, as the inequality

(d + 1)1−1/j ≥ θd
∏
s≥s0

e2sθ−s

is equivalent to (*). To complete the proof note only that any coloring with-
out j identical blocks on paths of length at least s0 must be k-nonrepetitive
for k = js0.

For the lower bound of t(d) we use regular graphs of large girth.

Theorem 4. For every d ≥ 2 we have t(d) ≥ 1
2(d + 1).

Proof. Let m = bd/2c and let G = (V,E) be a d-regular graph of girth
at least 2k + 1. Given a coloring f of V by m colors {1, 2, ...,m}, partition
the set of vertices of G into m disjoint sets Vi = f−1(i), i = 1, ...,m. Since G
has at least m|V | edges, either the induced subgraph on Vi has at least |Vi|
edges for some i, or the bipartite graph consisting of all edges of G between
Va and Vb has at least |Va|+ |Vb| edges for some pair of indices a, b. In the
first case, we get a monochromatic cycle of length at least 2k + 1, and hence
a monochromatic path of length at least 2k > k. In the second case, we get
an alternating cycle of length at least 2k + 2 > 2k, and hence an alternating
path of length 2k. Thus πk(G) > m.

4. When is the rhythm threshold finite?

Let F be a class of graphs. Clearly the rhythm threshold t(F) may
be infinite. The following result of Erdős and Gallai [11], stated below as
a lemma, implies that this happens when F contains graphs of arbitrarily
large minimum (or average) degree.
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Lemma 2. (Erdős and Gallai [11]) If a graph G has n vertices and more
than (k − 2)n/2 edges then there is a path on k vertices in G.

Theorem 5. For every two integers k > 1 and r, any graph G = (V,E)
of average degree exceeding (k − 1)(2r − 1)− 1 satisfies πk(G) > r.

Proof. Let f : V 7→ {1, 2, . . . , r} be a coloring, and define Vi =
f−1(i). If the number of edges in the induced subgraph of G on Vi exceeds
(k − 2)|Vi|/2 then, by Lemma 2, it contains a path on k vertices (which is
monochromatic). Hence we may assume this is not the case. Similarly, if
the bipartite subgraph of G consisting of all its edges that connect Vi and
Vj contains more than (2k − 2)(|Vi|+ |Vj |)/2 edges, then it contains a path
of length 2k. Therefore, if G has a k-nonrepetitive r-coloring it contains at
most ((k − 1)(r − 1) + k−2

2 )|V | edges.

On the other hand, bounded degeneracy is not sufficient for finiteness
of t(F). Recall that a graph is d-degenerate if every subgraph of it contains
a vertex of degree at most d. The result below shows that the rhythm
threshold for 2-degenerate graphs is infinite.

Theorem 6. For every k and r there is a 2-degenerate graph G = G(k, r)
such that πk(G) > r.

Proof. Take the graph obtained from a large complete graph Kn by
replacing each edge by a path of length 2. In any r-coloring of G we get,
by the pigeonhole principle, a set V ′ of m ≥ n/r vertices of the same color.
Applying again the pigeonhole principle, we get at least

(
m
2

)
/r of the middle

vertices among those on the 2-paths connecting the vertices of V ′ that have
the same color. By Lemma 2 this will give us an alternating path of length
2k in case

(
m
2

)
/r > m(k − 1).

The acyclic chromatic number a(G) of a graph G is the minimum number
of colors in a proper vertex coloring of the graph in which every cycle has
at least 3 colors. Let t′(F) be the edge version of the rhythm threshold
t(F), defined exactly the same way, but for edge colorings. We show that
t(F) is finite provided t′(F) is finite and F has bounded acyclic chromatic
number. We apply the following result of [3] on homomorphisms of edge
colored graphs.

Lemma 3. (Alon and Marshall [3]) Let Fr be the family of graphs with
acyclic chromatic number at most r. Let n be an odd integer. Then there
exists a graph Hn on at most rnr−1 vertices whose edges are colored with
n colors such that any graph G ∈ Fr whose edges are n-colored embeds
homomorphically into Hn (in a color-preserving manner).

Theorem 7. If F has bounded acyclic chromatic number and t′(F) is
finite, then t(F) is finite.

Proof. Let t′(F) ≤ n, where n is odd. Let G ∈ F and let f be a k-
nonrepetitive n-coloring of the edges of G, where k is an absolute constant
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depending on F , but not on G. Let Hn be a graph from Lemma 3 and let h be
a homomorphism from the vertex set of G to the vertex set of Hn, preserving
the colors of all edges. We claim that h is a (k + 1)-nonrepetitive coloring of
the graph G (using |V (Hn)| colors). Indeed, since h is a homomorphism of
edge colored graphs, for every edge e = uv in G its color f(uv) is uniquely
determined by the colors of its ends, that is, by the values h(u) and h(v).
Hence, a vertex periodic path with k+1 blocks would give k identical blocks
on its edges, contradicting the assumption on the coloring f .

5. Another four color problem?

At present it is not known if the rhythm threshold is finite for planar
graphs. By the results of Kündgen and Pelsmajer [12], or Barát and Varjú
[5], t(F) is finite if F has bounded treewidth. This implies, by a deep
theorem of Robertson and Seymour [15], that t(F) is finite if F consists of
graphs not containing a fixed planar graph as a minor. Therefore planar
graphs form the smallest minor closed class of graphs for which the situation
is not clear.

Conjecture 1. The rhythm threshold of planar graphs is finite.

Curiously, the least possible candidate number is four. Indeed, the class
of triangular graphs (obtained iteratively from the triangle by inserting a
new vertex into a face and joining it to the three vertices of that face) shows
that three colors would not suffice. Are four colors enough to break the
rhythm on planar graphs?
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