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Abstract

Let G = (V,E) be a connected undirected graph with k vertices. Suppose that on each
vertex of the graph there is a player having an n-bit string. Each player is allowed to com-
municate with its neighbors according to a (static) agreed communication protocol, and the
players must decide, deterministically, if their inputs are all equal. What is the minimum pos-
sible total number of bits transmitted in a protocol solving this problem ? We determine this
minimum up to a lower order additive term in many cases. In particular, we show that it is
kn/2 + o(n) for any Hamiltonian k-vertex graph, and that for any 2-edge connected graph
with m edges containing no two adjacent vertices of degree exceeding 2 it is mn/2 + o(n).
The proofs combine graph theoretic ideas with tools from additive number theory.

1 The problem

Let G = (V,E) be a connected undirected graph with k vertices. Suppose that on each vertex of
the graph there is a player having an n-bit string. Each player is allowed to communicate with its
neighbors according to an agreed communication protocol, and the players must decide, determin-
istically, whether or not their inputs are all equal. This is a natural, basic communication problem,
which may also arise as an initial step of additional computational tasks, when the players want
to check that they all have copies of the same input before starting to process it. The protocols
we consider here are only those that Liang and Vaidya call static protocols in [12]. In these pro-
tocols, which player speaks and when is determined in advance, and is independent of the inputs.
It is worth noting that in more general message passing protocols, where the inputs are allowed to
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influence the origin and destination of the messages sent, there are more efficient communication
protocols. Indeed, although this fact does not appear explicitly in [10], the authors of that paper
observed that in this more flexible model it is possible to solve the equality testing problem in
the complete graph on k vertices with total communication O(nk/ log(k)), whereas in the static
model we consider here Ω(nk) is a simple lower bound. See also [9], [8] for additional variants
of the flexible model.

In a trivial protocol the players fix a rooted spanning tree of the graph, and each of them,
besides the one at the root, transmits his bits to his parent, and each one (including the root)
checks that his input is equal to those he received from each of his children. This shows that a
total communication of roughly (k− 1)n bits suffices. Somewhat surprisingly, it turns out that for
complete graphs G with at least 3 vertices one can do better. It is shown in [12] that for G = Kk

at least kn/2 bits of communication are needed, and the authors also obtain a nontrivial upper
bound (which is not tight). Brody [6] has used the graphs constructed in [3] to show that for
G = K3, 3n/2 + o(n) bits suffice, showing that the lower bound is tight in this case up to a low
order additive error term. In [3] we mentioned (without giving a detailed proof) that we can use a
hypergraph extension of the construction in [3] to show that for G = Kk the minimum possible
number of bits in a communication protocol for the above problem onG is (1+o(1))kn/2. Brody
and Håstad [6] have independently found a similar protocol, using the k-cliques of the graphs in
[3].

Here we consider the case of general graphs G, obtaining upper and lower bounds which
are nearly tight in many (but not all) cases. Our upper bounds are based on an extension of the
graphs of Ruzsa and Szemerédi [14], similar to the extension given in [1]. We also observe that
linear communication protocols cannot improve the trivial upper bound. Finally, we suggest two
competing conjectures about the possible answer for every graph.

Let f(n,G) denote the minimum number of bits transmitted in a communication protocol
solving the problem on G. It is clear that the function f(n,G) is sub-additive, and hence by
Fekete’s Lemma (see [11]) the limit of the ratio f(n,G)/n as n tends to infinity exists. Denote
this limit by f(G). The parameter f(G) is the main object of study in the present short paper.

2 Results

Recall that a graph is 2-connected if it is connected and stays connected after a removal of any
single vertex. It is 2-edge connected if it is connected even after removing any single edge. A
block of a graph is a maximal two-connected subgraph, where every bridge (an edge not contained
in a cycle) is also a block. It is well known that any graph is the edge-disjoint union of its blocks,
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and the vertices belonging to more than one block are the cut vertices of the graph. An end-block
is a block that intersects at most one other block. It is known that any connected graph contains at
least one end-block, see, e.g., [5], Section 5.2. Our first observation is the following.

Proposition 2.1 For any connected graph G with blocks G1, G2, . . . , Gs,

f(G) =
s∑

i=1

f(Gi).

For a connected graphG let c2(G) denote the minimum number of edges in a 2-edge connected
graph C obtained from G by taking all vertices of G, and some of its edges, where edges are
allowed to be taken twice. Thus, for example, for any Hamiltonian graphG on k vertices, c2(G) =

k, as shown by a Hamilton cycle C in G. For a tree G on k vertices, c2(G) = 2(k − 1), as shown
by the graph C consisting of two copies of every edge of the tree. It is easy to see that for any
graph G with k vertices c2(G) = k if and only if G is Hamiltonian. Our main upper bound for
f(G) is the following.

Theorem 2.2 For any connected graph G, f(G) ≤ 0.5c2(G)

The proof of this upper bound is the main contribution of the paper.
We proceed with the description of the (simple) lower bound. It is worth noting that this lower

bound also follows from the work in [8].

Definition 2.1 For a connected graph G let S denote the set of all cuts in G. For any edge e of
G let Se denote the set of all cuts containing e. A fractional packing of cuts in G is a function
g : S 7→ [0, 1] so that for every edge e of G,

∑
(S,S)∈Se g(S, S) ≤ 1. Let fc(G) denote the

maximum possible value of
∑

(S,S)∈S g(S, S), where the maximum is taken over all fractional
packings of cuts g.

Theorem 2.3 For any connected graph G = (V,E), f(G) ≥ fc(G).

Note that this implies that f(G) ≥ k/2 for any k-vertex graph, as the function assigning the
value 1/2 to all cuts determined by single vertices, that is, all cuts of the form ({v}, V − {v})
for v ∈ V , is a fractional packing of cuts. Note also that clearly if G′ is a spanning subgraph
of G then f(G′) ≥ f(G) and hence the above k/2 lower bound also follows from the fact that
f(Kk) = k/2.

By the last theorem f(G) ≥ α(G) for every G, where α(G) denotes the maximum size of an
independent set in G. Indeed, all the cuts ({v}, V − {v}) as v ranges over all vertices in such an
independent set are pairwise disjoint, and hence the function assigning to each of them the value
1 is a fractional packing of cuts.

The two theorems above suffice to determine f(G) in many cases.
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Corollary 2.4

1. For any Hamiltonian graph G with k vertices f(G) = k/2.

2. For any complete bipartite graph G = Ks,t with t ≥ s ≥ 1, f(G) = t.

3. For any 2-edge connected graph G in which no two vertices of degree bigger than 2 are
adjacent, f(G) is exactly half the number of edges of G.

A communication protocol is called linear if any bit it transmits is a linear combination of
the input bits (and the bits received already). For simplicity we consider only linear combinations
over Z2, but the (simple) result that follows can be easily extended to all finite fields.

Proposition 2.5 For any connected graph G on k vertices, any linear protocol for solving the
equality problem requires communication of at least (k − 1)n bits.

3 Proofs

3.1 Overview of the main proof

The main technical contribution of this paper is Theorem 2.2 that provides an upper bound for
f(G) which is tight in many cases. The proof is based on a construction, described in Lemma 3.3,
which may be interesting in its own. In this lemma it is shown that for any fixed 2-connected graph
H there is an m-vertex graph F consisting of m2−o(1) pairwise edge disjoint copies of H (called
special copies) so that each edge of F is contained in a unique special copy. It is not difficult to
see that such a construction does not exist without the 2-connectivity assumption. This extends
the construction of Ruzsa and Szemerédi in [14], see also [1].

The proof of the lemma combines the classical theorem of Whitney on the structure of 2-
connected graphs with a well known extension of the classical construction of Behrend of dense
sets with no 3-term arithmetic progressions.

In the Equality protocol for the main case of a 2-connected graph H , we first direct the edges
of H such that every vertex has a non-zero indegree. The parameter m is chosen so that m2−o(1)

is roughly 2n. The input of each player can now be mapped to one of the special copies of H in
F . The protocol proceeds by sending only logm bits for each edge of H to the player residing
in the vertex to which the edge is incoming. This player checks two properties. First, that the
edge is indeed an edge in F , and second, that this edge appears in the copy of H identified by his
input. If any of this local check fails, the protocol outputs NOT-equal. If all these local checks go
through, this means thatH is a special copy in F such that it has at least one edge in common with
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the special copy of H that each player sees. By the property of F , in this case all the copies of
the players must be the same. Hence, the local checks ensure the global consistency. The details
require some work, and are described in what follows.

Applications of similar techniques in related contexts

Tools from additive number theory, and in particular the Behrend construction of dense sets of
integers with no 3-term arithmetic progressions and its variants, have found several applications
in the study of communication problems. An early application appears in [7], where the authors
describe an efficient multi-party communication protocol in the “number on the forehead model”,
for deciding if the sum of inputs of a set of players has a prescribed value. Another upper bound
for a communication game obtained by a variant of the Behrend construction appears in [13]. This
communication game arises in the study of time-space tradeoffs for oblivious branching programs
for element distinctness. Yet another example based on some extensions by Ruzsa of the Behrend
construction appear in [2], in the study of parent identifying codes. Finally, the graphs in [3] have
been applied in the study of radio networks (besides their application to the problem considered
here for the complete graph). Their construction also relies on a certain Behrend-type construction.

Although the number theoretic constructions in all these works are similar to each other, the
proof of our main result here is very different from those of all the other results above in the way it
combines the graph theoretic tools, and in particular, Whitney’s classical Theorem on the so called
ear decomposition of graphs, with the arithmetic construction.

3.2 Preliminaries

We start with the simple proofs of Propositions 2.1 and 2.5

Proof of Proposition 2.1: We apply induction on the number of blocks s. For s = 1 there is
nothing to prove. Assuming the result holds for s− 1 we prove it for s, s ≥ 2. Let G,G1, . . . , Gs

be as in the proposition, and assume, without loss of generality, that Gs is an end-block. Let v be
the unique cut-vertex in Gs and let G′ be the graph obtained from G by removing all vertices of
Gs besides v. Thus G′ has s− 1 blocks G1, G2, . . . , Gs−1.

To show that f(G) ≤
∑s

i=1 f(Gi) observe that one can first apply the best protocol for solving
the problem in Gs. If all vertices of Gs have the same bit string as v, we can now apply the best
protocol for G′ to complete the required task, thus establishing the upper bound.

To prove the lower bound consider the best protocol for solving the problem for G. By con-
sidering its behavior only on inputs of length n in which all vertices of Gs have equal inputs we
conclude that the number of bits transmitted by this protocol along edges ofG′ is at least f(n,G′).
Similarly, by considering the scenarios in which all vertices of G′ have the same strings we con-
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clude that the number of bits transmitted along edges of Gs is at least f(n,Gs). This establishes
the lower bound, completing the proof. 2

Proof of Proposition 2.5: Consider a linear protocol for the problem, and suppose it transmits
m bits. Each bit is a linear combination of the nk bits representing the inputs of the k vertices.
For each such combination, define a linear equation equating it to zero. The set of all these m
equations is a homogeneous system of m linear equations in kn variables. If m < (k − 1)n then
the dimension of the solution space is bigger than n. However, the dimension of the space of all
inputs in which all strings are equal is n, hence there is a solution, call it s, in which not all input
strings are equal. Note that if each input string is the 0 vector, then all bits transmitted are 0, and
the protocol must accept. Therefore, it must also accept the input s, as with this input all bits
transmitted are also zero. But this means that the protocol errs on the input s, showing that a total
communication of less than (k − 1)n is impossible in the linear case, as needed. 2

3.3 The upper bound

In this section we prove Theorem 2.2. We need several lemmas, the first one is a known ex-
tension of the construction of Behrend in [4] of dense sets of integers with no 3-term arithmetic
progressions.

A linear equation with integer coefficients

∑
aixi = 0 (1)

in the unknowns xi is homogeneous if
∑
ai = 0. If X ⊆M = {1, 2, . . . ,m}, we say that X has

no non-trivial solution to (1), if whenever xi ∈ X and
∑
aixi = 0, it follows that all xi are equal.

Thus, for example, X has no nontrivial solution to the equation x1 − 2x2 + x3 = 0 iff it contains
no three-term arithmetic progression.

Lemma 3.1 (see, e.g., [1], Lemma 3.1) For every fixed integer k ≥ 2 and every positive integer
m, there exists a subset X ⊂M = {1, 2, . . . ,m} of size at least

|X| ≥ m

e10
√
logm log k

with no non-trivial solution to the equation

x1 + x2 + . . .+ xk = kxk+1. (2)

Note that if there is no nontrivial solution for the above equation there is also no non-trivial solution
for each of the equations x1 + x2 + . . . + xr = rxr+1 for r ≤ k, since a non-trivial solution of
that together with xr+1 = xr+2 = . . . = xk = xk+1 yields a non-trivial solution of (2).
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V1 V2 V3 V4

Figure 1: The blue cycle is special copy of C4, while the red one is not

We also need a basic result on 2-connected graphs, first proved by Whitney [16]. An ear of
an undirected graph G is a path P where the two endpoints of the path may coincide, but where
otherwise no repetition of edges or vertices is allowed. A proper ear decomposition of G is a
partition of its set of edges into a sequence of ears, such that the first ear is a cycle, the two
endpoints of any other ear are distinct and belong to earlier ears in the sequence and the internal
vertices of each ear (if any) do not belong to any earlier ear. The following result was first proved
by Whitney (it is also an easy consequence of Menger’s Theorem.)

Lemma 3.2 (Whitney [16]) A graph G is 2-connected if and only if it has a proper ear decom-
position.

Let H be a graph with k vertices {v1, v2, . . . , vk}. Let F be a k-partite graph with classes of
vertices V1, V2, . . . , Vk. A copy of H in F is called a special copy if for each 1 ≤ i ≤ k the vertex
playing the role of vi belongs to Vi, see Figure 1. Call F a faithful host for H if the set of its
edges is the edge-disjoint union of special copies of H , and F contains no other special copy of H
besides the |E(F )|/|E(H)| copies defining its set of edges. See for example Figure 2, it contains
three cycles: red, blue and green, but it is not a faithful host since the set of nodes V11, V22, V33 is
another special copy of C3. The following lemma is a crucial ingredient in the proof of Theorem
2.2. The special case when H is a cycle is proved in [1].

Lemma 3.3 Let H be a 2-connected graph with k vertices, and let m be a positive integer. Then
there is a faithful host F for H with classes of vertices V1, . . . , Vk, each of size km, containing at
least

m2

e10
√
logm log k
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V11

V12

V13

V21

V22

V23

V31

V32

V33

Figure 2: The above is not a faithful host for C3

special copies of H .

Proof: By Lemma 3.2 there is a proper ear decomposition of H . Fix such a decomposition, and
denote the ears in it by P1, P2, . . . , Ps, in order, where P1 is a cycle and each Pj for j > 1 is
a path whose endpoints lie on vertices of earlier ears. Define a numbering of the vertices of H
as follows. The vertices of the cycle P1 are numbered v1, v2, . . . , vt, according to their order on
the cycle. Assuming we have already numbered all vertices in the first p ears by v1, v2, v3 . . . , v`,
consider the next ear Pp+1. If it contains no internal vertices there is no new vertex in it that
should be numbered. Otherwise, suppose the endpoints of this ear are vi and vj , where i < j,
and suppose it has q internal vertices. Then this ear is a path of length q + 1 from vi to vj and its
vertices are numbered so that the vertices of the path are vj , v`+1, v`+2, . . . , v`+q, vi in this order.
See for example Figure 3

Let X ⊂ {1, 2, . . . ,m} be as in Lemma 3.1. The host graph F is defined as follows. Its vertex
classes are the classes V1, V2, . . . , Vk, where each Vi is of size km (the first classes can be smaller,
but this is not essential for our purpose here, hence we prefer the more symmetric description as
above).

With slight abuse of notation denote the vertices of each set Vi by {1, 2, . . . , km} but recall
that these sets are pairwise disjoint. The graph F contains m|X| special copies of H defined as
follows. For each integer y, 1 ≤ y ≤ m and each x ∈ X , there is a special copy of H in F ,
which we denote by Hx,y, in which y + (i − 1)x ∈ Vi is the vertex playing the role of vi (for
all 1 ≤ i ≤ k). It is easy to see that all these special copies are pairwise edge disjoint. In fact,
these copies satisfy a stronger property: no two of them share two vertices, since the values of
y + (i− 1)x for two distinct indices i determine uniquely x and y.

It remains to prove that the only special copies of H in F are the copies Hx,y used in its
definition. Let H ′ be such a special copy. Then it contains an edge between V1 and V2 which
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v1

v2

v4

v8

v3

v7

v5

v6

Figure 3: An ear decomposition of H and its numbering. The first ear is red, the second is green
and the third is blue.

connects y ∈ V1 to y + x ∈ V2, where 1 ≤ y ≤ m and x ∈ X . Let u1, u2, . . . , uk be the
vertices of H ′, where ui ∈ Vi for all i. Note that we denote the vertices of H ′ by ui, whereas the
vertices vi denote those of H . The special copy H ′ is isomorphic to H , where the isomorphism
maps ui to vi for each i. Our objective is to prove that ui = y + (i − 1)x for all i. To do so
we show, by induction on p, that this holds for each of the vertices ui ∈ V (H ′) where ui plays
the role of vi ∈ V (H) and vi belongs to the union of the vertices in the first p ears in the ear
decomposition of H . The first ear, P1, is a cycle on the vertices v1, v2, . . . , vt. By the construction
of F there are x1 = x, x2, . . . , xt ∈ X so that ui+1 − ui = xi for all 1 ≤ i ≤ t − 1 and
ut − u1 = (t− 1)xt. Indeed the construction of F ensures that for every edge u′u′′ connecting a
vertex u′ ∈ Vi and a vertex u′′ ∈ Vj , the difference u′′−u′ is (j− i)x for some x ∈ X . Therefore
x1 +x2 + . . .+xt−1 = (t−1)xt. Since t ≤ k, the property of the set X implies that xi = x1 = x

for all 1 ≤ i ≤ t, establishing the required beginning of the induction. Assuming the induction
claim holds for the vertices in the first p ears, consider the next ear Pp+1. If it contains no internal
vertices there is nothing to prove, hence assume it contains q internal vertices. Let the ear Pp+1

be vj , v`+1, v`+2, . . . , v`+q, vi, where i < j. By the induction hypothesis ui = y + (i − 1)x and
uj = y + (j − 1)x. By the construction of F there are x1, x2, . . . , xq+1 ∈ X so that u`+1 − uj =

(`+ 1− j)x1, u`+i+1 − u`+i = xi+1 for 1 ≤ i ≤ q − 1, and u`+q − ui = (`+ q − i)xq+1. Since

(uj − ui) + (u`+1 − uj) + (u`+2 − u`+1) + . . .+ (u`+q − u`+q−1) = u`+q − ui

we conclude that

(j − i)x+ (`+ 1− j)x1 + x2 + . . .+ xq = (`+ q − i)xq+1.
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As `+ q− i ≤ k the property of X implies that x = x1 = x2 = . . . = xq+1 completing the proof
of the induction and implying the assertion of the lemma. 2

Proof of Theorem 2.2: Let G′ be a two edge-connected graph with c2(G) edges obtained from
G as in the definition of c2(G). Thus, the set of vertices of G′ is equal to that of G, and each of its
edges is an edge of G, where some edges may be taken twice. In addition, G′ is 2-edge connected
and has the minimum possible number of edges among all graphs as above. By the minimality,
the only edges of G′ that appear twice are the ones not contained in any cycle of length at least 3

of G′, that is, these are bridges of (the underlying subgraph of) G′. We have to show that f(G′) is
at most half the number of edges of G′.

By Proposition 2.1 it suffices to prove it for all blocks of G′, where for blocks consisting
of a single edge (taken twice) this is trivial, as obviously f(K2) = 1. Every nontrivial block
of G′ is 2-connected, and it thus suffices to show that for any 2-connected graph H = (V,E),
f(H) ≤ 0.5|E|.

Let k denote the number of vertices of H . For a given (large) integer n, let m be the smallest
integer so that

m2

e10
√
logm log k

≥ 2n.

Thus
log2m = 0.5n+O(

√
n log k)

and
dlog2(km)e = 0.5n+O(

√
n log k) +O(log k) = (0.5 + o(1))n.

Fix a numbering v1, v2, . . . , vk of the vertices of H according to the proof of Lemma 3.3, and let
F be a faithful host for H , with classes of vertices V1, V2, . . . , Vk, containing at least 2n special
copies of H . Fix 2n special copies. The input strings are now represented by special copies of
H in F . Orient the edges of H so that the indegree of every vertex is positive. This is possible,
since H is 2-connected. Indeed, using an ear decomposition of H we can orient the initial cycle
cyclically and then orient each ear as a directed path.

For each special copy H ′ of H , let ui ∈ V (H ′) denote the vertex playing the role of vi ∈
V (H). The player Pi residing at the vertex vi of H transmits the identity of the vertex ui in the
special copy of H representing his input to all players Pj so that there is an edge of H oriented
from vi to vj . Note that this amounts to a total transmission of

dlog2(km)e|E(H)| = (0.5 + o(1))|E|n

bits. In addition, each player observes if the identities of the vertices he received from his in-
neighbors are indeed consistent with the ones in his copy, and reports about this to his out-
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neighbors (this amounts to another single bit per edge). If there is some inconsistency, this in-
formation reaches some player who reports that the inputs are not all equal. If everything is
consistent, the players report that all inputs are equal.

It is clear that if all inputs are equal then the players report so. To complete the proof we show
that if they report that the inputs are all equal, this is indeed the case. For every i let ui be the
identity of the vertex in Vi reported by i to his out-neighbors. Let the special copies of the players
beH1, H2, . . . ,Hk, whereHi is the copy of the player Pi. If (vj , vi) is an edge ofH oriented from
vj to vi, and vi who gets the identity of the vertex uj ∈ Vj from the player Pj , finds it consistent
with his copy, then the edge ujui belongs to the special copy Hi of Pi. Therefore, if no player
reports an inconsistency, then the subgraph of F on the vertices u1, u2, . . . , uk is a special copy
of H in F . However, since F is a faithful host for H this copy must be one of the original special
copies of H in F , and as it contains an edge of each Hi (as the indegree of each vertex is positive)
this special copy must be equal to Hi for all i, showing that indeed all these copies are equal. This
completes the proof. 2

3.4 The lower bound

As mentioned in Section 2 the assertion of Theorem 2.3 follows from the results of [8]. For
completeness we include a short proof.

Proof of Theorem 2.3: Consider a deterministic communication protocol that solves the equal-
ity problem for inputs with n bits on G = (V,E). For each edge e ∈ E, let b(e) denote the
number of bits transmitted during the protocol along e. We claim that for every cut (S, S) in G∑

e∈(S,S) b(e) ≥ n. Indeed, otherwise there are two distinct strings of length n, x and y, so that
the communication along the edges of the cut is identical when all inputs are x and when all inputs
are y. But in that case it is easy to see that the protocol behaves identically when all inputs are x,
when all inputs are y, and also when all vertices of S have input x and all those in S have input y
(and vice versa). Thus the protocol cannot behave correctly, proving the claim.

By the claim it follows that a lower bound for f(n,G) is the solution of the following linear
program:

Minimize
∑
e

b(e) subject to the constraints (3)

b(e) ≥ 0 for all e ∈ E and∑
e∈(S,S)

b(e) ≥ n for every cut (S, S) ∈ S,

where S is the set of all cuts of G.
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The dual of this program is:

Maximize n ·
∑

(S,S)∈S g(S, S) subject to the constraints

g(S, S) ≥ 0 for all (S, S) ∈ S and
∑

(S,S),e∈(S,S) g(S, S) ≤ 1 for every edge e ∈ E.

This last maximum is exactly n · fc(G), completing the proof. 2

Proof of Corollary 2.4:

1. By Theorem 2.3 and the paragraph following its statement f(G) ≥ k/2 for any k-vertex
graph G. By Theorem 2.2, for the cycle Ck on k vertices f(Ck) ≤ k/2. The desired result
follows since if G′ is a spanning subgraph of G then clearly f(G) ≤ f(G′).

2. For any tree T on k vertices f(T ) = k − 1 (for example, by Proposition 2.1). This implies
the result for s = 1. For larger s the lower bound follows from Theorem 2.3 by the fact
that for any graph G with independence number α = α(G), fc(G) ≥ α as the α cuts
(v, V (G)−{v}) for v in a maximum independent set are pairwise edge disjoint. The upper
bound follows from Theorem 2.2 by considering a spanning subgraph ofKs,t consisting of a
cycle of length 2s together with two of the edges incident with any vertex ofKs,t uncovered
by the cycle.

3. The upper bound follows from Theorem 2.2. To prove the lower bound note that G is
the edge disjoint union of induced paths, each of length at least 2. For each such path
v1, v2, . . . , vs in which all internal vertices are of degree 2 in G, consider the cuts (vi, V −
{vi}) for all 1 < i < s, and the cut

({v2, v3 . . . , vs−1}, V − {v2, v3 . . . , vs−1})

(if s = 3 we take the same cut twice). This is a collection of |E(G)| cuts covering each edge
exactly twice, hence fc(G) ≥ |E(G)|/2, as shown by giving each of these cuts weight 1/2.
This completes the proof. 2

4 Open problems

• Is f(G) = 0.5c2(G) for any connected graph G ?

• If not, is f(G) = fc(G) for any connected graph G ? As pointed out by L. Esperet, it is
known that the ratio between 0.5c2(G) and fc(G) is at most 4/3 for any connected graph
G, see [15], Theorem 11.
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• Is it true that for a graphG on k vertices f(G) = k/2 if and only ifG is Hamiltonian? (Note
that if this is the case, then the computational problem of computing f(G) for a given input
graph G is NP-hard.)

• It is not difficult to show that for any d-regular graph G on k vertices which is also d-edge
connected, fc(G) = k/2. Indeed, as mentioned in the paragraph following the statement of
Theorem 2.3, fc(G) ≥ k/2 for any k vertex graph. To prove the upper bound note that for
any d-regular d edge-connected graph G = (V,E), the function b(e) = n/d for every edge
e ∈ E is a solution of the linear program (3).

Thus, for any such G the lower bound for f(G) provided by Theorem 2.3 is k/2 whereas if
it is not Hamiltonian the upper bound provided by Theorem 2.2 is strictly larger.

A specific interesting example is the Petersen graph P which is 3-regular, 3-connected and
non-Hamiltonian. Indeed c2(P ) = 11 and fc(G) = 5, implying that

5 ≤ f(P ) ≤ 5.5

What is f(P ) ?
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