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Abstract

We give a very simple new proof of the celebrated intersection theorem
of D. K. Ray-Chaudhuri and R. M. Wilson. The new proof yields a
generalization to nonuniform set systems. Let

N(n, s, r) =

(
n

s

)
+

(
n

s− 1

)
+ · · ·+

(
n

s− r + 1

)
.

Generalized Ray-Chaudhuri – Wilson Theorem. Let K = {k1, . . . , kr},
L = {l1, . . . , ls}, and assume ki > s − r for all i. Let F be a family of
subsets of an n-element set. Suppose that |F | ∈ K for each F ∈ F ; and
|E∩F | ∈ L for each pair of distinct sets E,F ∈ F . Then |F| ≤ N(n, s, r).

The proof easily generalizes to equicardinal geometric semilattices. As a
particular case we obtain the q-analogue (subspace version) of this result,
thus extending a result of P. Frankl and R. L. Graham. – A modular
version of the Ray-Chaudhuri – Wilson Theorem was found by P. Frankl
and R. M. Wilson. We generalize this result to nonuniform set systems:

Generalized Frankl – Wilson Theorem. Let p be a prime and K,L two
disjoint subsets of {0, 1, . . . , p − 1}. Let |K| = r, |L| = s, and assume
r(s − r + 1) ≤ p − 1 and n ≥ s + kr, where kr is the maximal element
of K. Let F be a family of subsets of an n-element set. Suppose that
|F | ∈ K + pZ for each F ∈ F ; and |E ∩ F | ∈ L + pZ for each pair of
distinct sets E,F ∈ F (where pZ denotes the set of multiples of p). Then
|F| ≤ N(n, s, r).

Our proofs operate on spaces of multilinear polynomials and borrow
ideas from a paper by A. Blokhuis on 2-distance sets.

1. Introduction.

Let F be a family of subsets of an n-element set, and let L be a set of non-
negative integers. F is k-uniform if |A| = k for each A ∈ F . We say that F
is L-intersecting if |A ∩ B| ∈ L for every pair of distinct members A,B of F .
The following fundamental result was proved by D. K. Ray-Chaudhuri and R.
M. Wilson.

Theorem 1.1 (Ray-Chaudhuri – Wilson [17]). If F is a k-uniform, L-intersecting
family of subsets of a set of n elements, where |L| = s, then |F| ≤

(
n
s

)
.

In terms of the parameters n and s, this inequality is best possible, as shown
by the set of all s-subsets of an n-set. (L = {0, 1, . . . , s− 1}.)

In [10], P. Frankl and R. ults) the following modular version of Theorem
1.1. For sets A,B ⊆ Z (where Z is the set of integers), we use the notation
A+B = {a+ b : a ∈ A, b ∈ B} and pA = {pa : a ∈ A}.
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Theorem 1.2 (Frankl – Wilson [10]). Let L be a set of s integers and p a prime
number. Assume F is a k-uniform family of subsets of a set of n elements such
that

(i) k 6∈ L+ pZ;

(ii) |E ∩ F | ∈ L+ pZ for every pair of distinct members A,B ∈ F .

Then

|F| ≤
(
n

s

)
.

The same example as above shows that this result is also best possible in terms
of the parameters n and s. Another important result that appears in the same
paper by Frankl and Wilson is the following nonuniform version of the Ray-
Chaudhuri – Wilson inequality.

Theorem 1.3 (Frankl – Wilson [10]). If F is an L-intersecting family of subsets
of a set of n elements, where |L| = s, then

|F| ≤
(
n

s

)
+
(

n

s− 1

)
+ · · ·+

(
n

0

)
.

This result is again best possible in terms of the parameters n and s, as shown
by the family of all subsets of size ≤ s of an n-set.

The original proofs of Theorems 1.1 – 1.3 employ the method of higher
incidence matrices (cf. [3], Chapter 6). A far reaching generalization of those
ideas is given by Godsil [11]. We use a different approach, inspired by a technique
introduced by Koornwinder [12], Delsarte, Goethals, Seidel [7], and Larman,
Rogers, and Seidel [13], as refined by Blokhuis [5], [6] (see also [4]) in the study
of 2-distance sets in Euclidean spaces.

We show that this approach, which employs linear spaces of multivariate
polynomials, yields a strikingly simple proof of the Ray-Chaudhuri – Wilson
inequality (Theorem 1.1) along with a generalization where the condition of
uniformity is replaced by the condition that the members of the set system have
r different sizes.

Theorem 1.4. Let K = {k1, . . . , kr} and L = {l1, . . . , ls} be two sets of
non-negative integers and assume that ki > s − r for every i. Let F be an
L-intersecting family of subsets of a set of n elements. Assume that the size of
every member of F belongs to K. Then

|F| ≤
(
n

s

)
+
(

n

s− 1

)
+ · · ·+

(
n

s− r + 1

)
.
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Here we agree that
(
a
b

)
= 0 for all b < 0. Notice that this theorem is a common

generalization of Theorems 1.1 and 1.3. Moreover, it is best possible in terms
of the parameters n, r, and s, as shown by the set of all subsets of an n-set with
cardinalities at least s− r + 1 and at most s.

The second main result of this paper generalizes the Frankl – Wilson inequal-
ity (Theorem 1.2) in two different ways. First of all, the uniformity condition is
relaxed and only the mod p residue classes of the sizes of the sets are taken into
account; and second, we allow the set sizes to belong to more than one residue
class.

Theorem 1.5. Let p be a prime andK,L two disjoint subsets of {0, 1, . . . , p−1}.
Let |K| = r, |L| = s, and assume r(s− r+ 1) ≤ p− 1 and n ≥ s+ kr, where kr
is the maximal element of K.

Let F be a family of subsets of an n-element set. Suppose that

(i) |F | ∈ K + pZ for each F ∈ F ;

(ii) |E ∩ F | ∈ L+ pZ for each pair of distinct sets E,F ∈ F .

Then

|F| ≤
(
n

s

)
+
(

n

s− 1

)
+ · · ·+

(
n

s− r + 1

)
.

Note that already for r = 1 this result provides a nonuniform generalization of
Theorem 1.2, giving the same (tight) upper bound

(
n
s

)
. For r ≥ 2, however, our

result does not seem satisfactory since we do not know set systems attaining
the upper bound. (The difference between the situations here and in Theorem
1.4 is mainly due to the restriction in Theorem 1.5 that K ∩ L = ∅.)

Let now q be a prime power and Fq the field of order q. By a q-analogue of
an intersection theorem we mean an analogous result with subspaces of a linear
space over Fq being the members of the family F . The following q-analogue of
the Ray-Chaudhuri – Wilson Theorem was proved by Frankl and Graham:

Theorem 1.6 (Frankl and Graham [9]). Let q be a prime power and V an
n-dimensional space over Fq. Let L be a set of s non-negative integers and
F a family of k-dimensional subspaces of V such that the dimension of the
intersection of any two distinct members of F belongs to L. Then

|F| ≤
[
n
s

]
q

.
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Here the q-gaussian coefficient[
n
i

]
q

=
(qn − 1)(qn−1 − 1) · · · (qn−i+1 − 1)

(qi − 1)(qi−1 − 1) · · · (q − 1)

denotes the number of subspaces of dimension i in V .
Frankl and Graham [9] actually prove a remarkable modular extension of

Theorem 1.6 in the spirit of the Frankl – Wilson Theorem: the dimensions of the
the intersections of the subspaces they consider are only required to belong to a
given set of residue classes modulo an arbitrary given integer b (not necessarily
prime). Like its predecessors, the paper of Frankl and Graham operates on
higher incidence matrices.

While we are unable to reproduce the modular result of Frankl and Gra-
ham, Theorem 1.7 below generalizes the basic (non-modular) case in a different
direction, extending the validity of Theorem 1.4 to quite general circumstances
which include Theorem 1.6 as a particular case.

By a semilattice Ψ we shall mean finite meet-semilattice, with ∧ denoting
the operation. A semilattice has a 0 element (the intersection of all elements).
Borrowing from geometric terminology, we shall call the elements of Ψ flats, and
the minimal elements points. A set S ⊆ Ψ is bounded if there exists a flat U ∈ Ψ
such that s ≤ U for each s ∈ S. In such a case, the set S has a least upper
bound (the meet of all upper bounds), which we denote by

∨
S = s1 ∨ . . . ∨ sk

where S = {s1, . . . , sk}. For any U ∈ Ψ, the principal ideal {s ∈ Ψ : s ≤ U}
forms a lattice under the operations (∧,∨).

A geometric semilattice is a semilattice where all principal ideals are geomet-
ric lattices (cf. [8]). Flats thus have rank, satisfying the usual axioms. Every
flat is the join of points, and the minimum number of such points is its rank.
The cardinality of a flat U is the number of points s ≤ U .

An equicardinal geometric semilattice is a geometric semilattice where flats
of equal rank have equal cardinality.

A strongly equicardinal matroid is an equicardinal geometric lattice. (With-
out the adjective “strong”, the term would only require equicardinality of the
hyperplanes, i.e. flats of maximal rank, cf. [15].)

Standard examples of strongly equicardinal matroids are: the Boolean lattice
of all subsets of a set; the set of subspaces of a linear or a projective space; and
truncations thereof. Other examples can be constructed from t-designs. For
interesting examples of equicardinal semilattices which are not lattices, see the
Addendum section at the end of the paper.

Let Ψ be an equicardinal geometric semilattice. Let wi denote the number of
flats of rank i. In the case of the Boolean lattice of subsets of an n-element set, we
have wi =

(
n
i

)
. For the subspace lattices of n-dimensional linear and projective

spaces over the finite field Fq, the value of wi is the q-gaussian coefficient
[
n
i

]
q

.
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Theorem 1.7. Let Ψ be an equicardinal geometric semilattice with wi flats of
rank i. Let K = {k1, . . . , kr} and L = {l1, . . . , ls} be two sets of non-negative
integers and assume that ki > s − r for every i. Let F ⊆ Ψ be a family of
flats such that the rank of every member of F belongs to K and the rank of the
intersection of every pair of distinct members of F belongs to L. Then

|F| ≤ ws + ws−1 + · · ·+ ws−r+1.

(Here we agree that for negative i, wi = 0.)

This result is best possible in terms of the parameters s and r for every equicar-
dinal geometric semilattice, as the example of all flats of ranks between s−r+1
and s shows. The result includes Theorem 1.4 (Boolean case) and its q-analogues
(linear and projective spaces over Fq).

Frankl and Graham mention that their proof of Theorem 1.6 works for a class
of equicardinal matroids satisfying additional regularity constraints, including
the condition that for every i ≤ s, there exists a polynomial pi(x) of degree i
such that the number of flats of rank i contained in a flat of rank k is pi(k).

The paper is organized as follows. In Section 2 we present the basic method,
review how it is applied in [2] to prove Theorem 1.3, and show how to incor-
porate the Blokhuis idea to yield very simple proofs of the Ray-Chaudhuri –
Wilson Theorem (Theorem 1.1) and its generalization, Theorem 1.4. In Section
3 we discuss modular variants. We present an inclusion-exclusion lemma and
establish the Generalized Frankl – Wilson Theorem (Theorem 1.5). In Section
4 we derive the result on equicardinal geometric semilattices (Theorem 1.7). We
mention some open problems in Section 5.

As a general reference on the subject, we mention [3].

2. Sets with few intersection sizes

We start with the short proof of Theorem 1.3. Let L = {l1, . . . , ls}, [n] =
{1, . . . , n} and F = {A1, . . . , Am}, where Ai ⊆ [n] and |A1| ≤ . . . ≤ |Am|. With
each set Ai we associate its characteristic vector vi = (vi1, . . . , vin) ∈ Rn, where
vij = 1 if j ∈ Ai and vij = 0 otherwise.

For x, y ∈ Rn, let x · y =
∑n
i=1xiyi denote their standard inner product.

Clearly vi · vj = |Ai ∩Aj|.

For i = 1, . . . ,m, let us define the polynomial fi in n variables as follows:

fi(x) =
∏
k

lk<|Ai|

(vi · x− lk) (x ∈ Rn). (1)

Clearly
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fi(vi) 6= 0 for 1 ≤ i ≤ m, (2)

and

fi(vj) = 0 for 1 ≤ j < i ≤ m. (3)

Recall that a polynomial in n variables is multilinear if its degree in each variable
is at most 1. Let us restrict the domain of the polynomials fi above to the n-
cube Ω = {0, 1}n ⊂ Rn. Since in this domain x2

i = xi for each variable, every
polynomial is, in fact, multilinear: simply expand it as a sum of monomials
and, for each monomial, reduce the exponent of each variable occurring in the
monomial to 1.

We claim that the polynomials f1, . . . , fm as functions from Ω to R, are
linearly independent. Indeed, assume this is false and let

∑m
i=1λifi(x) = 0 be a

nontrivial linear relation, where λi ∈ R. Let i0 be the smallest subscript such
that λi0 6= 0. Substitute vi0 for x in this linear relation. By (3) and (2), all
terms but the one with subscript i0 vanish, with the consequence λi0 = 0, a
contradiction, proving linear independence of the fi.

On the other hand, clearly each fi can be written as a linear combination
of the multilinear monomials of degree ≤ s. The number of such monomials is∑s
k=0

(
n
k

)
, implying the desired upper bound for m and completing the proof of

Theorem 1.3. 2

We now extend the idea above and prove Theorem 1.1. This extension uses
a trick employed by A. Blokhuis in [5] to improve a bound due to Larman,
Rogers, and Seidel [13] on two-distance sets in Euclidean space. Recall that
[n] = {1, 2, . . . , n} and consider, again, the function space RΩ. The domain can
be identified with the set of subsets of [n] so if I ⊆ [n] and f ∈ RΩ we write
f(I) for f(vI) where vI is the characteristic vector of I. Moreover, we index the
monic multilinear monomials by the set of their variables:

xI :=
∏
i∈I

xj .

In particular, x∅ = 1. Observe that for J ⊆ [n],

xI(J) =
{ 1 if I ⊆ J

0 otherwise.
(4)

We need the following simple lemma:

Lemma 2.1. Let f ∈ RΩ. Assume f(I) 6= 0 for any |I| ≤ r. Then the set
{xIf : |I| ≤ r} ⊆ RΩ is linearly independent.
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Proof. Let us arrange all subsets of [n] in a linear order, denoted <, such that
J < I implies |J | ≤ |I|. By equation (4) we see that for every I, J ⊆ [n], if
|I|, |J | ≤ r, then

xI(J)f(J) =
{
f(I) 6= 0 if J = I;
0 if J < I.

The linear independence of the xIf follows easily; if
∑
λIxI(J)f(J) = 0 is

a notrivial linear relation we let I0 be minimal (with respect to <) such that
λI0 6= 0 and substitute J = I0 to obtain a contradiction, using (4). 2

We can now prove Theorem 1.1. We use the notation introduced in the first
paragraph of this section and define the functions fi ∈ RΩ as follows:

fi(x) =
s∏

k=1

(vi · x− lk) (x ∈ Ω). (5)

Observe that

fi(Aj) =
{
6= 0 if j = i;
= 0 if j 6= i.

(6)

We now claim more than just the linear independence of the functions fi. Even
the fi together with all the functions xI(

∑n
j=1 xj − k) for I ⊆ [n], |I| ≤ s − 1

remain linearly independent. This is the analogue of Blockhuis’s “swallowing
trick” indicated before.

For a proof of the claim, assume

m∑
i=1

λifi +
∑
|I|≤s−1

µIxI

 n∑
j=1

xj − k

 = 0 (7)

for some λi, µI ∈ R. Substituting Ai, all terms in the second sum vanish
because |Ai| = k, and by (6) only the term with subscript i remains of the first
sum. We infer that λi = 0 for every i and therefore (7) is a relation among the
polynomials xI(

∑n
j=1 xj − k). By Lemma 2.1, this relation must be trivial.

We thus found m +
∑s−1
i=0

(
n
i

)
linearly independent functions, all of which

are represented by polynomials of degree ≤ s. The space of such (now always
multilinear) polynomials has dimension

∑s
i=0

(
n
i

)
, forcing m not to be greater

than the difference
(
n
s

)
. 2

An easy modification of the proof above establishes Theorem 1.4. Indeed, sup-
pose F = {A1, . . . , Am}, where |A1| ≤ |A2| ≤ . . . ≤ |Am|, and define the
polynomials f1. . . . , fm by (1), where, as before, vi is the characteristic vector
of Ai. Put f =

∏r
i=1

(∑n
j=1 xj − ki

)
and observe that by Lemma 2.1 the set
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{xIf : |I| ≤ s − r} ⊆ RΩ is linearly independent. We now claim that this set,
together with the set {fi : 1 ≤ i ≤ m} is linearly independent. To prove this
claim, assume it is false and let

m∑
i=1

λifi +
∑
|I|≤s−r

µIxIf = 0 (8)

be a nontrivial linear relation. If each λi = 0, then, by the independence of the
set {xIf : |I| ≤ s − r}, each µI = 0, a contradiction. Otherwise, let i0 be the
mimimum i such that λi0 6= 0. Substituting Ai0 in (8), all terms but λi0fi0(Ai0)
vanish and we conclude that λi0 = 0, a contradiction. Therefore, the claim is
true and we found m +

∑s−r
i=0

(
n
i

)
linearly independent functions, all of which

can be represented by polynomials of degree ≤ s. Hence m ≤
∑s
i=s−r+1

(
n
i

)
,

completing the proof of Theorem 1.4. 2

3. Modular variants

With some caution, one can make the method presented in the preceding section
work even if the real field R is replaced by the finite field Fp of order p. This
enables one to establish modular variants of the intersection theorems considered
in Section 2. The first such modular version (Theorem 1.2) was discovered by
Frankl and Wilson [10]. The power of the modular versions is demonstrated in
[10] through a series of interesting consequences in geometry and combinatorics.

We begin with a simple modular version of Theorem 1.3.

Theorem 3.1. Let L1, . . . , Lm ⊆ {0, 1, . . . , p− 1} be sets of integers, |Li| ≤ s.
Let p be a prime number. Assume F = {A1, . . . , Am} is a family of subsets of
a set of n elements such that

(i) |Ai| 6∈ Li + pZ (1 ≤ i ≤ m);

(ii) |Ai ∩Aj | ∈ Li + pZ (1 ≤ j < i ≤ m).

Then

m ≤
(
n

s

)
+
(

n

s− 1

)
+ · · ·+

(
n

0

)
.

The proof is a straightforward modification of that of Theorem 1.3. We leave it
to the reader.

Notice that Theorem 1.3 is a special case of this result; simply take Li =
{l ∈ L : l < |Ai|} and select a prime p greater than n.

The proof of Theorem 1.5 requires some simple considerations involving Moe-
bius inversion over the Boolean lattice. (See e.g. Chapter 2 of Lovász [14] as a
general reference.)
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Let Bn denote the Boolean algebra of subsets of the set [n] = {1, . . . , n}. Let
A be an abelian group and α : Bn → A a function. The zeta transform of
α is the function β : Bn → A defined by β(I) =

∑
J⊆I α(J). Then α(I) =

(−1)|I|
∑
J⊆I(−1)|J|β(J) is the Moebius transform of β. The following is easy

to verify.

Proposition 3.2. For any pair of sets I ⊆ K ⊆ [n], we have∑
I⊆J⊆K

(−1)|J|β(J) = (−1)|K|
∑

K\I⊆T⊆K

α(T ).

We leave the proof as an exercise to the reader. 2

Proposition 3.3. For any integer s, 0 ≤ s ≤ n, the following are equivalent
for a function α : Bn → A and its zeta-transform β:

(α) α(I) = 0 whenever |I| ≥ s.

(β)
∑
I⊆J⊆K(−1)|J|β(J) = 0 whenever |K \ I| ≥ s. (I ⊆ K ⊆ [n].)

The proof is immediate by the preceding Proposition. 2

Definition 3.4. We shall say that a set H = {h1, . . . , hm} ⊆ [n] has a gap of
size ≥ k (where the hi are arranged in increasing order), if either h1 ≥ k− 1, or
n− hm ≥ k − 1, or hi+1 − hi ≥ k for some i (1 ≤ i ≤ m− 1).

Lemma 3.5. Let α : Bn → A be a function where A is an abelian group. Let
β denote the zeta-transform of α. Let H ⊆ {0, 1, . . . , n} be a set of integers and
s an integer, 0 ≤ s ≤ n. Let us make the following assumptions:

(a) For I ⊆ [n], we have α(I) = 0 whenever |I| ≥ s.

(b) For J ⊆ [n], we have β(J) = 0 whenever |J | 6∈ H.

(c) H has a gap ≥ s+ 1.

Then α = β = 0.

Proof. Let H = {h1, . . . , hm}. We proceed by induction on m. If m = 0
then β = 0 by assumption (b), hence its Moebius transform, α, also vanishes.
Assume now m ≥ 1.

Let us add h0 = −1 and hm+1 = n+ 1 to H; and let hi+1 − hi ≥ s+ 1 be a
gap as required. Let us temporarily assume that i 6= 0.

Consider any pair of sets I ⊆ K ⊆ [n], |I| = hi, |K| = hi + s. (Observe that
hi + s ≤ n.) By the preceding Proposition, we have

9



∑
I⊆J⊆K

(−1)|J|β(J) = 0.

Because of the gap in H, the only possibly nonvanishing term on the left hand
side corresponds to J = I; therefore this term, too, must vanish. We conclude
that β(I) = 0 whenever |I| = hi, thus eliminating a member of H. This
completes the induction step in the case i 6= 0.

If i = 0, we take K to have cardinality h1 and its subset I to have cardinality
h1−s. (Observe that h1−s ≥ 0.) Now the same argument as before shows that
β(K) = 0, thus eliminating h1 from H and thereby completing the proof. 2

We can now deduce a linear independence result analogous to Lemma 2.1.

Lemma 3.6. Let K ⊆ {0, 1, . . . , p − 1} be a set of integers and assume the
set (K + pZ) ∩ {0, 1, . . . , n} has a gap ≥ s + 1 where s ≥ 0. Let f denote the
polynomial in n variables

f(x1, . . . , xn) =
∏
k∈K

(x1 + . . .+ xn − k).

Then the set of polynomials {xIf : |I| ≤ s−1} is linearly independent over Fp.

Proof. Assume a linear dependence relation∑
J⊆[n]

α(J)xJf = 0

holds, where α : Bn → Fp and α(J) = 0 whenever |J | ≥ s. Substituting the
characteristic vector of a subset I ⊆ [n] for x we obtain β(I) = 0 whenever
|I| 6∈ K + pZ. An application of the preceding Lemma with H = (K + pZ) ∩
{0, 1, . . . , n} proves that α = β = 0. 2

Now we are able to prove Theorem 1.5 in a slightly stronger form. Recall the
definition of gaps (Def. 3.4).

Theorem 3.7. Let p be a prime andK,L two disjoint subsets of {0, 1, . . . , p−1}.
Let |K| = r, |L| = s, and assume the set (K + pZ) ∩ {0, 1, . . . , n} has a gap of
size ≥ s− r + 2.

Let F be a family of subsets of an n-element set. Suppose that

(i) |F | ∈ K + pZ for each F ∈ F ;

(ii) |E ∩ F | ∈ L+ pZ for each pair of distinct sets E,F ∈ F .

10



Then

|F| ≤
(
n

s

)
+
(

n

s− 1

)
+ · · ·+

(
n

s− r + 1

)
.

This result implies Theorem 1.5. To see this, all we have to verify is that the
conditions r(s − r + 1) ≤ p − 1 and n ≥ s + kr (where kr = maxK) imply
the gap condition above for (K + pZ) ∩ {0, 1, . . . , n}. Indeed, if n ≥ p + k1

(where k1 = minK) then the gap will occur between k1 and p + k1; and if
s+ kr ≤ n < p+ k1, then the gap occurs right above kr. 2

Now we turn to the proof of Theorem 3.7.

Proof. Let F = {A1, . . . , Am}, where Ai ⊆ [n]. Let vi be the characteristic
vector of Ai. We define the following polynomials in n variables:

f(x1, . . . , xn) =
∏
k∈K

(x1 + . . .+ xn − k);

fi(x1, . . . , xn) =
∏
l∈L

(vi · x− l) (i = 1, . . . ,m),

where x = (x1, . . . , xn) ∈ Ω = {0, 1}n.
We claim that the functions fi ∈ FΩ

p together with the functions {xIf : I ⊆
[n], |I| ≤ s− r} are linearly independent (over Fp). Assume

m∑
i=1

λifi +
∑
|I|≤s−r

µIxIf = 0

is a linear relation. Substituting x = vi we obtain λi = 0 since f(vi) = 0. Now
the µI must vanish by Lemma 3.6.

It follows that m+
∑s−r
i=0

(
n
i

)
≤
∑n
i=0

(
n
i

)
, as needed. 2

4. Flats in equicardinal geometric semilattices

We prepare for proving Theorem 1.7 by introducing a space of functions
that will play a role analogous to the multilinear polynomials in the previous
sections.

Let V be the set of points of an equicardinal geometric semilattice Ψ. Let ci
denote the cardinality of the flats of rank i and wi the number of flats of rank
i.

For each v ∈ V we introduce a function xv : Ψ→ R defined by

xv(W ) =
{

1, if v ∈W ;
0, if v 6∈W. (W ∈ Ψ)
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We call the products of the xv monomials; and their linear combinations poly-
nomials. We note that the monomial xv1 · · ·xvk depends only on the join
U = v1 ∨ . . . ∨ vk. (If this join is undefined, i.e. the set {v1, . . . , vk} is un-
bounded, then xv1 · · ·xvk = 0.) We shall thus use the symbol xU to denote the
product xv1 · · ·xvk which we shall call a monomial of degree rk(U).

For flats U and W , clearly,

xU (W ) =
{

1, if U ⊆W ;
0, otherwise.

A polynomial of degree ≤ s is a linear combination of monomials of degrees ≤ s.
Let Ys denote the space of polynomials of degree ≤ s. It is clear that Ys is
precisely the span of the monomials {xU : U ⊆ V ; rkU ≤ s}.

Proposition 4.1. The monomials {xU : U ∈ Ψ} are linearly independent.

Proof. Assume that a nontrivial linear relation∑
U∈Ψ

λUxU = 0

exists among the monomials. Let U0 be minimal among those flats U with
nonzero coefficient λU . Substituting U0 all terms will vanish except the one
corresponding to U0, hence λU0 = 0. This contradiction proves the claim. 2

Corollary 4.2.
dimYs = ws + ws−1 + · · ·+ w0. 2

Corollary 4.3. Let f ∈ RΨ. Assume f(W ) 6= 0 for any flat W of rank ≤ t.
Then the set {xUf : U ∈ Ψ, rk(U) ≤ t} is linearly independent. 2

For K a set of non-negative integers, let

ΨK = {U ∈ Ψ : rk(U) ∈ K}.

Let ϕsK : Ys → RΨK denote the restriction homomorphism, and Y Ks = ϕsK(Ys)
the set of restrictions to ΨK of the polynomials of degree ≤ s.

The following lemma will allow us to use Blokhuis’s “swallowing trick” in
the proof of Theorem 1.7.

Lemma 4.4. Let K be a set of r ≤ s non-negative integers. If every element
of K is greater than s− r then

dim kerϕsK ≥ ws−r + ws−r−1 + · · ·+ w0.

12



Consequently,
dim(Y Ks ) ≤ ws + ws−1 + · · ·+ ws−r+1.

Proof. Consider the following polynomial of degree ≤ r:

f =
∏
k∈K

(
∑
v∈V

xv − ck).

We note that f(W ) = 0 if and only if rk(W ) ∈ K. Therefore the set T = {xUf :
rk(U) ≤ s− r} is a linearly independent subset of Ys by Corollary 4.3. On the
other hand, ϕsK(f) = 0. Therefore T ⊆ kerϕsK , proving the first inequality.

The second inequality follows by Corollary 4.2 since Y Ks = im(ϕsK). 2

Lemma 4.5. Let K and L be two sets of non-negative integers; |K| = r,
|L| = s. Let F be a family of flats such that rk(U) ∈ K for every U ∈ F , and
rk(U ∩W ) ∈ L for any pair of distinct members of F . Then

|F| ≤ dim(Y Ks ).

Proof. Let F = {U1, . . . , Um}. We may assume that Ui ⊆ Uj implies i ≤ j.
For i = 1, . . . ,m, let us define the polynomial fi ∈ Y Ks by

fi(W ) =
∏
l∈L

l<rk(Ui)

(
∑
v∈Ui

xv − cl) (W ∈ ΨK).

Observe that

(i) fi(Ui) 6= 0 for 1 ≤ i ≤ m;

(ii) fi(Uj) = 0 for 1 ≤ j < i ≤ m.

This implies that f1, . . . , fm are linearly independent (by the same argument as
in the proof of Proposition 4.1), thus proving the Lemma. 2

Now, a combination of Lemmas 4.4 and 4.5 completes the proof of Theorem 1.7.
2

5. Open problems

An interesting open question is to extend Theorem 1.5 to composite moduli. It is
known that even the O(ns) upper bound (for fixed s, as n tends to infinity) is no
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longer valid in general. Counterexamples (and even uniform counterexamples)
when the prime number p is replaced by 6 or by q = p2 where p ≥ 7 is a prime
have been found by P. Frankl (see [3], p. 60). There are, however, cases when a
straight extension is still a possibility. Two such cases are mentioned in [3], p.
78. One of them is the following:

Conjecture 5.1 (P. Frankl). Let F be a k-uniform family of subsets of a set
of n elements. Let t ≥ 2 and suppose that |E ∩ F | 6≡ k (mod t) for any pair
E,F of distinct members of F . Then

|F| ≤
(

n

t− 1

)
.

Theorem 1.5 gives rise to more problems. First of all, the condition r(s−r+1) ≤
p − 1 seems unnatural. We conjecture that Theorem 1.5 remains valid if this
condition is dropped. (Note that r + s ≤ p still holds because K and L are
disjoint.)

Another, perhaps more important problem is to determine whether or not
the upper bound given by Theorem 1.5 can be attained when r ≥ 2.

Addendum

The 1988 monograph [3] presents a preliminary version of parts of this paper [3,
pp. 56-59], including our main results on set systems (Theorems 1.4 and 1.5).
Theorem 1.7 was found somewhat later and was stated in a previous version of
this manuscript for strongly equicardinal matroids only.

We are grateful to professor D. K. Ray-Chaudhuri [16] for pointing out that
the right context for these results is semilattices rather than lattices; indeed
our proof carried over without the slightest change to the case of equicardinal
geometric semilattices.

Professor Ray-Chaudhuri has also found some interesting classes of equicar-
dinal geometric semilattices that are not lattices. His first example is the set of
partial functions mapping a subset of a set A into a set B, partially ordered by
restriction. (Clearly, every prime ideal in this semilattice is a Boolean lattice.)
The q-analogue of this example is the set of partial linear functions mapping a
subspace of a linear space A over Fq into a linear space B over Fq, again ordered
by restriction. (Here, the prime ideals are subspace lattices.) For several more
classes of examples, and further work in this direction, the reader should consult
the forthcoming paper [18] by Ray-Chaudhuri and Zhu.
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