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Sign rank versus Vapnik-Chervonenkis dimension

N. Alon, S. Moran and A. Yehudayoff

Abstract. This work studies the maximum possible sign rank of sign
(N ×N)-matrices with a given Vapnik-Chervonenkis dimension d. For
d = 1, this maximum is three. For d = 2, this maximum is Θ̃(N1/2).
For d > 2, similar but slightly less accurate statements hold. The lower
bounds improve on previous ones by Ben-David et al., and the upper
bounds are novel.

The lower bounds are obtained by probabilistic constructions, using
a theorem of Warren in real algebraic topology. The upper bounds are
obtained using a result of Welzl about spanning trees with low stabbing
number, and using the moment curve.

The upper bound technique is also used to: (i) provide estimates on
the number of classes of a given Vapnik-Chervonenkis dimension, and
the number of maximum classes of a given Vapnik-Chervonenkis dimen-
sion— answering a question of Frankl from 1989, and (ii) design an efficient
algorithm that provides an O(N/ log(N)) multiplicative approximation for
the sign rank.

We also observe a general connection between sign rank and spectral
gaps which is based on Forster’s argument. Consider the adjacency (N×N)-
matrix of a ∆-regular graph with a second eigenvalue of absolute value λ
and ∆ 6 N/2. We show that the sign rank of the signed version of this
matrix is at least ∆/λ. We use this connection to prove the existence of
a maximum class C ⊆ {±1}N with Vapnik-Chervonenkis dimension 2 and
sign rank Θ̃(N1/2). This answers a question of Ben-David et al. regard-
ing the sign rank of large Vapnik-Chervonenkis classes. We also describe
limitations of this approach, in the spirit of the Alon-Boppana theorem.

We further describe connections to communication complexity, geome-
try, learning theory, and combinatorics.
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§ 1. Introduction

Boolean matrices (with 0 and 1 entries) and sign matrices (with ±1 entries)
naturally appear in many areas of research1. We use them, for example, to represent
set systems and graphs in combinatorics, hypothesis classes in learning theory, and
boolean functions in communication complexity.

This work further investigates the relation between two useful complexity mea-
sures on sign matrices.

Definition (sign rank). For a real matrix M with no zero entries, let sign(M)
denote the sign matrix such that

(sign(M))i,j = sign(Mi,j) for all i, j.

The sign rank of a sign matrix S is defined as

sign-rank(S) = min{rank(M) : sign(M) = S},

where the rank is over the real numbers.

The sign rank captures the minimum dimension of a real space in which the
matrix can be embedded using half spaces through the origin2 (see for example [48]).

Definition (Vapnik-Chervonenkis dimension). The Vapnik-Chervonenkis dimen-
sion of a sign matrix S, denoted VC(S), is defined as follows. A subset C of the
columns of S is called shattered if each of the 2|C| different patterns of ones and
minus ones appears in some row in the restriction of S to the columns in C. The
Vapnik-Chervonenkis dimension of S is the maximum size of a shattered subset of
columns.

The Vapnik-Chervonenkis dimension captures the size of the minimum ε-net for
the underlying set system (see [38] and [42]).

The Vapnik-Chervonenkis dimension and the sign rank appear in various areas
of computer science and mathematics. One important example is learning theory,
where the Vapnik-Chervonenkis dimension captures the sample complexity of learn-
ing in the PAC learning model (see [19] and [66]), and the sign rank relates to the
generalization guarantees of practical learning algorithms, such as support vec-
tor machines, large margin classifiers and kernel classifiers (see [47], [32]–[34], [23]
and [67]). Loosely speaking, the Vapnik-Chervonenkis dimension relates to learn-
ability, while the sign rank relates to learnability by linear classifiers. Another
example is communication complexity, where the sign rank is equivalent to the
unbounded error randomized communication complexity [55], and the Vapnik-Cher-
vonenkis dimension relates to one round distributional communication complexity
under product distributions [43].

1There is a standard transformation of a boolean matrix B to the sign matrix S = 2B − J ,
where J is the matrix with 1s everywhere. The matrix S is called the signed version of B, and B
is called the boolean version of S.

2That is, the columns correspond to points in Rk and the rows to half spaces through the
origin (that is, collections of all points x ∈ Rk such that ⟨x, v⟩ > 0 for some fixed v ∈ Rk).
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The main focus of this work is how large the sign rank can be for a given
Vapnik-Chervonenkis dimension. In learning theory, this question concerns the
universality of linear classifiers. In communication complexity, this concerns the
difference between randomized communication complexity with unbounded error
and between communication complexity under product distribution with bounded
error. Previous works have studied these differences from the communication com-
plexity perspective (see [64] and [63]) and the learning theory perspective [15].
In this work we provide explicit matrices and stronger separations compared to
those of [64], [63] and [15]. See the discussions in § 1.2 and § 2.4 for more details.

1.1. Duality. We start by providing alternative descriptions of the Vapnik-Cher-
vonenkis dimension and sign rank, which demonstrate that these notions are dual
to each other. The sign rank of a sign matrix S is the maximum number k such
that

∀M such that sign(M) = S ∃ k columns j1, . . . , jk,
the columns j1, . . . , jk are linearly independent in M .

The dual sign rank of S (dual-sign-rank(S)) is the maximum number k such that

∃ k columns j1, . . . , jk such that ∀M such that sign(M) = S

the columns j1, . . . , jk are linearly independent in M.

It turns out that the dual sign rank is almost equivalent to the Vapnik-Chervonenkis
dimension (the proof is in § 3.1).

Proposition 1. The dual sign rank of S is the Vapnik-Chervonenkis dimension of
the matrix

[
S
−S

]
. As a corollary:

VC(S) 6 dual-sign-rank(S) 6 2VC(S) + 1.

As the dual sign rank is at most the sign rank, it follows that the Vapnik-Cher-
vonenkis dimension is at most the sign rank. This provides further motivation
for studying the largest possible gap between sign rank and Vapnik-Chervonenkis
dimension; it is equivalent to the largest possible gap between the sign rank and
the dual sign rank.

It is worth noting that there are some interesting classes of matrices for which
these quantities are equal. One such example is the disjointness (2n × 2n)-matrix
DISJ, whose rows and columns are indexed by all subsets of [n], and DISJx,y = 1 if
and only if |x ∩ y| > 0. For this matrix both the sign rank and the dual sign rank
are exactly n + 1; indeed, its sign rank is at most n + 1 as witnessed by the matrix(∑n

i=1 vi · vt
i

)
− 1

2J , where Jx,y = 1 for all x, y ⊆ [n], and vi(x) = 1 whenever i ∈ x.
On the other hand, its dual sign is at least n + 1 as witnessed by the columns
indexed by ∅, {1}, . . . , {n} that are shattered in

[
DISJ
−DISJ

]
.

1.2. Sign rank versus Vapnik-Chervonenkis dimension. The Vapnik-Cher-
vonenkis dimension is at most the sign rank. On the other hand, it is long
known that the sign rank is not bounded from above by any function of the
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Vapnik-Chervonenkis dimension. Alon, Haussler, and Welzl [7] provided exam-
ples of (N ×N)-matrices with Vapnik-Chervonenkis dimension 2 for which the sign
rank tends to infinity with N . The paper [15] used ideas from [6] together with
estimates concerning the Zarankiewicz problem to show that many matrices with
constant Vapnik-Chervonenkis dimension (at least 4) have high sign rank.

We further investigate the problem of determining or estimating the maximum
possible sign rank of (N × N)-matrices with Vapnik-Chervonenkis dimension d.
Denote this maximum by f(N, d). We are mostly interested in fixed d and N
tending to infinity.

We observe that there is a dichotomy between the behaviour of f(N, d) when
d = 1 and when d > 1. The value of f(N, 1) is 3, but for d > 1 the value of f(N, d)
tends to infinity with N . We now discuss the behaviour of f(N, d) in more detail,
and describe our results.

We start with the case d = 1. The following theorem and claim imply that for
all N > 4,

f(N, 1) = 3.

The following theorem which was proved by [7] shows that for d = 1 matrices
with high sign rank do not exist. For completeness, we provide our simple and
constructive proof in § 3.2.1.

Theorem 2 (see [7]). If the Vapnik-Chervonenkis dimension of a sign matrix M
is 1 then its sign rank is at most 3.

We also note that the bound 3 is tight (see § 3.2.1 for a proof).

Claim 3. For N > 4 the signed identity (N×N)-matrix (that is, the matrix with 1
on the diagonal and −1 off the diagonal) has Vapnik-Chervonenkis dimension 1 and
sign rank 3.

Next, we consider the case d > 1, starting with lower bounds on f(N, d).
As mentioned above, two lower bounds were previously known: [7] showed that
f(N, 2) > Ω(log N). The paper [15] showed that f(N, d) > ω(N1−2/d−1/2d/2

), for
every fixed d, which provides a nontrivial result only for d > 4. We prove the
following stronger lower bound.

Theorem 4. The following lower bounds on f(N, d) hold:
1) f(N, 2) > Ω(N1/2/ log N);
2) f(N, 3) > Ω(N8/15/ log N);
3) f(N, 4) > Ω(N2/3/ log N);
4) for every fixed d > 4,

f(N, d) > Ω(N1−(d2+5d+2)/(d3+2d2+3d)/ log N).

To understand part 4) better notice that

d2 + 5d + 2
d3 + 2d2 + 3d

=
1
d

+
3d− 1

d3 + 2d2 + 3d
,

which is close to 1/d for large d. The proofs are described in § 3.2, where we also
discuss the tightness of our arguments.
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What about upper bounds on f(N, d)? It is shown in [15] that for every matrix in
a certain class of (N ×N)-matrices with constant Vapnik-Chervonenkis dimension,
the sign rank is at most O(N1/2). The proof uses the connection between sign rank
and communication complexity. However, there is no general upper bound for the
sign rank of matrices of Vapnik-Chervonenkis dimension d in [15], and the authors
explicitly mention the absence of such a result.

Here we prove the following upper bounds, using a concrete embedding of matri-
ces with low Vapnik-Chervonenkis dimension in real space.

Theorem 5. For every fixed d > 2,

f(N, d) 6 O(N1−1/d).

In particular, this determines f(N, 2) up to a logarithmic factor:

Ω(N1/2/ log N) 6 f(N, 2) 6 O(N1/2).

The above results imply existence of sign matrices with high sign rank. How-
ever, their proofs use counting arguments and hence do not provide a method for
certifying high sign rank for explicit matrices. In the next section we show how one
can derive a lower bound for the sign rank of many explicit matrices.

1.3. Sign rank and spectral gaps. Spectral properties of boolean matrices are
known to be deeply related to their combinatorial structure. Perhaps the best exam-
ple is Cheeger’s inequality which relates spectral gaps to combinatorial expansion
([27], [8], [9], [2] and [39]). Here we describe connections between spectral properties
of boolean matrices and the sign rank of their signed versions.

Proving strong lower bounds on the sign rank of sign matrices turned out to
be a difficult task. Alon, Frankl and Rödl [6] were the first to prove that there
are sign matrices with high sign rank, but they did not provide explicit examples.
Later on, a breakthrough of [31] showed how to prove lower bounds on the sign rank
of explicit matrices, proving, specifically, that Hadamard matrices have high sign
rank. The paper [56] proved that there is a function that is computed by a small
depth tree boolean circuit, but with high sign rank. It is worth mentioning that no
explicit matrix whose sign rank is significantly larger than N1/2 is known.

We focus on the case of regular matrices. A boolean matrix is ∆-regular if every
row and every column in it has exactly ∆ 1s, and a sign matrix is ∆-regular if its
boolean version is ∆-regular.

A real (N × N)-matrix M has N singular values σ1 > σ2 > · · · > σN > 0.
The largest singular value of M is also called its spectral norm ∥M∥ = σ1 =
max{∥Mx∥ : ∥x∥ 6 1}, where ∥x∥2 = ⟨x, x⟩ with the standard inner product. If the
ratio σ2(M)/∥M∥ is bounded away from 1, or small, we say that M has a spectral
gap.

We prove that if B has a spectral gap then the sign rank of S is high.

Theorem 6. Let B be a ∆-regular boolean (N × N)-matrix with ∆ 6 N/2, and
let S be its signed version. Then,

sign-rank(S) >
∆

σ2(B)
.
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In many cases a spectral gap for B implies that it has pseudorandom proper-
ties. This theorem is another manifestation of this phenomenon since random sign
matrices have high sign rank (see [6]).

The theorem above provides a nontrivial lower bound on the sign rank of S.
There is a nontrivial upper bound as well. The sign rank of a ∆-regular sign
matrix is at most 2∆ + 1. Here is a brief explanation of this upper bound (see [6]
for a more detailed proof). Every row i in S has at most 2∆ sign changes (that is,
columns j such that Si,j ̸= Si,j+1). This implies that for every i there is a real
univariate polynomial Gi of degree at most 2∆ such that Gi(j)Si,j > 0 for all
j ∈ [N ] ⊂ R. To see how this corresponds to sign rank at most 2∆ + 1 recall that
evaluating a polynomial G of degree 2∆ on a point x ∈ R corresponds to an inner
product over R2∆+1 between the vector of coefficients of G and the vector of powers
of x.

Our proof of Theorem 6 and its limitations are discussed in detail in § 3.3.

§ 2. Applications

2.1. Learning theory.

Universality of linear classifiers. Linear classifiers have been central in the study
of machine learning since the introduction of the Perceptron algorithm in the
1950s [58] and Support Vector Machines in the 1990s (see [21] and [26]). The
rise of kernel methods in the 1990s (see [21] and [62]) enabled the reduction of
many learning problems to the framework of halfspaces, making linear classifiers
a central algorithmic tool.

These methods use the following two-step approach. First, embed the hypothesis
class3 in halfspaces of a Euclidean space (each point corresponds to a vector and
for every hypothesis h the vectors corresponding to h−1(1) and the vectors cor-
responding to h−1(−1) are separated by a hyperplane). Second, apply a learning
algorithm for halfspaces.

If the embedding is to a low-dimensional space then a good generalization rate
is implied. For embeddings in large-dimensional spaces, Support Vector Machines
theory offers an alternative parameter, namely the margin4. Indeed, a large mar-
gin also implies a good generalization rate. On the other hand, any embedding
with a large margin can be projected to a low-dimensional space using standard
dimension reduction arguments (see [40], [12] and [15]).

Ben-David, Eiron and Simon [15] utilized it to argue that “. . . any universal
learning machine, which transforms data to a Euclidean space and then applies
linear (or large margin) classification, cannot preserve good generalization bounds
in general”. Formally, they showed that: for any fixed d > 1, most hypothesis
classes C ⊆ {±1}N of Vapnik-Chervonenkis dimension d have sign-rank of NΩ(1).
As discussed in § 1.2, Theorem 4 quantitatively improves over their results.

3In this context we use the more common term ‘hypothesis class’ instead of ‘matrix’.
4The margin of the embedding is the minimum over all hypotheses h of the distance between the

convex hull of the vectors corresponding to h−1(1) and the convex hull of the vectors corresponding
to h−1(−1).
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In practice, linear classifiers are widely used in a variety of applications including
handwriting recognition, image classification, medical science, bioinformatics, and
more. The practical usefulness of linear classifiers and the argument of Ben-David,
Eiron and Simon manifest a gap between practice and theory that seems worth
studying. We next discuss how Theorem 5, which provides a nontrivial upper
bound on the sign rank, can be interpreted as theoretical evidence which supports
the practical usefulness of linear classifiers. Let C ⊆ {±1}X be a hypothesis class,
and let γ > 0. We say that C is γ-weakly represented by halfspaces if for every
finite Y ⊆ X the sign rank of C|Y is at most O(|Y |1−γ). In other words, there
exists an embedding of Y in Rk with k = O(|Y |1−γ) such that each hypothe-
sis in C|Y corresponds to a half-space in the embedding. Theorem 5 shows that
any class C is γ-weakly represented by half-spaces where γ depends only on its
Vapnik-Chervonenkis dimension. Weak representations can be thought of as pro-
viding a compressed representation of C|Y using half-spaces in a dimension that is
sublinear in |Y |. Such representations imply learnability; indeed, every γ-weakly
represented class C is learnable, as the Vapnik-Chervonenkis dimension of C is
bounded above by some function of γ. While these quantitative relations between
the Vapnik-Chervonenkis dimension and γ may be rather loose, they show that in
principle, any learnable class has a weak representation by halfspaces which certifies
its learnability.

Maximum classes with high sign rank. Let C ⊆ {±1}N be a class with Vapnik-
Chervonenkis dimension d. The class C is called maximum if it meets Sauer-Shelah’s
bound [61] with equality5. That is, |C| =

∑d
i=0

(
N
i

)
. Maximum classes were studied

in different contexts such as machine learning, geometry, and combinatorics (see,
for example, [20], [30], [36], [13], [11], [45], [52], [59] and [60]).

There are several known examples of maximum classes. A fairly simple one is
the Hamming ball of radius d, that is, the class of all vectors with weight at most d.
Another set of examples relates to the sign rank: let H be an arrangement of
hyperplanes in Rd. These hyperplanes cut Rd into cells, the connected components
of Rd \

(⋃
h∈H h

)
. Each cell c is associated with a sign vector vc ∈ {±1}H which

describes the location of the cell relative to each of the hyperplanes. See Figure 1
for a planar arrangement. The sign rank of such a class is at most d+1. It is known
(see [36], for example) that if the hyperplanes are in general position then the sign
vectors of the cells form a maximum class of Vapnik-Chervonenkis dimension d.

Gärtner and Welzl [36] gave a combinatorial characterization of maximum classes
constructed using generic half-spaces. As an application of their characterization
they note that the Hamming ball of radius d is a maximum class that cannot be
realized in this way. By Lemma 18, however, the Hamming ball of radius d has sign
rank at most 2d + 1. It is in fact exactly 2d + 1, since any set of 2d + 1 columns
in

[
cS
−S

]
is shattered, where S is its incidence matrix. Therefore, by Proposition 1

its dual sign rank is at least 2d + 1.

5Maximum classes are distinguished from maximal classes: a maximum class has the largest
possible size among all classes of Vapnik-Chervonenkis dimension d, and a maximal class is such
that for every sign vector v /∈ C, if v is added to C then the Vapnik-Chervonenkis dimension is
increased.
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Figure 1. An arrangement of lines in the plane and the corresponding cells.

It is therefore natural to ask whether every maximum class has sign rank which
depends only on d. A similar question was also asked by [15]. Theorem 8 in § 2.2.1
gives a negative answer to this question, even when d = 2 (when d = 1, by Theo-
rem 2 the sign rank is at most 3).

In machine learning, maximum classes were studied extensively in the context of
sample compression schemes. A partial list of works in this context includes [30],
[45], [59], [60], [53] and [29]. The article [30] is the first paper that designed sample
compression schemes for maximum classes. Later, [45] improved it to an unlabelled
sample compression scheme. The paper [59] constructed an even simpler unlabelled
sample compression scheme for maximum classes. Their scheme uses an approach
suggested by [45] and their analysis resolved a conjecture from [45]. A crucial
part in their work is establishing the existence of an embedding of any maximum
class of Vapnik-Chervonenkis dimension d in an arrangement of piecewise-linear
hyperplanes in Rd. Theorem 8 below shows that even for Vapnik-Chervonenkis
dimension 2 there are maximum classes C ⊆ {±1}N of sign rank Ω(N1/2/ log N).
Thus, in order to make the piecewise-linear arrangement in R2 linear the dimension
of the space must grow significantly to Ω(N1/2/ log N).

2.2. Explicit examples. The spectral lower bound on sign rank gives many
explicit examples of matrices with high sign rank, which come from known con-
structions of expander graphs and combinatorial designs. A rather simple such
family of examples is finite projective geometries.

Let d > 2 and n > 3. Let P be the set of points in a d-dimensional projective
space of order n, and let H be the set of hyperplanes in the space. For d = 2, this
is just a projective plane with points and lines. It is known (see, for example, [17])
that

|P | = |H| = Nn,d := nd + nd−1 + · · ·+ n + 1 =
nd+1 − 1

n− 1
.

Let A ∈ {±1}P×H be the signed point-hyperplane incidence matrix:

Ap,h =

{
1, p ∈ h,

−1, p ̸∈ h.
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Theorem 7. The matrix A is N × N with N = Nn,d , its Vapnik-Chervonenkis
dimension is d, and its sign rank is larger than

nd − 1
n(d−1)/2(n− 1)

> N1/2−1/2d.

The theorem follows from the known properties of projective spaces (see § 3.4.1).
A slightly weaker (but asymptotically equivalent) lower bound on the sign rank
of A was given by [32].

The sign rank of A is at most 2Nn,d−1 + 1 = O(N1−1/d), due to the observation
in [6] mentioned after Theorem 6. To see this, note that A is Nn,d−1 regular as
every point in the projective space is incident to Nn,d−1 hyperplanes, and every
hyperplane contains Nn,d−1 points.

Other explicit examples come from spectral graph theory. Here is a brief descrip-
tion of matrices that are even more restricted than having Vapnik-Chervonenkis
dimension 2 but have high sign rank; no 3 columns in them have more than 6 dis-
tinct projections. An (N, ∆, λ)-graph is a ∆-regular graph on N vertices such that
the absolute value of every eigenvalue of the graph besides the top one is at most λ.
There are several known constructions of (N, ∆, λ)-graphs for which λ 6 O(

√
∆),

that do not contain short cycles. Any such graph with ∆ > NΩ(1) provides an
example with sign rank at least NΩ(1), and if there is no cycle of length at most 6
then in the sign matrix we have at most 6 distinct projections on any set of 3
columns.

2.2.1. Maximum classes. Let P be the set of points in a projective plane of order n
and let L be the set of lines in it. Let N = Nn,2 = |P | = |L|. For each line ℓ ∈ L
fix some linear order on the points in ℓ. A set T ⊂ P is called an interval if T ⊆ ℓ
for some line ℓ ∈ L, and T forms an interval with respect to the order we have fixed
on ℓ.

Theorem 8. The class R of all intervals is a maximum class of Vapnik-Chervo-
nenkis dimension 2. Moreover, there exists a choice of linear orders for the lines
in L such that the resulting R has sign rank Ω(N1/2/ log N).

The proof of Theorem 8 is given in § 3.4.1. The proof does not follow directly
from Theorem 4 since it is not clear that the classes with Vapnik-Chervonenkis
dimension 2 and high sign rank which are guaranteed to exist by Theorem 4 can
be extended to a maximum class.

2.3. Computing the sign rank. Linear Programming (LP) is one of the most
famous and useful problems in the class P. As a decision problem, an LP problem
concerns the determination of the satisfiability of a system

ℓi(x) > 0, i = 1, . . . ,m,

where each ℓi is an affine function defined over Rn (say with integer coefficients).
A natural extension of LP is to consider the case in which each ℓi is a multivariate
polynomial. Perhaps not surprisingly, this problem is much harder than LP. In fact,
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satisfiability of a system of polynomial inequalities is known to be a complete prob-
lem for the class ∃R. The class ∃R is known to lie between PSPACE and NP
(see [49] and references within).

Consider the problem of deciding whether the sign rank of a given sign (N ×N)-
matrix is at most k. A simple reduction shows that to solve this problem it is
enough to decide whether a system of real polynomial inequalities is satisfiable.
Thus, this problem belongs to the class ∃R. The papers [14]6 and [18] showed
that deciding whether the sign rank is at most 3 is NP-hard and that decid-
ing whether the sign rank is at most 2 is in P. Both [14] and [18] established
the NP-hardness of deciding whether the sign-rank is at most 3 by a reduction
from the problem of determining stretchability of pseudo-line arrangements. This
problem concerns whether a given combinatorial description of an arrangement of
pseudo-lines can be realized (‘stretched’) by an arrangement of lines. The paper [49],
based on the works [51], [65] and [57], showed that determining stretchability of
pseudo-line arrangements is in fact ∃R-complete. Therefore, it follows7 that deter-
mining whether the sign-rank is at most 3 is ∃R-complete.

Another related work [46] concerns the problem of computing the approximate
rank of a sign matrix, for which they provide an approximation algorithm. They
pose the problem of efficiently approximating the sign rank as an open problem.

Using an idea similar to the one in the proof of Theorem 5 we derive an approx-
imation algorithm for the sign rank (see § 3.4.2).

Theorem 9. There exists a polynomial time algorithm that approximates the sign
rank of a given (N ×N)-matrix up to a multiplicative factor of c ·N/ log(N), where
c > 0 is a universal constant.

2.4. Communication complexity. We briefly explain the notions from commu-
nication complexity we use. For formal definitions, background and more details,
see the textbook [44].

For a function f and a distribution µ on its inputs, define Dµ(f) as the minimum
communication complexity of a protocol that correctly computes f with error 1/3
over the inputs from µ. Define D×(f) = max{Dµ(f) : µ is a product distribution}.
Define the unbounded error communication complexity U(f) of f as the minimum
communication complexity of a randomized private-coin8 protocol that correctly
computes f with probability strictly larger than 1/2 on every input.

The two works [64] and [63] showed that there are functions with small distribu-
tional communication complexity under product distributions, and large unbounded
error communication complexity. In [64] the separation is as strong as possible but
it is not for an explicit function, and the separation in [63] is not as strong but the
underlying function is explicit.

6Interestingly, their motivation for considering sign rank comes from image processing.
7The paper [49] considered a different type of combinatorial description from [14] and [18], and

therefore considered a different formulation of the stretchability problem. However, it is possible
to transform between these descriptions in polynomial time.

8In the public-coin model every boolean function has unbounded communication complexity
at most two.
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The matrix A with d = 2 and n > 3 in our example from § 2.2 corresponds to
the following communication problem: Alice gets a point p ∈ P , Bob gets a line
ℓ ∈ L, and they wish to decide whether p ∈ ℓ or not. Let f : P × L → {0, 1} be
the corresponding function and let m = ⌈log2(N)⌉. A trivial protocol would be
that Alice sends Bob the name of her point using m bits, Bob checks whether it is
incident to the line and outputs accordingly.

Theorem 7 implies the following consequences. Even if we consider protocols that
use randomness and are allowed to err with probability less than but arbitrarily close
to 1/2, then still one cannot do considerably better than the above trivial protocol.
However, if the input (p, ℓ) ∈ P×L is distributed according to a product distribution
then there exists an O(1) protocol that errs with probability at most 1/3.

Corollary 10. The unbounded error communication complexity of f is9 U(f) >
m/4−O(1). The distributional communication complexity of f under product dis-
tributions is D×(f) 6 O(1).

These two seemingly contradictory facts are a corollary of the high sign rank and
the low Vapnik-Chervonenkis dimension of A, using two known results. The upper
bound on D×(f) follows from the fact that VCdim(A) = 2, and the work [43],
which used the PAC learning algorithm to construct an efficient (one round) com-
munication protocol for f under product distributions. The lower bound on U(f)
follows from that sign-rank(A) > Ω(N1/4) and the result of [55] that showed that
unbounded error communication complexity is equivalent to the logarithm of the
sign rank. See [64] for more details.

2.5. Counting Vapnik-Chervonenkis classes. Let c(N, d) denote the number
of classes C ⊆ {±1}N with Vapnik-Chervonenkis dimension d. We give the fol-
lowing estimate of c(N, d) for constant d and N large enough. The proof is given
in § 3.4.3.

Theorem 11. For every d > 0 there is N0 = N0(d) such that for all N > N0 :

NΩ(Nd/dd+1) 6 c(N, d) 6 NO(N)d

.

Let m(N, d) denote the number of maximum classes C ⊆ {±1}N of Vapnik-Cher-
vonenkis dimension d. The problem of estimating m(N, d) was proposed by [35].
We provide the following estimate (see § 3.4.3).

Theorem 12. For every d > 1, there is N0 = N0(d) such that for all N > N0 ,

N (1+o(1)) 1
d+1 (N

d) 6 m(N, d) 6 N (1+o(1))
∑d

i=1 (N
i ).

The gap between our upper and lower bound is roughly a multiplicative fac-
tor of d + 1 in the exponent. In the previous bounds given by [35] the gap was
a multiplicative factor of N in the exponent.

9By taking larger values of d the constant 1/4 may be increased to 1/2− 1/2d.
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2.6. Counting graphs. Here we describe an application of our method for prov-
ing Theorem 5 to counting graphs with a given forbidden substructure.

Let G = (V,E) be a graph (not necessarily bipartite). The universal graph U(d)
is defined as the bipartite graph with two colour classes A and B = 2A, where
|A| = d, and the edges are defined as {a, b} if and only if a ∈ b. The graph G
is called U(d)-free if for every pair of disjoint sets of vertices A, B ⊂ V such that
|A| = d and |B| = 2d, the bipartite graph consisting of all edges of G between A
and B is not isomorphic to U(d). In Theorem 24 of [5], which improves Theorem 2
there, it is proved that for d > 2 the number of U(d + 1)-free graphs on N vertices
is at most

2O(N2−1/d(log N)d+2).

The proof in [5] is quite involved, consisting of several technical and complicated
steps. Our methods give a different, quick proof of an improved estimate, replacing
the (log N)d+2 term by a single log N term.

Theorem 13. For every fixed d > 1 the number of U(d + 1)-free graphs on N

vertices is at most 2O(N2−1/d log N) .

The proof of the theorem is given in § 3.4.4.

2.7. Geometry. Differences and similarities between finite geometries and real
geometry are well known. An example of a related problem is finding the minimum
dimension of Euclidean space in which we can embed a given finite plane (that is,
a collection of points and lines satisfying certain axioms). By ‘embed’ we mean
that there are two one-to-one maps eP and eL such that eP (p) ∈ eL(ℓ) if and only
if p ∈ ℓ for all p ∈ P and ℓ ∈ L. The Sylvester-Gallai theorem shows, for example,
that Fano’s plane cannot be embedded in any finite-dimensional real space if points
are mapped to points and lines to lines.

How about a less restrictive meaning of embedding? One option is to allow
embedding using half spaces, that is, an embedding in which points are mapped
to points but lines are mapped to half-spaces. Such embedding is always possible
if the dimension is high enough: every plane with point set P and line set L can
be embedded in RP by choosing eP (p) as the pth unit vector and eL(ℓ) as the
half-space with positive projection on the vector with 1 on points in ℓ and −1 on
points outside ℓ. The minimum dimension for which such an embedding exists is
captured by the sign rank of the underlying incidence matrix; namely it is either
the sign rank or the sign rank minus one.

Corollary 14. A finite projective plane of order n > 3 cannot be embedded in Rk

using half-spaces unless k > N1/4 − 1 with N = n2 + n + 1.

Roughly speaking, the corollary says that there are no efficient ways to embed
finite planes in real space using half-spaces.

§ 3. Proofs

3.1. Duality. Here we discuss the connection between Vapnik-Chervonenkis
dimension and dual sign rank.
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We start with an equivalent definition of dual sign rank, that is based on the
following notion. We say that a set of columns C is antipodally shattered in a sign
matrix S if for each v ∈ {±1}C either v or −v appears as a row in the restriction
of S to the columns in C. Equivalently, C is antipodally shattered if it is shattered
in the matrix

[
S
−S

]
.

Claim 15. The set of columns C is antipodally shattered in S if and only if in
every matrix M with sign(M) = S the columns in C are linearly independent.

Proof. First, assume C is such that there exists some M with sign(M) = S in
which the columns in C are linearly dependent. For a column j ∈ C denote
by M(j) the jth column in M . Let {αj : j ∈ C} be a set of real numbers such
that

∑
j∈C αjM(j) = 0 and not all αj ’s are zero. Consider the vector v ∈ {±1}C

such that vj = 1 if αj > 0 and vj = −1 if αj < 0. The restriction of S to C does
not contain v nor −v as a row, which certifies that C is not antipodally shattered
by S.

Second, let C be a set of columns which is not antipodally shattered in S. Let
v ∈ {±1}C be such that both v and −v do not appear as rows in the restriction
of S to C. Consider the subspace U = {u ∈ RC :

∑
j∈C ujvj = 0}. For each sign

vector s ∈ {±1}C such that s ̸= ±v the space U contains some vector us such that
sign(us) = s. Let M be such that sign(M) = S and, in addition, for each row
in S that has pattern s ∈ {±}C in S restricted to C, the corresponding row in M
restricted to C is us ∈ U . All rows in M restricted to C are in U , and therefore
the set {M(j) : j ∈ C} is linearly dependent.

Claim 15 is proved.

Now we prove Proposition 1.

Proof. That the dual sign rank is the Vapnik-Chervonenkis dimension of
[

S
−S

]
is

an immediate corollary of Claim 15. Next we show that

VC(S) 6 dual-sign-rank(S) 6 2VC(S) + 1.

The left-hand inequality: the Vapnik-Chervonenkis dimension of S is at most the
maximum size of a set of columns that is antipodally shattered in S, which by the
above claim equals the dual sign rank of S. The right-hand inequality: let C be
a largest set of columns that is antipodally shattered in S. By the claim above, the
dual sign rank of S is |C|. Let A ⊆ C such that |A| = ⌊|C|/2⌋. If A is shattered
in S then we are done. Otherwise, there exists some v ∈ {±1}A that does not
appear in S restricted to A. Since C is antipodally shattered by S, this implies
that S contains all patterns in {±1}C whose restriction to A is −v. In particular, S
shatters C \A which is of size at least ⌊|C|/2⌋.

Proposition 1 is proved.

3.2. Sign rank versus Vapnik-Chervonenkis dimension. In this section we
study the maximum possible sign rank of (N ×N)-matrices with Vapnik-Chervo-
nenkis dimension d, presenting the proofs of Theorems 5 and 4. We also show that
the arguments supply a new, short proof and an improved estimate for a problem
in asymptotic enumeration of graphs studied by [5].
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3.2.1. Vapnik-Chervonenkis dimension 1. Our goal in this section is to show that
sign matrices with Vapnik-Chervonenkis dimension 1 have sign rank at most 3, and
that 3 is tight. Before reading this section, it may be a nice exercise to prove that
the sign rank of the signed identity (N ×N)-matrix is exactly 3 (for N > 4).

Let us start by recalling a geometric interpretation of sign rank. Let M by a sign
(R×C)-matrix. A d-dimensional embedding of M using half-spaces consists of two
maps eR and eC such that for every row r ∈ [R] and column c ∈ [C] we have that
eR(r) ∈ Rd, eC(c) is a half-space in Rd and Mr,c = 1 if and only if eR(r) ∈ eC(c).
The important property for us is that if M has a d-dimensional embedding using
half spaces then its sign rank is at most d + 1. The +1 comes from the fact that
the hyperplanes defining the half spaces do not necessarily pass through the origin.

Our goal in this section is to embed M with Vapnik-Chervonenkis dimension 1 in
the plane using half spaces. The embedding is constructive and uses the following
known claim (see, for instance, Theorem 11 in [28]).

Claim 16 (see [28]). Let M be a sign (R × C)-matrix with Vapnik-Chervonenkis
dimension 1 such that no row appears twice in it and every column c is shattered
(that is, the two values ±1 appear in it). Then, there is a column c0 ∈ [C] and
a row r0 ∈ [R] such that Mr0,c0 ̸= Mr,c0 for all r ̸= r0 in [R].

Proof. For every column c denote by onesc the number of rows r ∈ [R] such that
Mr,c = 1, and let mc = min{onesc, R − onesc}. Assume without loss of generality
that m1 6 mc for all c and m1 = ones1. Since all columns are shattered, m1 > 1.
To prove the claim, it suffices to show that m1 6 1.

Assume for a contradiction that m1 > 2. For b ∈ {1,−1} denote by M (b) the
submatrix of M consisting of all rows r such that Mr,1 = b. The matrix M (1) has
at least two rows. Since all rows are different, there is a column c ̸= 1 such that
two rows in M (1) differ in c. Specifically, the column c is shattered in M (1). Since
VCdim(M) = 1, it follows that c is not shattered in M (−1), which means that the
value in column c is the same for all rows of the matrix M (−1). Therefore, mc < m1,
which is a contradiction. Claim 16 is proved.

The embedding we construct has an extra structure which allows the induction
to go through: the rows are mapped to points on the unit circle (that is, the set of
points x ∈ R2 such that ∥x∥ = 1).

Lemma 17. Let M be a sign (R×C)-matrix of Vapnik-Chervonenkis dimension 1
such that no row appears twice in it. Then, M can be embedded in R2 using half
spaces, where each row is mapped to a point on the unit circle.

The lemma immediately implies Theorem 2 due to the connection to sign rank
discussed above.

Proof. This follows by induction on C. If C = 1, the claim holds trivially.
The inductive step: if there is a column that is not shattered, then we can remove

it, apply induction, and then add a half-space that either contains or does not
contain all points, as necessary. So we can assume that all columns are shattered.
By Claim 16 we can assume without loss of generality that M1,1 = 1 but Mr,1 = −1
for all r ̸= 1.
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Denote by r0 the row of M such that Mr0,c = M1,c for all c ̸= 1, if such a row
exists. Let M ′ be the matrix obtained from M by deleting the first column, and
row r0 if it exists, so that no row in M ′ appears twice. By induction, there is an
appropriate embedding of M ′ in R2.

The following is illustrated in Figure 2. Let x ∈ R2 be the point on the unit
circle the first row in M ′ was mapped to (this row corresponds to the first row
of M as well). The half-spaces in the embedding of M ′ are defined by lines, which
mark the borders of the half spaces. The unit circle intersects these lines in finitely
many points. Let y and z be the two closest points to x among all these intersection
points. Let y′ be the point on the circle in the middle between x and y, and let z′ be
the point on the circle in the middle between x and z. Add to the configuration one
more half space which is defined by the line passing through y′ and z′. In addition,
if row r0 exists, then map r0 to the point x0 on the circle which is right in the
middle between y and y′.

Figure 2. An example of a neighbourhood of x. All other points in the
embedding of M ′ are to the left of y and right of z on the circle. The
half-space defined by the line through y′ and z′ is coloured light gray.

This is the construction. Its correctness follows by induction, by the choice of
the last added half space which separates x from all other points, and since if x0

exists it belongs to the same cell as x in the embedding of M ′. Lemma 17 is proved.

We conclude the section by showing that the bound 3 above cannot be improved.

Proof of Claim 3. One may deduce the claim from Forster’s argument, but we pro-
vide a more elementary argument. It suffices to consider the case N = 4. Consider
an arrangement of four half-planes in R2. These four half-planes partition R2 into
eight cones with different sign signatures, as illustrated in Figure 3. Let M be the
sign (8 × 4)-matrix whose rows are these sign signatures. The rows of M form
a distance-preserving cycle (that is, the distance along the cycle is the Hamming
distance) of length 8 in the discrete cube of dimension 4 10.

Finally, the signed identity matrix is not a submatrix of M . To see this, note
that the four rows of the signed identity matrix have pairwise Hamming distance 2,
but there are no such four points (nor even three points) on this cycle of length 8.

Claim 3 is proved.
10The graph with vertex set {±1}4 where every pair of vectors of Hamming distance 1 are

connected by an edge.
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Figure 3. Four lines defining four half planes, and the corresponding eight
sign signatures.

3.2.2. The upper bound. In this subsection we prove Theorem 5. The proof is
short, but requires several ingredients. The first has been mentioned already, and
appears in [6]. For a sign matrix S, let SC(S) denote the maximum number of sign
changes along a column of S. Define SC∗(S) = min SC(M), where the minimum is
taken over all matrices M obtained from S by a permutation of the rows.

Lemma 18 (see [6]). For any sign matrix S ,

sign-rank(S) 6 SC∗(S) + 1.

Of course, we can replace here rows by columns, but for our purpose the above
version will do. The second result we need is a theorem of [69] (see also [24]). As
observed, for example, in [50], plugging into its proof a result of [37] improves it by
a logarithmic factor, yielding the result we describe next. For a function g mapping
positive integers to positive integers we say that a sign matrix S satisfies a primal
shatter function g if for any integer t and any set I of m columns of S, the number
of distinct projections of the rows of S on I is at most g(t). Welzl’s result (after its
optimization following [37]) can be stated as follows11.

Lemma 19 (see [69] and also [24] and [50]). Let S be a sign matrix with N rows
that satisfies the primal shatter function g(t) = ctd for some constants c > 0 and
d > 1. Then SC∗(S) 6 O(N1−1/d).

Proof of Theorem 5. Let S be a sign (N × N)-matrix of Vapnik-Chervonenkis
dimension d > 1. By Sauer’s lemma [61], it satisfies the primal shatter function
g(t) = td. Hence, by Lemma 19, SC∗(S) 6 O(N1−1/d). Therefore, by Lemma 18,
sign-rank(S) 6 O(N1−1/d).

The theorem is proved.

On the tightness of the argument. The proof of Theorem 5 works, with essentially
no change, for a larger class of sign matrices than the ones with Vapnik-Chervonenkis
dimension d. Indeed, the proof shows that the sign rank of any (N×N)-matrix with

11The statement in [69] and the subsequent papers is formulated in terms of somewhat different
notions, but it is not difficult to check that it is equivalent to the statement below.
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primal shatter function at most ctd for some fixed c and d > 1 is at most O(N1−1/d).
In this statement the estimate is sharp for all integers d, up to a logarithmic factor.
This follows from the construction in [10], which supplies boolean (N×N)-matrices
such that the number of 1s in them is at least Ω(N2−1/d) and they contain no d
by D = (d − 1)! + 1 submatrices of 1s. These matrices satisfy the primal shatter
function g(t) = D

(
t
d

)
+

∑d−1
i=0

(
t
i

)
(with room to spare). Indeed, if we have more than

that many distinct projections on a set of t columns, we can omit all projections
of weight at most d− 1. Each additional projection contains 1s in at least one set
of size d, and the same d-set cannot be covered more than D times. Plugging this
matrix into the counting argument that gives a lower bound for the sign rank using
Lemma 21 proved below supplies an Ω(N1−1/d/ log N) lower bound for the sign
rank of many (N ×N)-matrices with primal shatter function O(td).

We have seen in Lemma 18 that sign rank is at most of order SC∗. Moreover,
for a fixed r, many of the sign (N × N)-matrices with sign rank at most r also
have SC∗ at most r. Indeed, a simple counting argument shows that the number
of N ×N sign matrices M with SC(M) < r is(

2 ·
r−1∑
i=0

(
N − 1

i

))N

= 2Ω(rN log N),

so the set of sign (N ×N)-matrices with SC∗(M) < r is a subset of size 2Ω(rN log N)

of all sign (N ×N)-matrices with sign rank at most r.
How many (N × N)-matrices of sign rank at most r are there? By Lemma 21

proved in the next section, this number is at most 2O(rN log N). So the set of matrices
with SC∗ < r is a rather large subset of the set of matrices with sign rank at most r.

It is reasonable, therefore, to wonder whether an inequality in the other direction
holds. Namely, whether all matrices of sign rank r have SC∗ order of r. We now
describe an example which shows that this is far from being true, and also demon-
strates the tightness of Lemma 19. Namely, for every constant d > 1 there are
(N ×N)-matrices S which satisfy the primal shatter function g(t) = ctd for a con-
stant c, and on the other hand SC∗(S) > Ω(N1−1/d). Consider the grid of points
P = [n]d as a subset of Rd. Denote by e1, . . . , ed the standard unit vectors in Rd.
For i ∈ [n − 1] and j ∈ [d], define the hyperplane hi,j = {x : ⟨x, ej⟩ > i + (1/2)}.
Denote by H the set of these d(n − 1) axis parallel hyperplanes. Let S be the
sign (P ×H)-matrix defined by P and H. That is, Sp,h = 1 if and only if p ∈ h.
First, the matrix S satisfies the primal shatter function ctd, since every family of t
hyperplanes partition Rd into at most ctd cells. Second, we show that

SC∗(S) >
nd − 1

d(n− 1)
>
|P |1−1/d

d
.

Indeed, fix some order on the rows of S, that is, order the points P = {p1, . . . , pN}
with N = |P |. The key point is that one of the hyperplanes h0 ∈ H is such that
the number of i ∈ [N − 1] for which Spi,h0 ̸= Spi+1,h0 is at least (nd− 1)/(d(n− 1)):
for each i there is at least one hyperplane h that separates pi and pi+1, that is,
for which Spi,h ̸= Spi+1,h. The number of such pairs of points is nd − 1, and the
number of hyperplanes is just d(n− 1).
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3.2.3. The lower bound. In this subsection we prove Theorem 4. Our approach
follows the one of [6], which is based on known bounds for the number of sign
patterns of real polynomials. A similar approach was subsequently used by [15]
to derive lower bounds for f(N, d) for d > 4, but here we do it in a slightly more
sophisticated way and get better bounds.

Although we can use the estimate in [6] for the number of sign matrices with
a given sign rank, we prefer to describe the argument by directly applying a result
of [68], described next.

Let P = (P1, P2, . . . , Pm) be a list of m real polynomials, each in ℓ variables.
Define the semi-variety

V = V (P ) = {x ∈ Rℓ : Pi(x) ̸= 0 for all 1 6 i 6 m}.

For x ∈ V , the sign pattern of P at x is the vector(
sign(P1(x)), sign(P2(x)), . . . , sign(Pm(x))

)
∈ {−1, 1}m.

Let s(P ) be the total number of sign patterns of P as x ranges over all of V . This
number is bounded from above by the number of connected components of V .

Theorem 20 (see [68]). Let P = (P1, P2, . . . , Pm) be a list of real polynomials,
each in ℓ variables and of degree at most k . If m > ℓ then the number of connected
components of V (P ) (and hence also s(P )) is at most (4ekm/ℓ)ℓ .

An (N × N)-matrix M is of rank at most r if and only if it can be written
as a product M = M1 · M2 of an (N × r)-matrix M1 by an (r × N)-matrix M2.
Therefore, each entry of M is a quadratic polynomial in the 2Nr variables describing
the entries of M1 and M2. We thus deduce the following from Warren’s Theorem
stated above. A similar argument was used by [16].

Lemma 21. Let r 6 N/2. Then, the number of sign (N × N)-matrices of sign
rank at most r does not exceed (O(N/r))2Nr 6 2O(rN log N) .

For a fixed r, this bound for the logarithm of the above quantity is tight up to
a constant factor: as argued in § 3.2.2, there are at least some 2Ω(rN log N) matrices
of sign rank r.

In order to derive the statement of Theorem 4 from the last lemma it suffices to
show that the number of sign (N×N)-matrices of Vapnik-Chervonenkis dimension d
is sufficiently large. We proceed to do so. It is more convenient to discuss boolean
matrices in what follows (instead of their signed versions).

Proof of Theorem 4. There are 4 parts as follows.
1) The case d = 2. Consider the incidence (N×N)-matrix A of the projective plane
with N points and N lines, considered in the previous sections. The number of 1s in
A is (1+o(1))N3/2, and it does not contain J2×2 (the all-1 (2×2)-matrix) as a sub-
matrix, since there is only one line passing through any two given points. Therefore,
any matrix obtained from it by replacing 1s by 0s has Vapnik-Chervonenkis dimen-
sion at most 2, since every matrix of Vapnik-Chervonenkis dimension 3 must contain
J2×2 as a submatrix. This gives us 2(1+o(1))N3/2

distinct sign (N ×N)-matrices of
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Vapnik-Chervonenkis dimension at most 2. Lemma 21 therefore establishes the
assertion of Theorem 4, part 1).

2) The case d = 3. Call a boolean (5× 4)-matrix heavy if its rows are the row con-
taining all 1s and four rows with Hamming weight 3. Call a boolean (5× 4)-matrix
heavy-dominating if there is a heavy matrix which is smaller or equal to it in every
entry.

We claim that there is a boolean (N × N)-matrix B such that the number
of 1s in it is at least Ω(N23/15), and it does not contain any heavy-dominating
(5×4)-submatrix. Given such a matrix B, any matrix obtained from B by replacing
some of the 1s by 0s have Vapnik-Chervonenkis dimension at most 3. This implies
part 2) of Theorem 4, using Lemma 21 as before.

The existence of B is proved by a probabilistic argument. Let C be a ran-
dom boolean matrix in which each entry, randomly and independently, is 1 with
probability p = 1

2N7/15 . Let X be the random variable counting the number of 1s
of C minus twice the number of 5 × 4 heavy-dominant submatrices C contains.
By linearity of expectation,

E(X) > N2p− 2N4+5p1·4+4·3 = Ω(N23/15).

Fix a matrix C for which the value of X is at least its expectation. Replace at most
two 1s by 0 in each heavy-dominant (5 × 4)-submatrix in C to get the required
matrix B.

3) The case d = 4. The basic idea is as before, but here there is an explicit
construction that beats the probabilistic one. Indeed, [22] constructed a boolean
(N ×N)-matrix B such that the number of 1s in B is at least Ω(N5/3) and it does
not contain J3×3 as a submatrix (see also [10] for another construction). No set
of five rows in every matrix obtained from this one by replacing 1s by 0s can be
shattered, implying the desired result as before.

4) The case d > 4. The proof here is similar to the one in part 2). We prove by
a probabilistic argument that there is a boolean (N ×N)-matrix B such that the
number of 1s in it is at least

Ω(N2−(d2+5d+2)/(d3+2d2+3d))

and it contains no heavy-dominant submatrix. Here, heavy-dominant means a 1 +
(d + 1) +

(
d+1
2

)
by d + 1 matrix that in each entry is greater than or equal to

the matrix whose rows are all the distinct vectors of length d + 1 and Hamming
weight at least d − 1. Any matrix obtained by replacing 1s by 0s in B cannot
have Vapnik-Chervonenkis dimension exceeding d. The result follows, again, from
Lemma 21.

We start as before with a random matrix C in which each entry, randomly and
independently, is chosen to be 1 with probability

p =
1
2
·N

2−1−(d+1)−(d+1
2 )−(d+1)

1·(d+1)+(d+1)·d+(d+1
2 )·(d−1)−1 =

1
2N (d2+5d+2)/(d3+2d2+3d)

.



Sign rank versus Vapnik-Chervonenkis dimension 1743

Let X be the random variable counting the number of 1s of C minus three times the
number of heavy-dominant submatrices C contains. As before, E(X) > Ω(N2p),
and by deleting some of the 1s in C we get B.

Theorem 4 is proved.

3.3. Sign rank and spectral gaps. The lower bound on the sign rank uses
Forster’s argument [31], who showed how to relate sign rank to spectral norm. He
proved that if S is a sign (N ×N)-matrix then

sign-rank(S) >
N

∥S∥
.

We would like to apply Forster’s theorem to the matrix S in our explicit examples.
The spectral norm of S, however, is too large to be useful: if S is ∆ 6 N/3
regular and x is the vector consisting entirely of 1s then Sx = (2∆ − N)x and
so ∥S∥ > N/3. Applying Forster’s theorem to S yields that its sign rank is Ω(1),
which is not informative.

Our solution is based on the observation that Forster’s argument actually proves
a stronger statement. His proof works as long as the entries of the matrix are not
too close to zero, as was already noticed in [32]. We therefore use a variant of the
spectral norm of a sign matrix S which we call star norm and denote by12

∥S∥∗ = min{∥M∥ : Mi,jSi,j > 1 for all i, j}.

Three comments seem appropriate:
(i) we do not think of the star norm as a norm;
(ii) it is always at most the spectral norm, ∥S∥∗ 6 ∥S∥;
(iii) every M in the above minimum satisfies sign-rank(M) = sign-rank(S).

Theorem 22 (see [32]). Let S be a sign (N ×N)-matrix. Then

sign-rank(S) >
N

∥S∥∗
.

For completeness, in § 3.3.2 we provide a short proof of this theorem (which
uses the main lemma from [31] as a ‘black box’). To get any improvement using
this theorem we must have ∥S∥∗ ≪ ∥S∥. It is not a priori obvious that there is
a matrix S for which this holds. The following lemma shows that spectral gaps
yield such examples.

Theorem 23. Let S be a ∆-regular sign (N ×N)-matrix with ∆ 6 N/2 and B its
boolean version. Then

∥S∥∗ 6
N · σ2(B)

∆
.

In other words, every regular sign matrix whose boolean version has a spectral
gap has a small star norm. Theorem 22 and Theorem 23 immediately imply Theo-
rem 6. In § 2.2 we provided concrete examples of matrices with a spectral gap, which
have applications in communication complexity, learning theory and geometry.

12The minimizer belongs to a closed subset of the bounded set {M : ∥M∥ 6 ∥S∥}.
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Proof of Theorem 23. Define the matrix

M =
N

∆
B − J.

Observe that since N > 2∆ it follows that Mi,jSi,j > 1 for all i and j. So,

∥S∥∗ 6 ∥M∥.

Since B is regular, the vector y consisting entirely of 1s is a singular vector of B
with singular value ∆. Specifically, My = 0. For every x write x = x1 + x2, where
x1 is the projection of x on y and x2 is orthogonal to y. Thus,

⟨Mx, Mx⟩ = ⟨Mx2, Mx2⟩ =
N2

∆2
⟨Bx2, Bx2⟩.

Note that ∥B∥ 6 ∆ (and hence ∥B∥ = ∆). Indeed, since B is regular, there are ∆
permutation matrices B(1), . . . , B(∆) such that B is their sum. The spectral norm
of each B(i) is one. The desired bound follows by the triangle inequality.

Finally, since x2 is orthogonal to y,

∥Bx2∥ 6 σ2(B) · ∥x2∥ 6 σ2(B) · ∥x∥.

So,

∥M∥ 6
N · σ2(B)

∆
.

Theorem 23 is proved.

3.3.1. Limitations. It is interesting to understand whether the approach above can
give a better lower bound on sign rank. There are two parts to the argument:
Forster’s argument, and the upper bound on ∥S∥∗. We can try to improve each of
the two parts separately.

Any improvement over Forster’s argument would be very interesting, but as
mentioned there is no significant improvement over it even without the restriction
induced by Vapnik-Chervonenkis dimension, so we do not discuss it further.

To improve the second part we would like to find examples with the biggest spec-
tral gap possible. The Alon-Boppana theorem [54] optimally describes limitations
on spectral gaps. The second eigenvalue σ of a ∆-regular graph is not too small,

σ > 2
√

∆− 1− o(1),

where the o(1) term vanishes when N tends to infinity (a similar statement holds
when the diameter is large [54]). Specifically, the best lower bound on sign rank
this approach can yield is roughly

√
∆/2, at least when ∆ 6 No(1).

But what about general lower bounds on ∥S∥∗? It is well known that any sign
(N×N)-matrix S satisfies ∥S∥ >

√
N . We prove a generalization of this statement.

Lemma 24. Let S be a sign (N ×N)-matrix. For i ∈ [N ] let γi be the minimum
between the number of 1s and the number of −1s in the ith row. Let γ = γ(S) =
max{γi : i ∈ [N ]}. Then

∥S∥∗ >
N − γ
√

γ + 1
.
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This lemma provides limitations on the bound from Theorem 23. Indeed, γ(S) 6
N/2 and (N − γ)/(

√
γ + 1) is a monotone decreasing function of γ, which implies

that ∥S∥∗ > Ω(
√

N). Interestingly, Lemma 24 and Theorem 23 provide a quan-
titatively weaker but a more general statement than the Alon-Boppana theorem:
if B is a ∆-regular boolean (N ×N)-matrix with ∆ 6 N/2, then

N · σ2(B)
∆

>
N −∆√
∆ + 1

=⇒ σ2(B) >

(
1− ∆

N

)
(
√

∆− 1).

This bound is off by roughly a factor of 2 when the diameter of the graph is large.
When the diameter is small, like in the case of the projective plane, which we
discuss in more detail below, this bound is actually almost tight: the second largest
singular value of the boolean point-line incidence matrix of a projective plane of
order n is

√
n while this matrix is n + 1 regular (compare with [3], for example).

It is perhaps worth noting that in fact here there is a simple argument that gives
a slightly stronger result for boolean regular matrices. The sum of squares of the
singular values of B is the trace of BtB, which is N∆. As the spectral norm is ∆,
the sum of squares of the other singular values is N∆−∆2 = ∆(N −∆), implying
that

σ2(B) >

√
∆(N −∆)

N − 1
,

which is (slightly) larger than the bound above.

Proof of Lemma 24. Let M be a matrix such that ∥M∥ = ∥S∥∗ and Mi,jSi,j > 1
for all i and j. Assume without loss of generality13 that γi is the number of −1s in
the ith row of S. If γ = 0, then S has only positive entries which implies ∥M∥ > N
as claimed. So we may assume that γ > 1. Let t be the largest real such that

t2 =
(N − γ − t)2

γ
. (3.1)

That is, if γ = 1 then t = (N − γ)/2 and if γ > 1 then

t =
−(N − γ) +

√
(N − γ)2 + (γ − 1)(N − γ)2

γ − 1
.

In both cases,

t =
N − γ
√

γ + 1
.

We shall prove that
∥M∥ > t.

There are two cases to consider. One is that for all i ∈ [N ] we have
∑

j Mi,j > t.
In this case, if x is the vector consisting entirely of 1s then

∥M∥ >
∥Mx∥
∥x∥

> t.

13Multiplying a row by −1 does not affect ∥S∥∗.
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The second case is that there is i ∈ [N ] such that
∑

j Mi,j < t. Assume without
loss of generality that i = 1. Denote by C the subset of the columns j such that
M1,j < 0. Thus,∑

j∈C

|M1,j | >
∑
j ̸∈C

M1,j − t > |[N ] \ C| − t > N − γ − t,

|Mi,j | > 1 for all i, j, |C| 6 γ.

Convexity of x 7→ x2 implies that(∑
j∈C

|M1,j |
)2

6 |C|
∑
j∈C

M2
1,j ,

so by (3.1) ∑
j

M2
1,j >

(N − γ − t)2

γ
= t2.

In this case, if x is the vector with 1 in the first entry and 0 in all other entries then

∥(M)T x∥ =
(∑

j

M2
1,j

)1/2

> t = t∥x∥.

Since ∥(M)T ∥ = ∥M∥, it follows that ∥M∥ > t.
Lemma 24 is proved.

3.3.2. Forster’s theorem. Here we provide a proof of Forster’s theorem, which is
based on the following key lemma, which he proved.

Lemma 25 (see [31]). Let X ⊂ Rk be a finite set in general position, that is, every
k vectors in it are linearly independent. Then, there exists an invertible matrix B
such that ∑

x∈X

1
∥Bx∥2

Bx⊗Bx =
|X|
k

I,

where I is the identity matrix and Bx ⊗ Bx is the rank 1 matrix with (i, j) entry
(Bx)i(Bx)j .

The lemma shows that every X in general position can be linearly mapped
to BX, that is, in some sense, equidistributed. In a nutshell, the proof of the
lemma is by finding B1, B2, . . . such that each Bi makes Bi−1X closer to being
equidistributed, and finally using that the underlying object is compact, so that
this process reaches its goal.

Proof of Theorem 22. Let M be a matrix such that ∥M∥ = ∥S∥∗ and Mi,jSi,j > 1
for all i and j. Clearly, sign-rank(S) = sign-rank(M). Let X and Y be two subsets
of size N of unit vectors in Rk with k = sign-rank(M) such that ⟨x, y⟩Mx,y > 0 for
all x and y. Lemma 25 says that we can assume that∑

x∈X

x⊗ x =
N

k
I. (3.2)
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If necessary replace X by BX and Y by (BT )−1Y , and then normalize (the assump-
tion required in the lemma that X is in general position may be obtained by a slight
perturbation of its vectors).

The proof continues by bounding D =
∑

x∈X,y∈Y Mx,y⟨x, y⟩ in two different
ways.

First, bound D from above: observe that for every pair of vectors u and v the
Cauchy-Schwartz inequality implies

⟨Mu, v⟩ 6 ∥Mu∥ ∥v∥ 6 ∥M∥ ∥u∥ ∥v∥. (3.3)

Thus,

D =
k∑

i=1

∑
x∈X

∑
y∈Y

Mx,yxiyi 6
k∑

i=1

∥M∥
(∑

x∈X

x2
i

)1/2(∑
y∈Y

y2
i

)1/2

6 ∥M∥
( k∑

i=1

∑
x∈X

x2
i

)1/2( k∑
i=1

∑
y∈Y

y2
i

)1/2

= ∥M∥N. (3.4)

Second, bound D from below: since |Mx,y| > 1 and |⟨x, y⟩| 6 1 for all x and y,
using (3.2),

D =
∑
x∈X

∑
y∈Y

Mx,y⟨x, y⟩ >
∑
x∈X

∑
y∈Y

(⟨x, y⟩)2 =
∑
y∈Y

∑
x∈X

⟨y, (x⊗ x)y⟩

=
N

k

∑
y∈Y

⟨y, y⟩ =
N2

k
.

Theorem 22 is proved.

3.4. Applications.

3.4.1. Explicit examples. Here we prove Theorem 7 and Theorem 8.

Proof of Theorem 7. It is well known that the Vapnik-Chervonenkis dimension of A
is d, but we provide a brief explanation. The Vapnik-Chervonenkis dimension is at
least d by considering any set of d independent points (that is, such that no strict
subset of it spans it). The Vapnik-Chervonenkis dimension is at most d since every
set of d + 1 points in a d-dimensional space is dependent.

The lower bound on the sign rank follows immediately from Theorem 6 and the
following known bound on the spectral gap of these matrices.

Lemma 26. If B is the boolean version of A then

σ2(B)
∆

=
n(d−1)/2(n− 1)

nd − 1
6 N

−1/2+1/(2d)
n,d .

The proof is so short that we include it here.

Proof of Lemma 26. We use the following two known properties (see [17], for
instance) of projective spaces. Both the number of distinct hyperplanes through
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a point and the number of distinct points on a hyperplane are Nn,d−1. The number
of hyperplanes through two distinct points is Nn,d−2.

The first property implies that A is ∆ = Nn,d−1-regular. These properties also
imply

BBT = (Nn,d−1 −Nn,d−2)I + Nn,d−2J = nd−1I + Nn,d−2J,

where J is the matrix consisting entirely of 1s. Therefore, all singular values except
the maximum one are n(d−1)/2.

Lemma 26 is proved.

Proof of Theorem 8. We first show that R is indeed a maximum class of Vapnik-
Chervonenkis dimension 2. The Vapnik-Chervonenkis dimension of R is 2: it is at
least 2 because R contains the set of lines whose Vapnik-Chervonenkis dimension
is 2. It is at most 2 because no three points p1, p2 and p3 are shattered. Indeed if
they all belong to a line ℓ then without loss of generality according to the order of ℓ
we have p1 < p2 < p3 which implies that the pattern 101 is missing. Otherwise,
they are not co-linear and the pattern 111 is missing.

To see that R is a maximum class, note that there are exactly N + 1 intervals
of size at most one (one empty interval and N singletons). For each line ℓ ∈ L the
number of intervals of size at least two which are subsets of ℓ is exactly

(|ℓ|
2

)
=

(
n+1

2

)
.

Since every two distinct lines intersect in exactly one point, it follows that each
interval of size at least two is a subset of exactly one line. It follows that the
number of intervals is

1 + N + N ·
(

n + 1
2

)
= 1 + N +

(
N

2

)
.

Thus, R is indeed a maximum class of Vapnik-Chervonenkis dimension 2.
Next we show that there exists a choice of a linear order for each line such that the

resulting R has sign rank Ω(N1/2/ log N). By the proof of Theorem 4, case d = 2,
there is a choice of a subset for each line such that the resulting N subsets form
a class of sign rank Ω(N1/2/ log N). We can therefore pick the linear orders in such
a way that each of these N subsets forms an interval, and the resulting maximum
class (of all possible intervals with respect to these orders) has sign rank at least as
large as Ω(N1/2/ log N).

3.4.2. Computing the sign rank. In this section we describe an efficient algorithm
that approximates the sign rank (Theorem 9).

The algorithm uses the following notion. Let V be a set. A pair {v, u} ⊆ V
is crossed by a vector c ∈ {±1}V if c(v) ̸= c(u). We also say that the vector c is
crossed by the pair {u, v}. Let T be a tree with vertex set V = [N ] and edge set E.
Let S be a sign (V × [N ])-matrix. The stabbing number of T in S is the largest
number of edges in T that are crossed by the same column of S. For example,
if T is a path then T defines a linear order (permutation) on V and the stabbing
number is the largest number of sign changes among all columns with respect to
this order.

Welzl [69] gave an efficient algorithm for computing a path T with a low stabbing
number for matrices S with Vapnik-Chervonenkis dimension d. The analysis of the
algorithm can be improved by a logarithmic factor using a result of [37].
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Theorem 27 (see [69] and [37]). There exists a polynomial time algorithm that,
given a sign (V × [N ])-matrix S with |V | = N , outputs a path on V with stabbing
number at most 200N1−1/d where d = VC(S).

For completeness and since to the best of our knowledge no explicit proof of this
theorem appears in print, we provide a description and analysis of the algorithm.
We assume without loss of generality that the rows of S are pairwise distinct.

We start by handling the case14 d = 1. In this case we output directly a tree
that is a path (that is, a linear order on V ). If d = 1, then Claim 16 implies that
there is a column with at most 2 sign changes with respect to any order on V .
The algorithm first finds by recursion a path T for the matrix obtained from S
by removing this column, and outputs the same path T for the matrix S as well.
By induction, the resulting path has stabbing number at most 2 (when there is
a single column the stabbing number can be made 1).

For d > 1, the algorithm constructs a sequence of N forests F0, F1, . . . , FN−1

over the same vertex set V . The forest Fi has exactly i edges and is defined by
greedily adding an edge ei to Fi−1. As we prove below, the tree FN−1 has a stabbing
number at most 100N1−1/d. The tree FN−1 is transformed into a path T as follows.
Let v1, v2, . . . , v2N−1 be an eulerian path in the graph obtained by doubling every
edge in FN−1. This path traverses each edge of FN−1 exactly twice. Let S′ be the
matrix with 2N − 1 rows and N columns obtained from S be putting row vi in S
as row i, for i ∈ [2N − 1]. The number of sign changes in each column in S′ is at
most 2 · 100N1−1/d. Finally, let T be the path obtained from the eulerian path by
leaving a single copy of each row of S. Since deleting rows from S′ cannot increase
the number of sign changes, the path T is as stated.

The edge ei is chosen as follows. The algorithm maintains a probability distri-
bution pi on [N ]. The weight wi(e) of the pair e = {v, u} is the probability mass
of the columns e crosses, that is,

wi(e) = pi({j ∈ [N ] : Su,j ̸= Sv,j}).

The algorithm chooses ei as an edge with minimum wi-weight among all edges that
are not in Fi−1 and do not close a cycle in Fi−1.

The distributions p1, . . . , pN are chosen iteratively as follows. The first distribu-
tion p1 is the uniform distribution on [N ]. The distribution pi+1 is obtained from pi

by doubling the relative mass of each column that is crossed by ei. That is, let xi =
wi(ei) and for every column j that is crossed by ei define pi+1(j) = 2pi(j)/(1 + xi)
and for every other column j define pi+1(j) = pi(j)/(1 + xi).

This algorithm clearly produces a tree on V , and the running time is indeed
polynomial in N . It remains to prove correctness. We claim that each column is
crossed by at most O(N1−1/d) edges in T . To see this, let j be a column in S, and
let k be the number of edges crossing j. It follows that

pN (j) =
1
N
· 2k · 1

(1 + x1)(1 + x2) · · · (1 + xN−1)
.

To bound k above we use the following claim.
14This analysis also provides an alternative proof for Lemma 17.
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Claim 28. For every i we have xi 6 4e2(N − i)−1/d .

The claim completes the proof of Theorem 27: since pN (j) 6 1 and d > 1,

k 6 log N + log(1 + x1) + · · ·+ log(1 + xN−1)

6 log(N) + 2
(
ln(1 + x1) + · · ·+ ln(1 + xN−1)

)
6 log(N) + 2(x1 + · · ·+ xN−1) 6 log N + 8e2N1−1/d 6 100N1−1/d,

∀x : log(x) 6 2 ln(x).

The claim follows from the following theorem of Haussler.

Theorem 29 (see [37]). Let p be a probability distribution on [N ] and let ε > 0.
Let S ∈ {±1}V×[N ] be a sign matrix of Vapnik-Chervonenkis dimension d such that
the p-distance between every two distinct rows u and v is large:

p({j ∈ [N ] : Sv,j ̸= Su,j}) > ε.

Then, the number of distinct rows in S is at most

e(d + 1)
(

2e

ε

)d

6

(
4e2

ε

)d

.

Proof of Claim 28. Haussler’s theorem states that if the number of distinct rows
is M , then there must be two distinct rows of pi-distance at most 4e2M−1/d. There
are N − i connected components in Fi. Pick N − i rows, one from each component.
Therefore, there are two of these rows whose distance is at most 4e2M−1/d =
4e2(N − i)−1/d. Now, observe that the wi-weight of the pair {u, v} equals the
pi-distance between u and v. Since ei is chosen to have the minimum weight, we
have xi 6 4e2(N − i)−1/d. Claim 28 and, hence, Theorem 27 are proved.

We now describe the approximation algorithm. Let S be a sign (N ×N)-matrix
of Vapnik-Chervonenkis dimension d. Run Welzl’s algorithm on S and get a per-
mutation of the rows of S that yield a low stabbing number. Let s be the maximum
number of sign changes among all columns of S with respect to this permutation.
Output s + 1 as the approximation to the sign rank of S.

We now analyze the approximation ratio. By Lemma 18 the sign rank of S is at
most s + 1. Therefore, the approximation factor

s + 1
sign-rank(S)

is at least 1. On the other hand, Proposition 1 implies that d 6 sign-rank(S). Thus,
by the guarantee of Welzl’s algorithm,

s + 1
sign-rank(S)

6 O

(
N1−1/d

sign-rank(S)

)
6 O

(
N1−1/d

d

)
.

This factor is maximized for d = Θ(log N) and is therefore at most O(N/ log N).
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3.4.3. Counting Vapnik-Chervonenkis classes. Here we prove Theorems 11 and 12.
It is convenient for both to set

f =
d∑

i=0

(
N

i

)
.

Proof of Theorem 11. We start with the upper bound. Enumerate the members of
each such class C as follows. Start with the (lexicographically) first member c ∈ C,
call it c1. Assuming that c1, c2, . . . , ci have already been chosen, let ci+1 be the
member c among the remaining vectors in C whose Hamming distance from the set
{c1, . . . , ci} is minimum (in case of equalities we take the first one lexicographically).
This gives an enumeration c1, . . . , cm of the members of C, and m 6 f .

We now bound the number of possible families above. There are at most 2N

ways to choose c1. If the distance of ci+1 from the previous sets is h = hi+1, then
we can determine ci+1 by giving the index j 6 i such that the distance between
ci+1 and cj is h, and by giving the symmetric difference of ci+1 and cj . There are
fewer than m 6 f ways to choose the index, and at most

(
N
h

)
< (eN/h)h options

for the symmetric difference. The crucial point is that by Theorem 29 the number
of the i for which hi > D is less than e(d+1)(2eN/D)d. Hence the number of the i
for which hi is between 2ℓ and 2ℓ+1 is at most e(d + 1)(2eN/2ℓ)d. This bounds
c(N, d) above by at most

2Nmf
∏

ℓ

((
eN

2ℓ+1

)2ℓ+1)e(d+1)(2eN/2ℓ)d

6 2NffN (O(N))d

= N (O(N))d

.

We now present a lower bound on the number of (maximum) classes with Vapnik-
Chervonenkis dimension d. Take a family F of

(
N
d

)
/(d + 1) subsets of [N ] of size

(d + 1) such that every subset of size d is contained in exactly one of them. Such
families exist by a recent breakthrough result of Keevash [41], provided that N >
N0(d) and the divisibility conditions hold:

(
N−k
d−k

)
/(d + 1 − k) is an integer for all

0 6 k < d. So we obtain such a family by picking N > N0(d) that satisfies the
divisibility conditions (for instance, one can check that (d− 1)+ q · (d+1)! satisfies
the divisibility conditions for any q, therefore picking a large enough q yields such
an N > N0(d)). Keevash’s proof also gives that there are N (1+o(1))(N

d)/(d+1) such
families.

Now, construct a class C by taking all subsets of cardinality at most d− 1, and
for each (d + 1)-subset in the family F take it and all its subsets of cardinality d
besides one. The Vapnik-Chervonenkis dimension of C is indeed d. The number
of possible Cs that can be constructed in this way is at least the number of the
families F . Therefore, the number of classes of Vapnik-Chervonenkis dimension d
is at least the number of F s:

N (1+o(1))(N
d)/(d+1) = NΩ(Nd/dd+1).

Note we can actually use in a similar manner any family of (d + 1)-subsets such
that no d-subset is contained in two of them. One can show using the Rödl-Nibble
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(see, for instance, [1]) that there are many such families, and hence we do not really
require either the divisibility condition or Keevash’s result.

Theorem 11 is proved.

Proof of Theorem 12. For the upper bound we use the known fact that every max-
imum class is a connected subgraph of the boolean cube [36]. Thus, to bound
the number of maximum classes of Vapnik-Chervonenkis dimension d above it is
enough to bound the number of connected subgraphs of the N -dimensional cube of
size f above. It is known (see, for example, Lemma 2.1 in [4]) that the number of
connected subgraphs of size k in a graph with m vertices and maximum degree D
is at most m(eD)k. In our case, plugging in k = f , m = 2N and D = N yields the
desired bound 2N (eN)f = N (1+o(1))f .

For the lower bound, note that in the proof of Theorem 11 the constructed classes
were of size f and therefore were maximum classes. Therefore, there are at least
N (1+o(1))(N

d)/(d+1) maximum classes of Vapnik-Chervonenkis dimension d.
Theorem 12 is proved.

3.4.4. Counting graphs.

Proof of Theorem 13. The key observation is that whenever we split the vertices of
a U(d+1)-free graph into two disjoint sets of equal size, the bipartite graph between
them defines a matrix of Vapnik-Chervonenkis dimension at most d. Therefore, by
Lemma 19 there is a reordering of the rows of the matrix such that the number
of sign changes in every column is at most O(N1−1/d). It follows that after such
a reordering the number of possible columns is at most(

N

O(N1−1/d)

)
= 2O(d−1N1−1/d log N).

Hence the number of such bipartite graphs is at most

T (N, d) = 2O(d−1N2−1/d log N).

By a known lemma of Shearer [25], this implies that the total number of U(d+1)-free
graphs on N vertices is less than T (N, d)2 = 2O(d−1N2−1/d log N). For completeness,
we include simple details. The lemma we use is the following.

Lemma 30 (see [25]). Let F be a family of vectors in S1 × S2 · · · × Sn . Let G =
{G1, . . . , Gm} be a collection of subsets of [n], and suppose that each element i ∈ [n]
belongs to at least k members of G . For 1 6 i 6 m let Fi be the set of all projections
of the members of F onto the coordinates in Gi . Then

|F |k 6
m∏

i=1

|Fi|.

In our application, n =
(
N
2

)
and S1 = · · · = Sn = {0, 1}. The vectors represent

graphs on N vertices, each vector being the characteristic vector of a graph on N
labelled vertices. The set [n] corresponds to the set of all

(
N
2

)
potential edges. The

family F represents all U(d + 1)-free graphs. The collection G is the set of all
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complete bipartite graphs with N/2 vertices in each colour class. Each edge i ∈ [n]
belongs to at least (in fact a bit more than) half of them, that is, k > m/2. Hence

|F | 6
( m∏

i=1

|Fi|
)2/m

6 ((T (N, d))m)2/m

as desired. The lemma is proved.

§ 4. Concluding remarks and open problems

We have given explicit examples of sign (N × N)-matrices with small Vapnik-
Chervonenkis dimension and large sign rank. However, we have not been able to
prove that any of them has sign rank exceeding N1/2. Indeed this seems to be
the limit of Forster’s approach, even if we do not bound the Vapnik-Chervonenkis
dimension. Forster’s theorem shows that the sign rank of any Hadamard (N ×N)-
matrix is at least N1/2. It is easy to see that there are Hadamard matrices of sign
rank significantly smaller than linear in N . Indeed, the sign rank of the signed
identity (4× 4)-matrix is 3, and hence the sign rank of its kth tensor power, which
is an Hadamard (N×N)-matrix with N = 4k, is at most 3k = N log 3/ log 4 (a similar
argument was given by [34] for the Sylvester-Hadamard matrix). It may well be,
however, that some Hadamard matrices have sign rank linear in N , as do random
sign matrices, and it will be very interesting to show that this is the case for some
such matrices. It will also be interesting to decide what is the correct behaviour of
the sign rank of the incidence graph of the points and lines of a projective plane
with N points. We have seen that it is at least Ω(N1/4) and at most O(N1/2).

Using our spectral technique we can give many additional explicit examples of
matrices with high sign rank, including ones for which the matrices not only have
Vapnik-Chervonenkis dimension 2, but are more restricted than that (for example,
no 3 columns have more than 6 distinct projections).

We have shown that the maximum sign rank f(N, d) of an (N ×N)-matrix with
Vapnik-Chervonenkis dimension d > 1 is at most O(N1−1/d), and that this is tight
up to a logarithmic factor for d = 2, and close to being tight for large d. It seems
plausible to conjecture that f(N, d) = Θ̃(N1−1/d) for all d > 1.

We have also showed how to use this upper bound to get a nontrivial approxi-
mation algorithm for the sign rank. It will be interesting to fully understand the
computational complexity of computing the sign rank.

Finally we note that most of the analysis in this paper can be extended to deal
with (M×N)-matrices, where M and N are not necessarily equal, and we restricted
attention here to square matrices mainly in order to simplify the presentation.
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