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Abstract

For an undirected graph G = (V,E), let Gn denote the graph whose vertex set is V n in which
two distinct vertices (u1, u2, . . . , un) and (v1, v2, . . . , vn) are adjacent iff for all i between 1 and
n either ui = vi or uivi ∈ E. The Shannon capacity c(G) of G is the limit limn→∞(α(Gn))1/n,
where α(Gn) is the maximum size of an independent set of vertices in Gn. We show that there
are graphs G and H such that the Shannon capacity of their disjoint union is (much) bigger than
the sum of their capacities. This disproves a conjecture of Shannon raised in 1956.

1 Introduction

For an undirected graph G = (V,E), let Gn denote the graph whose vertex set is V n in which two
distinct vertices (u1, u2, . . . , un) and (v1, v2, . . . , vn) are adjacent iff for all i between 1 and n either
ui = vi or uivi ∈ E. The Shannon capacity c(G) of G is the limit limn→∞(α(Gn))1/n, where α(Gn) is
the maximum size of an independent set of vertices in Gn. This limit exists, by super-multiplicativity,
and it is always at least α(G). (It is worth noting that it is sometimes customary to call log c(G) the
Shannon capacity of G, but we prefer to use here the above definition, following Lovász [12].)

The study of this parameter was introduced by Shannon in [14], motivated by a question in
Information Theory. Indeed, if V is the set of all possible letters a channel can transmit in one
use, and two letters are adjacent if they may be confused, then α(Gn) is the maximum number of
messages that can be transmitted in n uses of the channel with no danger of confusion. Thus c(G)
represents the number of distinct messages per use the channel can communicate with no error while
used many times.

The (disjoint) union of two graphs G and H, denoted G + H, is the graph whose vertex set is
the disjoint union of the vertex sets of G and of H and whose edge set is the (disjoint) union of the
∗Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel

Aviv, Israel. Part of this work was done at DIMACS and at the Institute for Advanced Study, Princeton, NJ 08540,

USA. Research supported in part by a grant from the the Israel Science Foundation, by a State of New Jersey grant

and by the Hermann Minkowski Minerva Center for Geometry at Tel Aviv University. Email: noga@math.tau.ac.il.

AMS Subject Classification: 05C35,05D10,94C15.

1



edge sets of G and H. If G and H are graphs of two channels, then their union represents the sum
of the channels corresponding to the situation where either one of the two channels may be used, a
new choice being made for each transmitted letter.

Shannon [14] proved that for every G and H, c(G+H) ≥ c(G) + c(H) and that equality holds if
the vertex set of one of the graphs, say G, can be covered by α(G) cliques. He conjectured that in
fact equality always holds. In this paper we prove that this is false in the following strong sense.

Theorem 1.1 For every k there is a graph G so that the Shannon capacity of the graph and that of
its complement G satisfy c(G) ≤ k, c(G) ≤ k, whereas c(G+G) ≥ k(1+o(1)) log k

8 log log k and the o(1)-term
tends to zero as k tends to infinity.

The proof, (which contains an explicit description of G) is based on some of the ideas of Frankl and
Wilson [6], the basic approach of [1] (see also [4] for a similar technique), and one of the ideas in [3]
(see also [2]).

A simpler, small counterexample to the conjecture of Shannon can be given using similar ideas
together with a construction of Haemers [8], [9]. This gives the following.

Theorem 1.2 There exists a graph G on 27 vertices so that c(G) ≤ 7, c(G) = 3, whereas c(G+G) ≥
2
√

27 ( > 10).

As a byproduct of our proof of Theorem 1.1 we obtain, for every fixed integer g ≥ 2, and for
every integer k > k0(g), an explicit edge coloring of a complete graph on kΩ((log k/ log log k)g−1) vertices
with g colors, containing no monochromatic complete subgraph on k vertices. This extends the
construction of [6] which provides such a coloring for g = 2.

2 Bounding the capacity

The following simple proposition supplies a lower bound for the Shannon capacity of the union of
any graph with its complement.

Theorem 2.1 Let G = (V,E) be a graph on |V | = m vertices, and let G denote its complement.
Then c(G+G) ≥ 2

√
m.

Proof. Denote the set of vertices of G + G by A ∪ B where A = {a1, a2, . . . , am} and B =
{b1, b2, . . . , bm} are the vertex sets of the copy of G and of that of G, respectively, and where aiaj
is an edge iff bibj is not an edge. Thus there are no edges of the form aibj . Let n be a positive
integer, and let S denote the set of all vectors v = (v1, v2, . . . , v2n) of length 2n of G+G satisfying
the following two properties:
1. |{i : vi ∈ A}| = |{j : vj ∈ B}| = n.

2. For each index i, 1 ≤ i ≤ n, if in v, ar is the the i-th coordinate from the left that belongs to A,
and bs is the i-th coordinate from the left that belongs to B, then r = s.
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Obviously, |S| =
(2n
n

)
mn, since there are

(2n
n

)
ways to choose the location of the coordinates

of A in v, and once these are chosen there are mn ways to choose the actual coordinates, thus
determining the coordinates of B as well. In addition, S is an independent set in Gn. Indeed, if v
and u = (u1, u2, . . . , u2n) are two distinct members of S, then if there is a coordinate t such that
ut ∈ A and vt ∈ B (or vice versa), then clearly u and v are not adjacent in (G+G)n. Otherwise, there
must be r and s between 1 and 2n and two distinct indices 1 ≤ i, j ≤ n such that ur = ai, us = bi

and vr = aj , vs = bj . Since ai and aj are adjacent iff bi and bj are not, it follows that in this case as
well u and v are not adjacent. Therefore for every n, α((G+G)2n) ≥ |S| =

(2n
n

)
mn, implying that

c((G+G) ≥ lim
n→∞

[

(
2n
n

)
mn]1/(2n) = 2

√
m.

2

Remark: It is worth noting that trivially, the set {(ai, bi) : 1 ≤ i ≤ m} ∪ {(bi, ai) : 1 ≤ i ≤ m}, is
an independent set of vertices in the square of G + G, showing that c((G + G) ≥

√
2m. Although

this suffices for the lower bound in the proof of our main result, we prefer to include the proof of the
stronger result. The stronger assertion is tight for any vertex transitive, self-complementary graph,
as follows from the result of Lovász [12] that for each such graph on m vertices, c(G) =

√
m.

We next describe an upper bound for the Shannon capacity of any graph. This bound is strongly
related to the one described by Haemers in [8], but for our propose here it is more convenient to
formulate it using polynomials rather than matrices as in [8]. For two graphs G = (V,E) and
H = (U, T ), the product G · H is the graph whose vertex set is the Cartesian product V × U in
which two distinct vertices (v, u) and (v′, u′) are adjacent iff v, v′ are either equal or adjacent in G

and u, u′ are either equal or adjacent in H. Note that this product is associative and Gn is simply
the product of n copies of G.

Let G = (V,E) be a graph and let F be a subspace of the space of polynomials in r variables
over a field F . A representation of G over F is an assignment of a polynomial fv in F to each vertex
v ∈ V and an assignment of a point cv ∈ F r to each v ∈ V such that the following two conditions
hold:
1. For each v ∈ V , fv(cv) 6= 0.
2. If u and v are distinct nonadjacent vertices of G then fv(cu) = 0.

Lemma 2.2 Let G = (V,E) be a graph and let F be a subspace of the space of polynomials in r

variables over a field F . If G has a representation over F then α(G) ≤ dim(F).

Proof. Let {fv(x1, . . . , xr) : v ∈ V } and {cv : v ∈ V } be the representation, and let S be an
independent set of vertices of G. We claim that the polynomials {fv : v ∈ S} are linearly independent
in F . Here is the short, standard argument: if

∑
v∈S βvfv(x1, . . . , xr) = 0 then, if u ∈ S, by

substituting (x1, . . . , xr) = cu we conclude that βu = 0. Therefore |S| ≤ dim(F), completing the
proof. 2
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The tensor product F⊗H of two spaces of polynomials F and H over the same field, is the space
spanned by all polynomials f(x1, . . . , xr) · h(y1, . . . , ys) where f ∈ F , h ∈ H.

Lemma 2.3 Let G = (V,E) and H = (U, T ) be two graphs. Suppose G has a representation
{fv(x1, . . . , xr), cv : v ∈ V } over F and H has a representation {hu(y1, . . . , ys), du : u ∈ U} over H,
where F and H are spaces of polynomials over the same field F . Then {fv ·hu, cvdu : (v, u) ∈ V ×U}
is a representation of G ·H over F ⊗H, where cvdu denotes the concatenation of the vectors cv and
du. Therefore, α(G ·H) ≤ dim(F)dim(H).

Proof. By definition, for every (v, u), (v′, u′) ∈ V × U ,

fv · hu(cv′du′) = fv(cv′) · hu(du′).

This product is nonzero for (v, u) = (v′, u′) and is zero for every two distinct nonadjacent vertices
(v, u) and (v′, u′). Therefore, this is indeed a representation of G ·H over F⊗H. Since the dimension
of F ⊗H is dim(F)dim(H), it follows by Lemma 2.2 that α(G ·H) ≤ dim(F)dim(H). 2

Theorem 2.4 Let G = (V,E) be a graph and let F be a subspace of the space of polynomials in r

variables over a field F . If G has a representation over F then c(G) ≤ dim(F).

Proof. By Lemma 2.3 and induction on n, for every integer n, α(Gn) ≤ dim(F)n, implying the
desired result. 2

3 Unions with large capacities

In this section we describe the proofs of Theorems 1.1 and 1.2 using Theorems 2.1 and 2.4. Note
that for any graph G on m vertices, the product G ·G is a graph on m2 vertices whose independence
number is at least m. Therefore, by Lemma 2.3, if there is a representation of G over F and one
of G over H, where both F and H are over the same field, then dim(F)dim(H) ≥ m. This implies
dim(F) +dim(H) ≥ 2

√
m. Note that the assertion of Theorem 2.1 shows that c(G+G) ≥ 2

√
m and

that of Theorem 2.4 gives c(G) + c(G) ≤ dim(F) + dim(H). Therefore, this way we cannot get a
proof that for an appropriate G, c(G+G) > c(G) + c(G).

The crucial point that enables us to prove such a statement from the above theorems is that
we can apply Theorem 2.4 for G and for G using representations over spaces of polynomials over
different fields.

To prove Theorem 1.1 consider the following construction. Let p and q be two primes, put
s = pq − 1 and let r > s be an integer. Let G = G = G(p, q, r) be the graph whose vertices are
all subsets of cardinality s of the set {1, 2, . . . , r}, where two are adjacent iff the cardinality of their
intersection is −1 modulo p. Note that G has m =

(r
s

)
vertices. Let F denote the space of all

multilinear polynomials of degree at most p− 1 with r variables over GF (p).

4



Lemma 3.1 G has a representation over F .

Proof. For each vertex of Gp represented by a subset A of cardinality s of {1, 2, . . . , r}, let PA be
the following polynomial over GF (p)

PA(x1, x2, . . . , xr) =
p−2∏
i=0

[(
∑
j∈A

xj)− i],

and let cA ∈ (GF (p))r denote the characteristic vector of A. Note that PA(cA) =
∏p−2
i=0 (pq−1−i) 6≡ 0

(mod p). On the other hand, if A and B are nonadjacent, then PA(cB) =
∏p−2
i=0 (|A ∩ B| − i) ≡ 0

(mod p). Let fA be the multilinear polynomial obtained from the standard representation of PA as
a sum of monomials by using, repeatedly, the relations x2

i = xi. Since the vectors cA have {0, 1}
coordinates, fA(cB) = PA(cB) for all A and B, completing the proof. 2

Let H denote the space of all multilinear polynomials of degree at most q − 1 with r variables
over GF (q).

Lemma 3.2 The complement G of G has a representation over H.

Proof. For each vertex of G represented by a subset A of cardinality s of {1, 2, . . . , r}, let QA be
the polynomial

QA(x1, x2, . . . , xr) =
q−2∏
i=0

[(
∑
j∈A

xj)− i],

and let cA denote the characteristic vector of A. As before, QA(cA) =
∏q−2
i=0 (pq−1−i) 6≡ 0 (mod q).

Similarly, if A and B are nonadjacent in G, then the cardinality of their intersection is −1 modulo
p and hence cannot be −1 modulo q, (since it is strictly smaller than pq − 1). Thus, in this case
QA(cB) =

∏q−2
i=0 [|A∩B| − i] ≡ 0 (mod q). Let hA be the multilinear polynomial obtained from the

standard representation of QA as a sum of monomials by using, repeatedly, the relations x2
i = xi.

As before hA(cB) = QA(cB) for all A and B, completing the proof. 2

Proof of Theorem 1.1. Let p, q be two primes satisfying q < p < q + O(q2/3) (by the results
in [10] there is such a p for each choice of q) and define r = p3, G = G(p, q, r). The dimension of
the space of all multilinear polynomials of degree at most g with r variables over any field is clearly∑g
i=0

(r
i

)
, showing, by Theorem 2.4 and the last two lemmas, that c(G) ≤

∑p−1
i=0

(r
i

)
< 2

( p3

p−1

)
and

that c(G) ≤
∑q−1
i=0

(r
i

)
< 2

( p3

q−1

)
. On the other hand, by Theorem 2.1,

c(G+G) ≥ 2

√√√√( p3

pq − 1

)
.

This (and the standard facts about the distribution of primes) implies the desired result. 2

Remark: The above construction is motivated by a similar, well known construction of Frankl and
Wilson [6], and in fact it is possible to use their graph in the proof. Here is their graph and the

5



modifications needed in the above argument to show it also suffices to prove Theorem 1.1. Let p
be a prime, put r = p3 and s = p2 − 1, and let Gp be the graph whose vertices are all subsets of
cardinality s of the set {1, 2, . . . , r}, where two are adjacent iff the cardinality of their intersection
is congruent to −1 modulo p. Then Gp has m =

(r
s

)
vertices. It is easy to prove, as in the proof of

Lemma 3.1, that Gp has a representation over the space of all multilinear polynomials of degree at
most p − 1 with r variables over GF (p). Similarly, the complement Gp of Gp has a representation
over the space of all multilinear polynomials of degree at most p− 1 with r variables over the reals.
Indeed, for each vertex of Gp represented by a subset A of cardinality s of {1, 2, . . . , r}, let QA be
the polynomial

QA(x1, x2, . . . , xr) =
p−1∏
i=1

[(
∑
j∈A

xj)− (p2 − 1− ip)],

and let cA denote the characteristic vector of A. Let hA be the multilinear polynomial obtained from
the standard representation of QA as a sum of monomials by using, repeatedly, the relations x2

i = xi.
The polynomials hA and the vectors cA form the required representation.

Since the dimension of the space of all multilinear polynomials of degree at most p − 1 with r

variables over any field is
∑p−1
i=0

(r
i

)
< 2

( p3

p−1

)
, the conclusions that c(Gp) and c(Gp) are both smaller

than 2
( p3

p−1

)
and that

c(Gp +Gp) ≥ 2

√√√√( p3

p2 − 1

)
,

follow as before.
The advantage of the construction given by the graphs G(p, q, r) is that unlike the one of Frankl

and Wilson it extends easily to provide examples of unions of more than two graphs with large
capacities. As described in the next section this also yields new results concerning the Ramsey type
question of describing explicitly g-edge colorings of large complete graphs, with no large monochro-
matic complete subgraphs.
Proof of Theorem 1.2. In [8] Haemers describes explicitly a graph G on m = 27 vertices satisfying
c(G) ≤ 7 and c(G) = 3. This graph is the complement of the so-called Schläfli graph. For the sake
of completeness we describe it here. The vertices are all edges of the complete graph on {1, 2, . . . , 8}
except the edge 12. Call an edge a type 1 edge iff it contains either 1 or 2, otherwise, call it a type
2 edge. The adjacency relations are the following: two vertices represented by edges as above are
adjacent iff either they are of the same type and are disjoint or they are of different types and are
not disjoint. In [8] the author computes the eigenvalues of G and deduces from them the above
mentioned bounds for its capacity and the capacity of its complement. The assertion of Theorem
1.2 thus follows from Theorem 2.1. 2

Remark: In a subsequent paper, Haemers ([9], see also [13]) gave an infinite class of examples of
graphs on n vertices G for which c(G)c(G) < n, and many of these can replace the Schläfli graph
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and provide examples similar to the one in the last theorem. In all these examples, however, the
capacity of the union is still smaller than the sum of the capacities raised to the power 3/2, whereas
the construction in Theorem 1.1 shows that the gap can in fact be much bigger.

4 Explicit Ramsey colorings

Let rg(k) denote the smallest integer r so that in every coloring of all edges of the complete graph
on r vertices with g colors there is a monochromatic complete subgraph (=clique) on k vertices. The
fact that these numbers are finite for all g and k is a special case of Ramsey’s well known theorem
(see, e.g., [7]), and it is easy and known that rg(k) ≤ gkg. In one of the first applications of the
probabilistic method in combinatorics, Erdős [5] proved that r2(k) ≥ Ω(k2k/2). As shown in [11] this
can be used to show that rg(k) ≥ 2Ω(gk). The problem of finding explicit edge colorings yielding a
similar estimate is still open, despite a considerable amount of efforts by various researchers, and the
best known explicit construction is due to Frankl and Wilson [6], who gave an explicit 2-edge coloring
of the complete graph on k(1+o(1)) log k

4 log log k vertices with no monochromatic clique on k vertices. Their
construction is, in fact, the one described in the remark following the proof of Theorem 1.1: if Gp
denotes the graph described there, than neither Gp nor its complement contain a clique on more than
2
( p3

p−1

)
vertices. It seems that this construction does not extend to the case of more than 2 colors.

On the other hand, the construction of the graphs G(p, q, r) used in the proof of Theorem 1.1 easily
yields such an extension, as we describe next.

Let P = {p1, p2, . . . , pg} denote a set of g distinct primes, define s = p1p2 . . . pg − 1, and let r > s

be an integer. Let K(P, r) denote the following edge-colored complete graph on the
(r
s

)
vertices

indexed by all subsets of cardinality s of the set X = {1, 2, . . . , r}. For two vertices represented
by the sets A and B, let i (≤ g) be the smallest index such that the cardinality of the intersection
|A∩B| is not −1 modulo pi. (Clearly, there is such an i, since this cardinality is strictly smaller than
p1p2 · · · pg−1.) Then the color of the edge connecting A and B is i. Therefore, K(P, r) is colored by
g colors. The following result bounds the size of the maximum monochromatic complete subgraph
in this graph.

Proposition 4.1 Let Gi denote the subgraph of K = K(P, r) consisting of all edges of K whose
color is not i. Then the Shannon capacity of Gi does not exceed

∑pi−1
i=0

(r
i

)
. Thus, the size of the

maximum clique of color i in K is at most the above sum.

Proof. By Theorem 2.4, it suffices to prove that the graph Gi has a representation over the space
of all multilinear polynomials of degree at most pi − 1 in r variables over GF (pi). Indeed, for each
vertex corresponding to a subset A of X, let PA(x1, . . . , xr) be the polynomial

PA(x1, x2, . . . , xr) =
p−2∏
i=0

[(
∑
j∈A

xj)− i],
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and let cA denote the characteristic vector of A. Let fA be the multilinear polynomial obtained
from the standard representation of PA as a sum of monomials by using, repeatedly, the relations
x2
i = xi. As in the proof of Theorem 1.1, the polynomials fA and the vectors cA form the required

representation. 2

For a fixed g, let p1 < p2 < . . . < pg denote g consecutive large primes. By [10], pg < (1+o(1))p1.
Put P = {p1, . . . , pg}, s = p1 · . . . · pg − 1 and r = pg+1

g . Then, if k denotes 2
( r
pg−1

)
, one can easily

check that the number of vertices of G(P, r) is(
r

s

)
= k

(1+o(1))(log k)g−1

gg(log log k)g−1 .

We have thus proved the following.

Proposition 4.2 For every fixed integer g ≥ 2 and k > k0(g), the g-edge colored complete graph
K(P, r) described above has

k
(1+o(1))(log k)g−1

gg(log log k)g−1

vertices and contains no monochromatic clique on k vertices.

5 Concluding remarks

• The upper estimate
∑p−1
i=0

(r
i

)
for the Shannon capacity of G(p, q, r) can in fact be slightly

improved to
( r
p−1

)
, using the methods of [1]. Since this makes no essential difference here we

do not include the details. A similar remark applies, of course, to the estimates in Proposition
4.1.

• Using the graphs Gi described in Proposition 4.1 together with the arguments in the proof of
Theorem 1.1 we can prove that for every fixed integer g ≥ 2 there are g graphs G1, . . . , Gg

satisfying c(Gi) ≤ k for every i, such that the capacity of their disjoint union is at least
kΩ((log k/ log log k)g−1).

• Haemers used his examples in [8], [9] to answer a problem of Lovász (also mentioned by Shannon
[14]) and show that there are graphs G and H for which c(G ·H) > c(G) · c(H) (and in fact
there are such graphs with H being the complement of G.) Theorem 1.1 provides another
family of such examples and shows that in fact c(G ·G) may be bigger than any fixed power of
c(G) · c(G).

• The normalized Shannon capacity of a graphH onm vertices is defined in [3] as C(H) = log c(H)
logm .

This invariant measures the capacity of the channel as related to its size. By the examples
described in the proof of Theorem 1.1 it follows that for every ε > 0 there are graphs G and
G′ satisfying C(G) < ε and C(G′) < ε whereas C(G + G′) ≥ 1/2. It would be interesting

8



to decide if for every ε > 0 there are graphs G and G′ satisfying C(G) < ε, C(G′) < ε and
C(G+G′) > 1− ε. This question remains open.

• Let G(n, 1/2) denote, as usual, the random graph on n labelled vertices obtained by choosing
each pair of vertices, randomly and independently, to be an edge with probability 1/2. The
following conjecture seems plausible.

Conjecture 5.1 There exists an absolute constant b > 0 such that the probability that the
Shannon capacity of G(n, 1/2) is bigger than b log2 n tends to 0 as n tends to infinity.

Note that this, if true, would imply that for the random graph G(n, 1/2) (whose complement is
obviously also a random graph), it is likely to have an exponential gap between c(G)+c(G) and
c(G+G). A related question is the problem of estimating the minimum possible value of c(G)+
c(G) over all graphs of n vertices. By Theorem 1.1 this minimum is at most eO(

√
logn log logn),

and it is easy to see, using the known bounds for the usual Ramsey numbers, that it is at least
Ω(log n). The problem of estimating the maximum possible value of the capacity of the disjoint
union of two graphs G and H each of which has capacity at most k is another intriguing open
problem. By Theorem 1.1, this maximum is at least kΩ( log k

log log k
)
, but at the moment we are not

even able to show that it is upper bounded by any function of k.
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