
On two segmentation problems

Noga Alon ∗ Benny Sudakov †

Abstract

The hypercube segmentation problem is the following: Given a set S of m vertices of the
discrete d-dimensional cube {0, 1}d, find k vertices P1, . . . , Pk, Pi ∈ {0, 1}d and a partitions of S
into k segments S1, . . . , Sk so as to maximize the sum

k∑
i=1

∑
c∈Si

Pi � c,

where � is the overlap operator between two vertices of the d-dimensional cube, defined to be the
number of positions they have in common.

This problem (among other ones) is considered by Kleinberg, Papadimitriou and Raghavan
in [9], where the authors design a deterministic approximation algorithm that runs in polynomial
time for every fixed k, and produces a solution whose value is within 0.828 of the optimum, as
well as a randomized algorithm that runs in linear time for every fixed k, and produces a solution
whose expected value is within 0.7 of the optimum.

Here we design an improved approximation algorithm; for every fixed ε > 0 and every fixed
k, our algorithm produces in linear time a solution whose value is within (1− ε) of the optimum.
Therefore, for every fixed k, this is a polynomial approximation scheme for the problem. The
algorithm is deterministic, but it is convenient to first describe it as a randomized algorithm and
then to derandomize it using some properties of expander graphs.

We also consider a segmented version of the minimum spanning tree problem, where we show
that no approximation can be achieved in polynomial time, unless P=NP.

1 Introduction

Motivated by the study of various decision-making procedures arising in data mining, Kleinberg,
Papadimitriou and Raghavan introduced in [9] a new class of optimization problems, which they
∗Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel

Aviv, Israel and Institute for Advanced Study, Princeton, NJ 08540. Email: noga@math.tau.ac.il. Research supported

in part by a USA Israeli BSF grant, by the Minerva Center for Geometry at Tel Aviv University, by a Sloan Foundation

grant 96-6-2 and by a State of New Jersey grant.
†Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel

Aviv, Israel. Email: sudakov@math.tau.ac.il.

Running head: Two segmentation problems

1

called segmentation problems. In these problems, a company has some information about a set of
customers C, and its objective is to choose (and produce) a prescribed number k of policies. The
objective is to optimize, over all possible choices of k policies, the sum, over all customers c ∈ C, of
the value assigned by c to the best policy among the policies produced, according to his individual
utility function.

Once the k policies are chosen, the set of customers is partitioned into k segments, where segment
number i consists of all customers that pick policy number i. It turns out that in many cases,
even when the optimization task is trivial for the non-segmented case (k = 1), the corresponding
optimization problem is NP-hard already for k = 2. In the present paper we study two problems of
this type. The first one is the following.
THE HYPERCUBE SEGMENTATION PROBLEM: Given a set S of m customers, each a vertex
of the discrete d-dimensional cube {0, 1}d, find k policies P1, . . . , Pk, Pi ∈ {0, 1}d and a partition of
S into k segments S1, . . . , Sk so as to maximize the sum

k∑
i=1

∑
c∈Si

Pi � c,

where � is the overlap operator between two vertices of the d-dimensional cube, defined to be the
number of positions they have in common.

This problem is considered in [9], where the authors show that its precise solution is NP-hard even
for k = 2. They design two approximation algorithms for the problem: The first is a deterministic
algorithm that runs in polynomial time for every fixed k, and produces a solution whose value is
within 2

√
2 − 2 (= 0.828...) of the optimum. It is based on the interesting observation that for

every set S ⊂ {0, 1}d there is some P ∈ S so that for every x ∈ {0, 1}d,∑
c∈S

P � c ≥ (2
√

2− 2)
∑
c∈S

x� c.

The second is a randomized algorithm that runs in linear time for every fixed k, and produces a
solution whose expected value is within 0.7 of the optimum.

Here we design an improved approximation algorithm; for every fixed ε > 0 and every fixed k, our
algorithm produces in linear time a solution whose value is within (1− ε) of the optimum. Therefore,
for every fixed k, this is a polynomial time approximation scheme for the problem. Our algorithm is
deterministic, but it is convenient to first describe it as a randomized one and then to derandomize
it using some properties of expander graphs. This improves the performance ratio as well as the
running time of the deterministic algorithm of [9] for all m, d and k. The randomized algorithm of
[9] is slightly faster than ours for large k, but the performance ratio of our algorithm is much better.

The second segmentation problem we consider is the following minimization problem, which is
only mentioned briefly in [9].
THE MINIMUM SPANNING TREE SEGMENTATION PROBLEM: Given a connected graph G =
(V,E) and n non-negative functions fi : E → R, 1 ≤ i ≤ n, find k spanning trees T1, . . . , Tk of G, so

2

as to minimize the sum
n∑
i=1

min
1≤j≤k

fi(Tj),

where fi(Tj) =
∑
e∈E(Tj) fi(e).

We show that unless P=NP, there is no polynomial time algorithm that approximates the optimal
solution of this problem up to any finite factor, even if k = 2.

The rest of this paper is organized as follows. In section 2 we consider the hypercube segmentation
problem, describe our randomized approximation algorithm and present its derandomization. In
Section 3 we present the (simple) proof that there is no polynomial time approximation algorithm
for the minimum spanning tree segmentation problem, unless P=NP. The final section 4 contains
some concluding remarks.

2 The hypercube segmentation problem

In this section we present a polynomial approximation scheme for the hypercube segmentation prob-
lem. First we describe a randomized algorithm for this problem and then we show how it can be
derandomized, using some properties of random walks on expanders.

2.1 Random sampling

Let S ⊂ {0, 1}d be a set of m customers. Denote by f(P, S′) =
∑
c∈S′ P � c the total value of policy

P ∈ {0, 1}d for the customer set S′ ⊂ S, where P � c is the number of coordinates in which P and c
agree. A family of policies P1, . . . , Pk induces a partition of the entire set S into k segments S1, . . . , Sk

by putting c ∈ S into the set Si if Pi � c ≥ Pj � c for all j 6= i and by breaking ties arbitrarily. It
is easy to see that this partition maximizes the value of the expression

∑
i f(Pi, Si) over all possible

partitions of S into k parts S1, . . . , Sk. Therefore the segmentation problem is equivalent to the
problem of finding a family of optimal policies. Note that the optimal value of the problem is clearly
at least md/2. This value can be produced without segmentation by picking the majority bit in each
of the d coordinates.

We first describe a simple randomized approximation algorithm for the hypercube segmentation
problem, which for any fixed ε > 0 produces a solution whose expected value is within (1− ε) from
optimal. For any fixed k and ε the running time of this algorithm is linear.

Algorithm A(k,ε)

Input: A set S of m customers, each being a vertex of {0, 1}d.
1. Sample l = Θ(k

ε2
) customers from S with repetitions, randomly and independently, according to

a uniform distribution.
2. For all possible partitions of the sample set into at most k segments do:

2.1. For each segment in the partition find an optimal policy: a vector from {0, 1}d which in

3

each coordinate agrees with the majority of the elements of the segment. This gives a family of
policies.
2.2. Produce the segmentation of the entire set S according to this family of policies.

3. Let S∗1 , . . . , S
∗
k be the optimal segmentation obtained from all possible partitions of the sample

set, (note that some of the sets S∗i may be empty), and let P ∗i , 1 ≤ i ≤ k be the corresponding family
of policies.
Output (S∗i , P

∗
i) for 1 ≤ i ≤ k.

Note that the number of all possible partitions of a set of size l into at most k parts is O(kl).
Therefore, the running time of this algorithm is O(kl+1md) = eO(k

ε2
ln k)md. This is linear in the

length of the input md for any fixed k and ε and remains polynomial in this length for each k up to
O(ln(md)/ ln ln(md)).

To study the performance of the algorithm, let P1, . . . , Pk be the optimal family of policies and
let S1, . . . , Sk be the corresponding segmentation of S. Denote by X the subset of S obtained by our
random sampling. Let X1, . . . , Xk be the partition of X defined by Xi = X ∩ Si and let P ′1, . . . , P

′
k

be the optimal family of policies for this segmentation of X (if Xi is empty, then P ′i can be any
vector). Denote by S′1, . . . , S

′
k the partition of S induced by the family {P ′i}. Since the algorithm

A(k, ε) checks all possible partitions of X we conclude that the value of its solution satisfies∑
i

f(P ∗i , S
∗
i) ≥

∑
i

f(P ′i , S
′
i) ≥

∑
i

f(P ′i , Si).

It thus suffices to prove that the expected value of
∑
i f(P ′i , Si) is at least (1 − ε) of the optimum

value
∑
i f(Pi, Si).

Let Si be a segment in the optimal partition of S, and let Sij(r), r = 0, 1 be the subset of Si of all
vectors, whose j-th coordinate equals to r. Put δij = ||Sij(0)|−|Sij(1)||

|Si| . By step 2.1 of the algorithm
A(k, ε) the j-th coordinate P ′ij , in the policy vector P ′i is the majority bit over all the j-th coordinates
of the elements from X ∩Si. Thus we obtain that the event P ′ij 6= Pij can happen only if the number
of elements in X which belong to Sij(0) or to Sij(1) deviates from its expected value by at least
δij
2 (|Si|lm). Note that the value |X ∩ Sij(r)| is binomially distributed with parameters l and |Sij(r)|

m .
Therefore, using the standard estimates for Binomial distributions (see e.g., [4], Appendix A) we
obtain that

Pr(P ′ij 6= Pij) ≤ e−Ω(δ2
ij
|Si|l
m

).

Each such event contributes an additive factor of ||Sij(0)|−|Sij(1)|| = δij |Si| to the total difference
between the optimal value and the expected result of the algorithm. By the above discussion, this
implies that the expected value of this difference is at most∑

ij

Pr(P ′ij 6= Pij)||Sij(0)| − |Sij(1)|| ≤
∑
ij

δij |Si|e−Ω(δ2
ij
|Si|l
m

).

4

Consider the function g(t) = te−ct
2
. It is easy to check that g(t) attains its maximum at t = 1/

√
2c

and hence g(t) ≤ c−1/2 for any real t. By taking c to be Θ(|Si|lm) we obtain that δije
−Ω(δ2

ij
|Si|l
m

) ≤
O(
√

m
|Si|l). Therefore the expected value satisfies

E

(
k∑
i=1

f(P ′i , Si)

)
≥

k∑
i=1

f(Pi, Si)−
∑
ij

δij |Si|e−Ω(δ2
ij
|Si|l
m

) ≥
k∑
i=1

f(Pi, Si)−O

 d∑
j=1

√
m

l

k∑
i=1

√
|Si|

 .
By Jensen’s inequality

∑k
i=1

√
|Si| ≤ k

√∑
i
|Si|
k =

√
km. Therefore,

E

(
k∑
i=1

f(P ′i , Si)

)
≥

k∑
i=1

f(Pi, Si)−O

 d∑
j=1

√
m

l

√
km

 =
k∑
i=1

f(Pi, Si)−O

md
√
k

l

 .
Using the facts that l = Θ(k

ε2
) and that the optimal value of the hypercube segmentation problem is

at least md/2, we conclude that with the right choice of the constant in the definition of l,

E

(
k∑
i=1

f(P ′i , Si)

)
≥

k∑
i=1

f(Pi, Si)−
εmd

2
≥ (1− ε)

∑
i

f(Pi, Si).

This completes the proof that the approximation ratio of the algorithm A(k, ε) is at least (1− ε).

2.2 Derandomization via random walks

Let G = (V,E) be a connected, non-bipartite, d-regular graph on m vertices. A random walk on G is
equivalent to a time reversible Markov Chain. The states of the Markov Chain are the vertices of the
graph, and for any two vertices u and v the transition probability from u to v, puv = 1/d if (u, v) is
an edge and zero otherwise. Note that by definition the transition probability matrix P = 1

dA, where
A is the adjacency matrix of the graph G, and the uniform distribution is the stationary distribution
of this walk (see e.g., [13] for some basic results about random walks on graphs). The eigenvalues
of P are reals, and the largest eigenvalue (in absolute value) is 1. We denote the second largest (in
absolute value) eigenvalue by λ and define the eigenvalue gap to be δ = 1 − |λ|. This quantity is
directly related to the expansion properties of the graph G (see e.g., [2], [3], [14], [15]). Roughly
speaking, δ is large if and only if G is a good expander.

Let U be a subset of vertices of G. Consider a random walk on G starting from a vertex chosen
uniformly at random. We denote by tl the number of times the random walk visits a vertex of U
during the first l steps. The following useful result about the behavior of tl was proved by Gillman
[7] (following [1], [5], [8]).

Theorem 2.1 ([7]) Let G = (V,E) be a connected, regular graph on m vertices with eigenvalue gap
δ. Consider a random walk on G starting from a vertex chosen uniformly at random. Let U be an
arbitrary subset of vertices of G, |U | = cm. Then for any l

P r(|tl − cl| ≥ γ) ≤ 4e−
γ2δ
20l .

5

To use the above result for producing efficient deterministic algorithms, we need an explicit
construction of regular graphs with constant degree and large eigenvalue gap. The best known such
constructions were given by Lubotzky, Phillips and Sarnak [11] and independently by Margulis [12].
For each d = p+ 1, where p is a prime congruent to 1 modulo 4, they constructed an infinite explicit
family of d-regular graphs with |λ| ≤ 2

√
d− 1. (We note that these graphs will not have exactly m

vertices for any m, but this does not cause any real problem as we can take a graph on n vertices
such that m ≤ n ≤ (1 + o(1))m. In this case the number of vertices in the subset U, |U | = cm is still
(c+ o(1))n). Taking, say, d = 6 and λ = 2

√
5 we get an eigenvalue gap of 6−2

√
5

6 > 0.25 and thus we
can use such a 6-regular expander for our purposes. Using this construction together with the result
of Gillman we obtain the following corollary.

Corollary 2.2 Given any set S of size m and any natural number l we can construct an explicit
family F of size 6lm of multisets {Fi}, Fi ⊂ S, |Fi| = l with the following property. Let Fi be a
multiset, chosen randomly and uniformly from F , then for every subset U ⊂ S of size cm

Pr(| |Fi ∩ U | − cl| ≥ γ) ≤ 4e−
0.25γ2

20l .

Proof. Let G be a 6-regular graph on the vertex set S with eigenvalue gap at least 6−2
√

5
6 > 0.25.

Let F = {Fi} be the family of all possible walks of length l on G. Clearly the size of F is 6lm. A
random element Fi of F corresponds to a random walk of length l on the graph G, which starts in
a uniform distribution. Note that by definition |Fi ∩ U | = tl. Therefore, Theorem 2.1 completes the
proof of the corollary. 2

A family of subsets from Corollary 2.2 is the main ingredient of the following deterministic
algorithm for the hypercube segmentation problem.

Algorithm B(k,ε)

Input: A set S of m customers, each being a vertex of {0, 1}d.
1. Construct a family F = {Fi} of size O(6lm) of multisubsets of S, where each |Fi| = l = Θ(k

2

ε2
),

satisfying the property in the assertion of Corollary 2.2.
2. For 1 ≤ i ≤ |F| and for all possible partitions of Fi into at most k segments do:

2.1. For each segment in the partition find an optimal policy: a vector from {0, 1}d which in
each coordinate agrees with the majority of the elements of the segment. This gives a family of
policies.
2.2. Produce the segmentation of the entire set S according to this family of policies.

3. Let S∗1 , . . . , S
∗
k be the optimal segmentation obtained from all possible partitions of Fi for 1 ≤

i ≤ |F|, (note that some of the sets S∗i may be empty), and let P ∗i , 1 ≤ i ≤ k be the corresponding
family of the best policies.
Output (S∗i , P

∗
i) for 1 ≤ i ≤ k.

6

The running time of this algorithm is O(kl+16lmd) = eO(k
2

ε2
ln k)md. Therefore it is linear in md for

any fixed k and ε and remains polynomial in md for any k up to O((ln(md)/ ln ln(md))1/2). We
claim that the above algorithm produces a solution of value at least (1− ε) of the optimum.

Indeed, consider a multiset X = Ft chosen randomly and independently from the family F . Let
P1, . . . , Pk be the optimal family of policies and let S1, . . . , Sk be the corresponding segmentation of
S. Let X1, . . . , Xk be the partition of X defined by Xi = X ∩ Si and let P ′1, . . . , P

′
k be the optimal

family of policies for this segmentation of X (if Xi is empty, then P ′i can be any vector). Denote by
S′1, . . . , S

′
k the partition of S induced by the family {P ′i}. As explained in the previous subsection,

it suffices to prove that the expected value of
∑
i f(P ′i , Si) is at least (1 − ε) of the optimum value∑

i f(Pi, Si).
Let Si be a segment in the optimal partition of S, and let Sij(r), r = 0, 1 be the subset of Si

consisting of all vectors whose j-th coordinate is r. Put δij = ||Sij(0)|−|Sij(1)||
|Si| . By step 2.1 of the

algorithm B(k, ε) the j-th coordinate P ′ij , in the policy vector P ′i is the majority bit over all the j-th
coordinates of the elements from X ∩ Si. Thus we obtain that the event P ′ij 6= Pij can happen only
if the number of elements in X which belong to Sij(0) or to Sij(1) deviates from its expected value
by at least δij

2 (|Si|lm). Note that by Corollary 2.2 X = Ft satisfies the property that

Pr(| |X ∩ U | − cl| ≥ γ) ≤ 4e−
0.25γ2

20l ,

for any subset U ⊂ S of size cm. Therefore we obtain that

Pr(P ′ij 6= Pij) ≤ e−Ω(δ2
ij
|Si|

2l

m2) = e−Ω(l(
δij |Si|
m

)2).

Each such event contributes an additive factor of ||Sij(0)|−|Sij(1)|| = δij |Si| to the total difference
between the optimal value and the expected result of the algorithm. By the above discussion, this
implies that the expected value of this difference is at most∑

ij

Pr(P ′ij 6= Pij)||Sij(0)| − |Sij(1)|| ≤ m
∑
ij

δij |Si|
m

e−Ω(l(
δij |Si|
m

)2).

As mentioned in Subsection 2.1 the function g(t) = te−ct
2 ≤ c−1/2 for any real t. By taking c to be

Θ(l) we obtain that δij |Si|
m e−Ω(l(

δij |Si|
m

)2) ≤ O(1/
√
l). Therefore the expected value satisfies

E

(
k∑
i=1

f(P ′i , Si)

)
≥

k∑
i=1

f(Pi, Si)−m
∑
ij

δij |Si|
m

e−Ω(l(
δij |Si|
m

)2) ≥
k∑
i=1

f(Pi, Si)−O(
mkd√
l

).

Using the facts that l = Θ(k
2

ε2
) and that the optimal value of the hypercube segmentation problem

is at least md/2, we conclude that with the right choice of the constant in the definition of l, the
expected value satisfies

E

(
k∑
i=1

f(P ′i , Si)

)
≥

k∑
i=1

f(Pi, Si)−
εmd

2
≥ (1− ε)

∑
i

f(Pi, Si).

7

Thus, there exists a particular t and a partition of X = Ft which produces a segmentation of S
whose value is within (1 − ε) from optimum. But then the algorithm B(k, ε) will find it in stage 3.
This completes the proof of the correctness of the algorithm.

3 The Minimum Spanning Tree segmentation problem

A hypergraph H is an ordered pair H = (V,E) , where V is a finite set (the vertex set), and E is a
family of distinct subsets of V (the edge set). A hypergraph H = (V,E) is 3-uniform if all edges of
H are of size 3. The chromatic number of H is the minimum number of colors required to color all
its vertices so that no edge is monochromatic. Lovász [10] (see also [6]) showed that it is NP -hard
to determine whether a 3-uniform hypergraph is 2-colorable.

In this section we present a construction for reducing the 2-colorability problem for 3-uniform
hypergraphs to the segmented version of the minimum spanning tree. Using this construction we
deduce that unless P = NP the minimum spanning tree segmentation problem does not have any
polynomial time approximation even for an extremely simple graph - a path with three parallel edges
between each pair of consecutive nodes.

Suppose we are given a 3-uniform hypergraph H = (V (H), E(H)) with |E(H)| = m edges. Let
G = (V (G), E(G)) be a path of length m with three parallel edges between each pair of consecutive
nodes. Each triple eu, ev, ew of parallel edges in G corresponds to an edge (u, v, w) of the hypergraph
H and each edge in the triple is labeled by a vertex of the edge (u, v, w). For every vertex u ∈ V (H)
define a weight function fu on the edges of G with fu(e), e ∈ E(G) being one if and only if the edge
e is labeled by the vertex u and fu(e) = 0 otherwise. We claim that the chromatic number of the
hypergraph H is equal to two if and only if there exists a pair T1, T2 of spanning trees of G such that∑

u∈V (H)

min
1≤i≤2

fu(Ti) = 0.

To prove this claim assume, first, that c : V (H) → {1, 2} is a 2-coloring of the vertices of
H with no monochromatic edges. Denote by Gi, i = 1, 2 the subgraph of G spanned by all edges,
corresponding to the vertices of H with color i. Since no edge of the hypergraph H is monochromatic
we obtain that from every triple of parallel edges in G at least one belongs to Gi, i = 1, 2. Therefore
each of the subgraphs G1 and G2 contains a spanning tree Ti of G. Thus it is enough to prove that
for any u ∈ V (H) at least one of the values fu(Gi), i = 1, 2 is equal to zero. To do so, consider Gi
for i = 3 − c(u). By definition Gi contains no edges corresponding to u and thus fu(Gi) = 0. This
implies that

0 ≤
∑

u∈V (H)

min
1≤i≤2

fu(Ti) ≤
∑

u∈V (H)

min
1≤i≤2

fu(Gi) = 0.

Now assume that there exists a pair T1 and T2 of spanning trees ofG such that min1≤i≤2 fu(Ti) = 0
for every vertex u ∈ V (H). Let Vi, i = 1, 2 be the subset of vertices of H which correspond to the

8

labels of the edges in the tree Ti. Consider a vertex coloring of the hypergraph H by two colors such
that all vertices in Vi, i = 1, 2 are colored by the color i and all the remaining vertices are colored
arbitrarily. We need to prove that no edge of H is monochromatic and no vertex gets two colors
simultaneously. This will imply that the hypergraph H is 2-colorable. Note first, that the subsets V1

and V2, are disjoint. Indeed, assume this is false and let u be a vertex of H which belongs to V1∩V2.
Then the spanning trees T1 and T2 both contain an edge of G which is labeled by the vertex u. By
the definition of the function fu it follows that fu(T1), fu(T2) > 0, contradiction. Hence each vertex
of H gets only one color. Since Ti is a spanning tree of G it has at least one edge from every triple
of parallel edges in G. Therefore Vi, i = 1, 2 intersects every edge of the hypergraph H in at least
one vertex. This implies that there are no monochromatic edges.

Applying now the result of Lovász, we get that if P 6= NP , then there is no polynomial algorithm
to decide whether the optimal value in the minimum spanning tree segmentation problem is strictly
positive, even for the case of two trees. This implies the following.

Theorem 3.1 Given a connected graph G = (V,E), |V | = n and a family fi, 1 ≤ i ≤ m of nonneg-
ative weight functions on E(G), it is impossible to approximate in polynomial time in m and n the
optimal value of the minimum spanning tree segmentation problem for G (even for k = 2) within any
finite factor, unless P = NP .

4 Concluding remarks

The class of segmentation problems contains several interesting algorithmic questions, and our present
paper deals with two of them.

It is not difficult to extend the problem and results of Section 2 to hypercubes over a larger fixed
alphabet. We omit the simple details.

The hardness result for the Minimum Spanning Tree segmentation problem holds, as mentioned in
Section 3, even if the input graph is the path with three parallel edges between every two consecutive
vertices. Similarly, it holds for many other graphs, including every n vertex graph that contains a
spanning subgraph which is a subdivision of a graph obtained from any path by replacing each of
Ω(nδ) edges by three parallel ones. This includes the graphs of the d-cubes, as well as many other
ones.

Some of our techniques here are useful in the study of other segmentation problems. One of these
is the catalog segmentation problem (in the dense case) considered in [9]. Suppose that we have a
set of n customers and a set U of m items. For each customer we are given a subset of items this
customer likes. We wish to create a catalog with r items to be sent to the customers. Our objective
is to maximize the sum, over all items, of the number of customers that like this item. The simple
optimal solution is, of course, to select the r most popular items. However, if instead of one catalog
we can create k different ones, each with r items, sending one of them to each customer, we can

9

sometimes ensure a much bigger value than that given by a single catalog. This leads to the catalog
segmentation problem, whose precise formulation is the following.
THE CATALOG SEGMENTATION PROBLEM. Given a set U of size m and a family S1, . . . , Sn

of n subsets of U , find k subsets X1, . . . , Xk of U , each of size r, so as to maximize the sum

n∑
i=1

max
1≤j≤k

|Si ∩Xj |.

This problem is considered in [9], where the authors prove that it is NP -hard even for k = 2. For
fixed k, and for the special (dense) case in which each customer likes at least a fraction ε of all items
(that is, |Si| ≥ ε|U | for all i), they design a randomized polynomial time approximation scheme. Our
technique here can be used to provide a deterministic polynomial time approximation scheme for
this special case. Without the density assumption, the problem appears to be much more difficult,
and as mentioned in [9], even the problem of improving the trivial 1/2 approximation for k = 2 in
polynomial time seems difficult.

References

[1] M. Ajtai, J. Komlós and E. Szemerédi, Deterministic Simulation in Logspace, Proc. of the 19th

ACM STOC, ACM Press (1987), 132-140.

[2] N. Alon, Eigenvalues and expanders, Combinatorica 6 (1986), 83-96.

[3] N. Alon and V. D. Milman, Eigenvalues, expanders and superconcentrators, Proc. 25th Annual
Symp. on Foundations of Computer Science, Singer Island, Florida, IEEE (1984), 320-322. (Also:
λ1, isoperimetric inequalities for graphs and superconcentrators, J. Combinatorial Theory, Ser.
B 38 (1985), 73-88.)

[4] N. Alon and J. Spencer, The Probabilistic Method, Wiley, New York, 1992.

[5] A. Cohen and A. Wigderson, Dispersers, deterministic amplification, and weak random sources,
Proc. of the 30th IEEE FOCS, IEEE (1989), 14-19.

[6] M.R. Garey and D.S. Johnson, Computers and Intractability: a Guide to the Theory
of NP-Completeness, Freeman, New York, 1979.

[7] D. Gillman, A Chernoff bound for random walks on expander graphs, Proc. of the 34th IEEE
FOCS, IEEE (1993), 680-691; (Also: SIAM J. of Computing 27 (1998), 1203-1220).

[8] R. Impagliazzo and D. Zuckerman, How to Recycle Random Bits, Proc. of the 30th IEEE FOCS,
IEEE (1989), 248-253.

10

[9] J. Kleinberg, C. Papadimitriou and P. Raghavan, Segmentation problems, Proc. of the 30th

ACM STOC, ACM Press (1998), 473-482.

[10] L. Lovász, Coverings and colorings of hypergraphs, Proc. 4th S.E. Conf. on Combinatorics,
Graph Theory and Computing, 1973, Utilitas Math., 3-12.

[11] A. Lubotzky, R. Phillips and P. Sarnak, Explicit expanders and the Ramanujan conjectures,
Proc. of the 18th ACM Symp. on the Theory of Computing, (1986), 240-246; (Also: Ramanujan
graphs, Combinatorica 8 (1988), 261-277).

[12] G. A. Margulis, Explicit group-theoretical constructions of combinatorial schemes and their
application to the design of expanders and superconcentrators, Problemy Peredachi Informatsii,
24 (1988), 51-60 (in Russian). (English translation in Problems of Information Transmission,
24 (1988), 39-46).

[13] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press, 1995.

[14] A. Sinclair and M. R. Jerrum, Approximate counting, uniform generation and rapidly mixing
Markov chains, Information and Computation 82 (1989), 93-133.

[15] R. M. Tanner, Explicit construction of concentrators from generalized N -gons, SIAM J. Alg.
Disc. Meth. 5 (1984), 287-293.

11

