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Abstract

It is shown that the Ramsey number of any graph with n vertices in which no two vertices

of degree at least 3 are adjacent is at most 12n. In particular, the above estimate holds for the

Ramsey number of any n-vertex subdivision of an arbitrary graph, provided each edge of the

original graph is subdivided at least once. This settles a problem of Burr and Erdös.

1 Introduction

The Ramsey number of a graph G, denoted by r(G), is the minimum integer t such that in any

coloring of the edges of the complete graph Kt on t vertices by red and blue, there is always a

monochromatic copy of G. We say that a family of graphs F is a linear family if there is a constant

c > 0 such that for every member G of F , r(G) ≤ cn, where n is the number of vertices of G. In

this note we prove the following result, conjectured by Burr and Erdös ([1], page 236) in 1973.

Theorem 1.1 The family of all graphs that have no two adjacent vertices of degree at least 3 is a

linear family.

This strengthens a result of [1] that asserts that the family of all graphs in which the distance

between any two vertices of degree at least 3 is strictly bigger than 2, is a linear family.
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If G is a graph and H is obtained from G by replacing each edge of G by a path of length at

least 2, then H is called an essential subdivision of G. An immediate corollary of our theorem is

the following.

Corollary 1.2 The family of all essential subdivisions is a linear family.

A special case of that corollary, that asserts that the family of all essential subdivisions of the

complete graphs is a linear family, has been proved in [1].

Theorem 1.1 is a (very) special case of the main conjecture of Burr and Erdös raised in [1],

which states that for any fixed constant d, the family of all graphs in which every subgraph has a

minimum degree that does not exceed d is linear. This general conjecture is still open, although

several special cases of it have been proved. An interesting one is the main result of [3] that asserts

that for every fixed d, the family of all graphs of maximum degree at most d is a linear family. This

result has recently been extended in [2], where it is also shown, as a corollary of that extension, that

the family of all planar graphs is linear. Unlike the results of [3] and [2], our proof of Theorem 1.1

does not involve any huge constants. In fact, we actually prove the following more explicit version

of the theorem.

Proposition 1.3 Let G = (V,E) be a graph with n vertices in which no two vertices of degree at

least 3 are adjacent. Then r(G) ≤ 12n

The constant 12 can be somewhat improved. We make no attempt to optimize it here.

2 The proof

We need the following Ramsey-theoretic result, which has been conjectured by Harary and proved,

independently, by Sidorenko [7] and by Goddard and Kleitman [5]. We note that the precise

estimate in this theorem is not essential for our purpose here, and we can derive Proposition 1.3

from the weaker, previously known estimates obtained in [4] or in [6].

Theorem 2.1 ([7], [5]) Let H be an arbitrary graph with m edges and no isolated vertices. Then

any graph on 2m+ 1 vertices that has no independent set of size 3 contains a subgraph isomorphic

to H.
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Proof of Proposition 1.3 LetW = {w1, . . . , wk} ⊂ V be a maximal (with respect to containment)

independent set of G containing all the vertices of degree at least 3 of G. Observe that each vertex

v ∈ V −W has at least one neighbor in W , and its degree in G is at most 2. Therefore, the induced

subgraph of G on V −W has maximum degree at most 1 and is thus a union of isolated edges and

isolated vertices. Each isolated vertex in this induced subgraph has either one or two neighbors in

W, whereas each of the two ends of an isolated edge in this induced subgraph has precisely one

neighbor in W , (it is possible, of course, that they both have the same neighbor). Define a graph

H = (W ′, F ), where W ′ = {w′1, . . . , w′k}, and two vertices w′i and w′j are adjacent iff there is a path

in G between wi and wj all of whose internal vertices lie in V −W . Note that such a path is always

of length 2 or 3, and all the paths of this type are internally vertex-disjoint. It thus follows that

the number of edges of H is at most n− k ≤ n.

Given a two-coloring of the edges of the complete graph K on 12n vertices by red and blue,

let us call a vertex a red vertex if it has at least 6n red edges incident with it. Otherwise it has

at least 6n blue edges incident with it and we call it a blue vertex. Without loss of generality we

may assume that there are at least 6n red vertices. If uv is a red edge, let us call v a red neighbor

of u, and vice versa. (Note that a red neighbor is not necessarily a red vertex.) Let U denote an

arbitrary set of 6n red vertices. Define a new graph T on the set of vertices U = {u : u ∈ U} by

joining u and v by an edge iff u and v have at least 2n common red neighbors.

Claim There is no independent set of size 3 in T .

Proof If u1, u2, u3 is such an independent set, and we let N(ui) denote the set of all red neighbors

of ui in K, then the cardinality of the union ∪3
i=1N(ui) is at least 3 · 6n− 3(2n− 1) > 12n, which

is impossible. 2

By the above claim and by Theorem 2.1 we conclude that T contains a copy of the graph H

defined above. (Note that the Theorem implies it only for H that does not have isolated vertices.

However, since H has k ≤ n vertices whereas T has 6n vertices the result clearly holds without

this assumption as well). By the definition of T we conclude that our colored complete graph K

contains a set W” = {w1”, . . . , wk”} of red vertices, so that for each pair i, j for which there is a

path of G connecting wi and wj and having all its (one or two) internal vertices in V −W , wi” and

wj” have at least 2n common red neighbors.
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To complete the proof we show that either we can complete the set W” to a red copy of G in

K, in which each member w” of W” plays the role of w, or there is a blue complete graph on n

vertices (and hence certainly a blue copy of G) in K. To this end, we try to complete W” to a red

copy of G in K by finding, for each vertex v ∈ V −W of G an appropriate vertex v” of K, so that

the mapping v 7→ v” for all v ∈ V defines a red copy of G. As mentioned above, each connected

component of the induced subgraph of G on V −W is either a single vertex or a single edge. Let us

order these components arbitrarily and attempt to define the vertices v” for the members v of each

component in its turn. Suppose the vertices v” have already been defined for all v” ∈ U where U

is a union of some of the above components, such that the mapping v 7→ v” (v ∈W ∪U) maps the

induced subgraph of G on W ∪ U into a red copy of itself in K, and consider the next component

C. There are two possible cases.

Case 1: C consists of a single vertex v. In this case, v may have either one or two neighbors in W .

In the first case, if wi is the neighbor of v in G, we merely have to choose v” in K so that the edge

wi”v” is red. However, since wi” is a red vertex of K it has at least 6n red neighbors, and since we

have already used (as x” for some x ∈ W ∪ U) at most n − 1 of them so far there is certainly an

appropriate choice for v” among these red neighbors. If v has two neighbors wi and wj in W the

situation is similar. By construction, wi” and wj” have at least 2n common red neighbors in K,

and v” can be chosen as any of these that have not been used already.

Case 2: C consists of two adjacent vertices u and v. In this case, each of the vertices u and v is

connected in G to a unique member of W . Let wi denote the unique neighbor of u in W and let

wj denote the unique neighbor of v in W . If i and j differ, let us try to choose both u” and v”

among the common red neighbors of wi” and wj”. There are at least 2n such red neighbors, and

hence there is a set S of more than n of them that have not been used so far. If there is a red

edge connecting two members of S define its two ends to be u” and v”. Otherwise, there is a blue

complete graph on (more than) n vertices and hence there is a blue copy of G.

It remains to check the case i = j, which is simpler. In this case, let S be any set of n red

neighbors of wi” which have not been used so far. (Such a set certainly exists as wi” has at least

6n red neighbors and less than n of them have been used). If there is a red edge connecting two

members of S let u” and v” be its ends. Otherwise, there is a blue copy of a complete graph

on n vertices and hence of G. Therefore, in any case there is a monochromatic copy of G in K,
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completing the proof. 2
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